Space Science Reviews

, Volume 163, Issue 1–4, pp 25–40 | Cite as

Vesta and Ceres: Crossing the History of the Solar System

Article

Abstract

The evolution of the Solar System can be schematically divided into three different phases: the Solar Nebula, the Primordial Solar System and the Modern Solar System. These three periods were characterized by very different conditions, both from the point of view of the physical conditions and from that of the processes there were acting through them. Across the Solar Nebula phase, planetesimals and planetary embryos were forming and differentiating due to the decay of short-lived radionuclides. At the same time, giant planets formed their cores and accreted the nebular gas to reach their present masses. After the gas dispersal, the Primordial Solar System began its evolution. In the inner Solar System, planetary embryos formed the terrestrial planets and, in combination with the gravitational perturbations of the giant planets, depleted the residual population of planetesimals. In the outer Solar System, giant planets underwent a violent, chaotic phase of orbital rearrangement which caused the Late Heavy Bombardment. Then the rapid and fierce evolution of the young Solar System left place to the more regular secular evolution of the Modern Solar System. Vesta, through its connection with HED meteorites, and plausibly Ceres too were between the first bodies to form in the history of the Solar System. Here we discuss the timescale of their formation and evolution and how they would have been affected by their passage through the different phases of the history of the Solar System, in order to draw a reference framework to interpret the data that Dawn mission will supply on them.

