Space Science Reviews

, Volume 168, Issue 1–4, pp 441–461 | Cite as

Midlatitude Sporadic E. A Typical Paradigm of Atmosphere-Ionosphere Coupling

  • Christos Haldoupis


This paper provides a comprehensive update on sporadic E layers that is placed in the context of atmosphere-ionosphere coupling, exemplified here by the fundamental windshear theory processes that govern sporadic E layer formation and variability. Some basics of windshear theory are provided first, followed by a summary of key experimental results, their interpretation and physical understanding. The emphasis is placed on the wind shear control of the diurnal and sub-diurnal variability and altitude descent of sporadic E layers and the key role behind these properties of the diurnal and semidiurnal tides. Furthermore, the paper summarizes recent observations that establish a role also for the planetary waves in sporadic E layer occurrence and long-term variability. The possible mechanisms behind this interaction are examined and evidence is presented which shows that planetary waves affect sporadic E layers indirectly though the amplitude modulation of tides at lower altitudes in the MLT region. Only a brief mention is made about gravity wave effects on sporadic E, which apparently exist but cannot be as crucial in layer forming as thought in the past. There is now enough evidence to suggest that mid- and low-latitude sporadic E is not as “sporadic” as the name implies but a regularly occurring ionospheric phenomenon. This may suggest that the sporadic E layer physics can be incorporated in large-scale atmosphere-ionosphere coupling models.


Sporadic E layers Windshear theory Atmosphere-ionosphere coupling Atmospheric tides Planetary waves Gravity waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W.I. Axford, The formation and vertical movement of dense ionized layers in the ionosphere. J. Geophys. Res. 68, 769 (1963) ADSCrossRefGoogle Scholar
  2. C. Arras, C. Jacobi, J. Wickert, Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes. Ann. Geophys. 27, 2555–2563 (2009) ADSCrossRefGoogle Scholar
  3. R.L. Bishop, G.D. Earle, Metallic ion transport associated with midlatitude intermediate layer development. J. Geophys. Res. 108(A1), 1019 (2003) CrossRefGoogle Scholar
  4. G. Chimonas, W.I. Axford, Vertical movement of temperate zone sporadic E layer. J. Geophys. Res. 73, 111 (1968) ADSCrossRefGoogle Scholar
  5. G. Chimonas, Enhancement of sporadic E by horizontal transport within the layer. J. Geophys. Res. 76, 4578 (1971) ADSCrossRefGoogle Scholar
  6. N. Christakis, C. Haldoupis, Q. Zhou, C. Meek, Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo. Ann. Geophys. 27, 923–931 (2009) ADSCrossRefGoogle Scholar
  7. R.R. Clark, M.D. Burrage, S.J. Franke, A.H. Manson, C.E. Meek, N.J. Mitchel, H.G. Muller, Observations of 7-day planetary waves with MLT radars and UARS/HRDI instrument. J. Atmos. Sol.-Terr. Phys. 64, 1217 (2002) ADSCrossRefGoogle Scholar
  8. F.T. Djuth, M.P. Sulzer, S.A. Gonzales, J.D. Mathews, J.H. Elder, A continuum of gravity waves in the Arecibo thermosphere. Geophys. Res. Lett. 31, L16801 (2004). doi: 10.1029/2003GL019376 ADSCrossRefGoogle Scholar
  9. G.D. Earle, T.J. Kane, R.F. Pfaff, S.R. Bounds, Ion layer separation and equilibrium zonal winds in midlatitude sporadic E. Geophys. Res. Lett. 27(4), 461–464 (2000). doi: 10.1029/1999GL900572 ADSCrossRefGoogle Scholar
  10. J.M. Forbes, Tidal and planetary waves, in The Upper Mesosphere and Lower Thermosphere, a Review of Experiment and Theory, ed. by R.M. Johnson, T.L. Killen (1994), p. 67 Google Scholar
  11. J.M. Forbes, M.E. Hagan, S. Miyahara, F. Vial, A.H. Manson, C.E. Meek, Yu. Portnyagin, Quasi-16-day oscillation in the mesosphere and lower thermosphere. J. Geophys. Res. 100, 9149 (1995) ADSCrossRefGoogle Scholar
  12. S. Fukao, M. Yamamoto, R.T. Tsunoda, H. Hayakawa, T. Mukai, The SEEK (Sporadic-E Experiment from Kyushu) campaign. Geophys. Res. Lett. 25, 1761–1764 (1998) ADSCrossRefGoogle Scholar
  13. C. Haldoupis, D.T. Farley, K. Schlegel, Type 1 echoes from the midlatitude E region ionosphere. Ann. Geophys. 15, 908–917 (1997) ADSGoogle Scholar
  14. C. Haldoupis, D. Pancheva, Planetary waves and midlatitude sporadic E layers: Strong experimental evidence for a close relationship. J. Geophys. Res. 107 (2002). doi: 10.1029/2001JA000212
  15. C. Haldoupis, D. Pancheva, N.J. Mitchell, A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. J. Geophys. Res. 109, A02302 (2004). doi: 10.1029/2003JA010253 CrossRefGoogle Scholar
  16. C. Haldoupis, C. Meek, N. Christakis, D. Pancheva, A. Bourdillon, Ionogram height-time intensity observations of descending sporadic E layers at mid-latitude. J. Atmos. Sol.-Terr. Phys. 68, 539 (2006) ADSCrossRefGoogle Scholar
  17. C. Haldoupis, D. Pancheva, Terdiurnal tidelike variability in sporadic E layers. J. Geophys. Res. 111, A07303 (2006). doi: 10.1029/2005JA011522 ADSCrossRefGoogle Scholar
  18. C. Haldoupis, D. Pancheva, W. Singer, C. Meek, J. MacDougall, An explanation for the seasonal dependence of midlatitude sporadic E layers. J. Geophys. Res. 112, A06315 (2007). doi: 10.1029/2007JA012322 CrossRefGoogle Scholar
  19. C. Haldoupis, A tutorial review on sporadic E layers