Keywords

Asteroid Vesta Asteroid Ceres Asteroids Meteorites Solar system formation Solar system evolution Impacts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Amelin, A.N. Krott, I.D. Hutcheon, A.A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002) CrossRefADSGoogle Scholar
  2. Y. Amelin, A. Kaltenbach, T. Iizuka, C.H. Stirling, T.R. Ireland, M. Petaev, S.B. Jacobsen, U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300, 343–350 (2010) CrossRefADSGoogle Scholar
  3. G. Akridge, P.H. Benoit, D.W.G. Sears, Regolith and megaregolith formation of H chondrites: thermal constraints on the parent body. Icarus 132, 185–195 (1998) CrossRefADSGoogle Scholar
  4. E. Asphaug, Growth and evolution of asteroids. Annu. Rev. Earth Planet. Sci. 37, 413–448 (2009) CrossRefADSGoogle Scholar
  5. J.A. Baker, M. Bizzarro, N. Wittig, J.N. Connelly, H. Haack, Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature 436, 1127–1131 (2005) CrossRefADSGoogle Scholar
  6. B. Bertotti, P. Farinella, D. Vokrouhlický, Physics of the Solar System: Dynamics and Evolution, Space Physics, and Spacetime Structure (The Netherlands, Kluwer Academic, 2003). ISBN: 1-4020-1428-7 Google Scholar
  7. R.P. Binzel, S. Xu, Chips off of asteroid 4 Vesta: evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993) CrossRefADSGoogle Scholar
  8. M. Bizzarro, J.A. Baker, H. Haack, K.L. Luundgard, Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophys. J. 632, L41–L44 (2005) CrossRefADSGoogle Scholar
  9. W.F. Bottke, D.D. Durda, D. Nesvorny, R. Jedicke, A. Mordibelli, D. Vokrouhlicky, H. Levison, The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005a) CrossRefADSGoogle Scholar
  10. W.F. Bottke, D.D. Durda, D. Nesvorny, R. Jedicke, A. Mordibelli, D. Vokrouhlicky, H. Levison, Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005b) CrossRefADSGoogle Scholar
  11. A. Bouvier, M. Wadhwa, The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010) CrossRefADSGoogle Scholar
  12. J. Castillo-Rogez, T.B. McCord, Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010) CrossRefADSGoogle Scholar
  13. J.E. Chambers, Planetesimal formation by turbulent concentration. Icarus 208, 505–517 (2010) CrossRefADSGoogle Scholar
  14. J.E. Chambers, G.W. Wetherill, Planets in the asteroid belt. Meteorit. Planet. Sci. 36, 381–399 (2001) CrossRefADSGoogle Scholar
  15. M. Chaudisson, M. Gounelle, Short-lived radioactive nuclides in meteorites and early solar system process. C. R. Géosci. 339, 872–884 (2007) CrossRefGoogle Scholar
  16. J.N. Connelly, Y. Amelin, A.N. Krot, M. Bizzarro, Chronology of the Solar System’s oldest solids. Astrophys. J. 675, L121–L124 (2008) CrossRefADSGoogle Scholar
  17. A. Coradini, C. Federico, G. Magni, Formation of planetesimals in an evolving protoplanetary Disk. Astron. Astrophys. 98, 173–185 (1981) MATHADSGoogle Scholar
  18. A. Coradini, G. Magni, D. Turrini, From gas to satellitesimals: disk formation and evolution. Space Sci. Rev. 153, 411–429 (2010) CrossRefADSGoogle Scholar
  19. J.N. Cuzzi, R.C. Hogan, K. Shariff, Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687, 1432–1447 (2008) CrossRefADSGoogle Scholar
  20. J.N. Cuzzi, R.C. Hogan, W.F. Bottke, Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus 208, 518–538 (2010) CrossRefADSGoogle Scholar
  21. I. De Pater, J.J. Lissauer, Planetary Sciences (Cambridge University Press, Cambridge, 2001). ISBN: 0521482194 Google Scholar
  22. M.C. De Sanctis, E. Ammannito, A. Migliorini, D. Lazzaro, M.T. Capria, L. McFadden, Mineralogical characterization of some V-type asteroids, in support of the NASA Dawn mission. Monthly Not. R. Astron. Soc. 412, 2318–2332 (2011) CrossRefADSGoogle Scholar
  23. M.J. Drake, The eucrite/Vesta story. Meteorit. Planet. Sci. 36, 501–513 (2001) CrossRefADSGoogle Scholar
  24. P. Farinella, Y.D. Vokrouhlicky, Semimajor axis mobility of asteroidal fragments. Science 283, 1507–1510 (1999) CrossRefADSGoogle Scholar
  25. C. Federico, A. Coradini, C. Pauselli, Vesta thermal and structural evolution models, submitted to Planetary Space Sci. (2011) Google Scholar
  26. A. Ghosh, H.Y. McSween, A thermal model for the differentiation of Asteroid 4 Vesta, based on radiogenic heating. Icarus 134, 187–206 (1998) CrossRefADSGoogle Scholar
  27. P. Goldreich, W.R. Ward, The formation of planetesimals. Astrophys. J. 183, 1051–1062 (1973) CrossRefADSGoogle Scholar
  28. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005) CrossRefADSGoogle Scholar
  29. R.C. Greenwood, I.A. Franchi, A. Jambon, P.C. Buchanan, Widespread magma oceans on asteroidal bodies in the early solar system. Nature 435, 916–918 (2005) CrossRefADSGoogle Scholar
  30. J.M. Hahn, Diagnosing circumstellar Debris disks. Astrophys. J. 719, 1699–1714 (2010) CrossRefADSGoogle Scholar
  31. K.E. Haisch, E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001) CrossRefADSGoogle Scholar
  32. R.J. Jayawardhana, A. Coffey, A. Scholz, A. Brandeker, M.H. van Kerkwijk, Accretion disks around Young stars: lifetimes, disk locking, and variability. Astrophys. J. 648, 1206–1218 (2006) CrossRefADSGoogle Scholar
  33. A. Johansen, J.S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007) CrossRefADSGoogle Scholar
  34. K. Keil, Geological history of asteroid 4 Vesta: the smallest terrestrial planet, in Asteroids III, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 573–584 Google Scholar
  35. S.J. Kenyon, B.C. Bromley, Dusty rings: signposts of recent planet formation. Astrophys. J. 577, L35–L38 (2002) CrossRefADSGoogle Scholar
  36. S.J. Kenyon, B.C. Bromley, Variations on Debris disks: icy planet formation at 30–150 AU for 1–3M solar main-sequence stars. Astrophys. J. Suppl. Ser. 179, 451–483 (2008) CrossRefADSGoogle Scholar
  37. S.J. Kenyon, B.C. Bromley, Variations on Debris disks. II. Icy planet formation as a function of the bulk properties and initial sizes of planetesimals. Astrophys. J. Suppl. Ser. 188, 242–279 (2010) CrossRefADSGoogle Scholar
  38. T. Kleine, C. Münker, K. Mezger, H. Palme, Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–955 (2002) CrossRefADSGoogle Scholar
  39. T. Kleine, H. Palme, K. Mezger, A.N. Halliday, Hf–W chronometry of lunar metals and the age and early differentiation of the Moon. Science 310, 1671–1674 (2005) CrossRefADSGoogle Scholar
  40. D. Lazzaro, Basaltic Asteroids: a new look on the differentiation process in the main belt, in Proceedings of the XII Latin American IAU Regional Meeting, ed. by G. Magris, G. Bruzual, L. Carigi. Revista Mexicana de Astronomía y Astrofísica, Serie de Conferencias, vol. 35 (2009), pp. 1–6 Google Scholar
  41. H.F. Levison, L. Dones, C.R. Chapman, S.A. Stern, M.J. Duncan, K. Zahnle, Could the Lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151, 286–306 (2001) CrossRefADSGoogle Scholar
  42. J.J. Lissauer, O. Hubickyi, G. D’Angelo, P. Bodenheimer, Models of Jupiter’s growth incorporating thermal and hydrodynamics constraints. Icarus 199, 338–350 (2009) CrossRefADSGoogle Scholar
  43. G.W. Lugmair, A. Shukolyukov, Early solar system timescales according to 53Mn–53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998) CrossRefADSGoogle Scholar
  44. A. Markowski, G. Quitté, A.N. Halliday, T. Kleine, Tungsten isotopic compositions of iron meteorites: chronological constraints vs. cosmogenic effects. Earth Planet. Sci. Lett. 242, 1–15 (2006) CrossRefADSGoogle Scholar
  45. F. Marzari, A. Cellino, D.R. Davis, P. Farinella, V. Zappala, V. Vanzani, Origin and evolution of the Vesta asteroid family. Astron. Astrophys. 316, 248–262 (1996) ADSGoogle Scholar
  46. T.B. McCord, J. Castillo-Rogez, A. Rivkin, Ceres: its origin, evolution and structure and Dawn’s potential contribution. Space Sci. Rev. (2011). doi:10.1007/s11214-010-9729-9, (2011, in this issue) Google Scholar
  47. T.B. McCord, C. Sotin, Ceres: evolution and current state. J. Geophys. Res. 110, E05009 (2005) CrossRefGoogle Scholar
  48. H.Y. McSween, D.W. Mittlefehldt, A.W. Beck, R.G. Mayne, T.J. McCoy, HED meteorites and their relationship to the geology of Vesta and the dawn mission. Space Sci. Rev. (2010). doi:10.1007/s11214-010-9637-z, (2011, in this issue) Google Scholar
  49. M.R. Meyer, Circumstellar disk evolution: constraining theories of planet formation, in Proceedings of the International Astronomical Union, vol. 4 (2008), pp. 111–122. doi:10.1017/S1743921309031767 Google Scholar
  50. F. Migliorini, A. Morbidelli, V. Zappalà, B. Gladman, M.E. Bailey, A. Cellino, Vesta fragments from v6 and 3:1 resonances: implications for V-type NEAs and HED meteorites. Meteorit. Planet. Sci. 32, 903–916 (1997) CrossRefADSGoogle Scholar
  51. D.A. Minton, R. Malhotra, A record of planet migration in the main asteroid belt. Nature 457, 1109–1111 (2009) CrossRefADSGoogle Scholar
  52. D.A. Minton, R. Malhotra, Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus 207, 744–757 (2010) CrossRefADSGoogle Scholar
  53. A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005) CrossRefADSGoogle Scholar
  54. A. Morbidelli, W.F. Bottke, D. Nesvorny, H.F. Levison, Asteroids were born big. Icarus 204, 558–573 (2009) CrossRefADSGoogle Scholar
  55. A. Morbidelli, R. Brasser, R. Gomes, H.F. Levison, K. Tsiganis, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010) CrossRefADSGoogle Scholar
  56. D.P. O’Brien, A. Morbidelli, W.F. Bottke, The primordial excitation and clearing of the asteroid belt—revisited. Icarus 191, 434–452 (2007) CrossRefADSGoogle Scholar
  57. D.P. O’Brien, M.V. Sykes, The Asteroid belt—creation and destruction of planets. Space Sci. Rev. (2011, this issue) Google Scholar
  58. J.C.B. Papaloizou, R.P. Nelson, W. Kley, F.S. Masset, P. Artymowicz, Disk-planet interactions during planet formation, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (University of Arizona Press, Tucson, 2007), pp. 655–668 Google Scholar
  59. J. Petit, A. Morbidelli, J. Chambers, The primordial excitation and clearing of the asteroid belt. Icarus 153, 338–347 (2001) CrossRefADSGoogle Scholar
  60. C. Pieters, R.P. Binzel, D. Bogard, T. Hiroi, D.W. Mittlefehldt, L. Nyquist, A. Rivkin, H. Takeda, Asteroid-meteorite links: the Vesta conundrum(s), in Asteroids, Comets, Meteors Proceedings IAU Symposium No. 229, ed. by D. Lazzaro, S. Ferraz-Mello, J.A. Fernandez (Cambridge University Press, Cambridge, 2006), pp. 273–288 Google Scholar
  61. G. Quitté, J.L. Birck, Tungsten isotopes in eucrites revisited and the initial 182Hf/180Hf of the solar system based on iron meteorite data. Earth Planet. Sci. Lett. 219, 201–207 (2004) CrossRefADSGoogle Scholar
  62. K. Righter, M.J. Drake, A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929–944 (1997) CrossRefADSGoogle Scholar
  63. V.S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Nauka Press, Moscow, 1969). English Translation: NASA TTF-677.7 Google Scholar
  64. E.R.D. Scott, Meteoritics and dynamical constrains on the growth mechanisms and formation times of asteroids and Jupiter. Icarus 185, 72–82 (2006) CrossRefADSGoogle Scholar
  65. E.R.D. Scott, Chondrites and the protoplanetary disk. Annu. Rev. Earth Planet. Sci. 35, 577–620 (2007) CrossRefADSGoogle Scholar
  66. A. Shukolyukov, G.W. Lugmair, Live Iron-60 in the early solar system. Science 259, 1138–1142 (1993) CrossRefADSGoogle Scholar
  67. G. Srinivasan, J.N. Goswami, N. Bhandari, 26Al in Eucrite piplia Kalan: plausible heat source and formation chronology. Science 284, 1348–1350 (1999) CrossRefADSGoogle Scholar
  68. P.C. Thomas, R.P. Binzel, M.J. Gaffey, B.H. Zellner, A.D. Storrs, E. Wells, Vesta: Spin pole, size, and shape from HST images. Icarus 128, 88–94 (1997) CrossRefADSGoogle Scholar
  69. P.C. Thomas, J.W. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, E.F. Young, Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005) CrossRefADSGoogle Scholar
  70. K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005) CrossRefADSGoogle Scholar
  71. D. Turrini, G. Magni, A. Coradini, Probing the history of Solar System through the cratering records on Vesta and Ceres. Mon. Not. R. Astron. Soc. 413, 2439–2466 (2011). Online Early, doi:10.1111/j.1365-2966.2011.18316.x CrossRefADSGoogle Scholar
  72. H.C. Urey, The cosmic abundances of potassium, Uranium, and Thorium and the heat balances of the Earth, the Moon, and Mars, in Proceedings of the National Academy of Sciences of the United States of America, vol. 41 (1955), pp. 127–144 Google Scholar
  73. K.J. Walsh, A. Morbidelli, The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astron. Astrophys. 526, id.A126 (2011) CrossRefADSGoogle Scholar
  74. M.J. Walter, R.G. Tronnes, pp CO2 Early Earth differentiation. Earth Planet. Sci. Lett. 225, 253–269 (2004) CrossRefADSGoogle Scholar
  75. S.J. Weidenschilling, The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977) CrossRefADSGoogle Scholar
  76. S.J. Weidenschilling, Dust to planetesimals—settling and coagulation in the solar nebula. Icarus 44, 172–189 (1980) CrossRefADSGoogle Scholar
  77. S.J. Weidenschilling, F. Marzari, Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature 384, 619–621 (1996) CrossRefADSGoogle Scholar
  78. S.J. Weidenschilling, Accretion of planetary embryos in the inner and outer solar system. Phys. Scr. 130, 014021 (2008) CrossRefGoogle Scholar
  79. S.J. Weidenschilling, Collisional and luminosity evolution of a debris disk: the case of HD 12039. Astrophys. J. 722, 1716–1726 (2010a) CrossRefADSGoogle Scholar
  80. S.J. Weidenschilling, Were asteroids born big? An alternative scenario, in 41st Lunar and Planetary Science Conference (2010b), p. 1453. 1–5 March 2010 held in The Woodlands, Texas, LPI Contribution No. 1533 Google Scholar
  81. G.W. Wetherill, An alternative model for the formation of asteroids. Icarus 100, 307–325 (1992) CrossRefADSGoogle Scholar
  82. J.G. Williams, Asteroid family identifications and proper elements, in Asteroids II, ed. by R.P. Binzel, T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1989), pp. 1034–1072 Google Scholar
  83. J. Yang, J.I. Goldstein, E.D.R. Scott, Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature 446, 888–891 (2007) CrossRefADSGoogle Scholar
  84. Q. Yin, S.B. Jacobsen, K. Yamashita, J. Blichert-Toft, P. Télouk, F. Albarède, A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–952 (2002) CrossRefADSGoogle Scholar
  85. V. Zappalà, A. Cellino, P. Farinella, Z. Knezevic, Asteroid families I—identification by hierarchical clustering and reliability assessment. Astron. J. 100, 2030–2046 (1990) CrossRefADSGoogle Scholar
  86. E. Zinner, An isotopic view of the Early Solar system. Science 300, 265–267 (2003) CrossRefGoogle Scholar
  87. M.Y. Zolotov, On the composition and differentiation of Ceres. Icarus 204, 183–193 (2009) CrossRefADSGoogle Scholar
  88. M.T. Zuber, H.Y. McSween, R.P. Binzel, L.T. Elkins-Tanton, A.S. Konopliv, C.M. Pieters, D.E. Smith, Origin, internal structure and evolution of 4 Vesta. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9806-8. (2011, this issue) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. Coradini
    • 1
  • D. Turrini
    • 1
  • C. Federico
    • 2
  • G. Magni
    • 3
  1. 1.Institute for Physics of Interplanetary SpaceINAFRomeItaly
  2. 2.Department of Earth SciencesUniversity of PerugiaPerugiaItaly
  3. 3.Institute for Space Astrophysics and Cosmic PhysicsINAFRomeItaly

Personalised recommendations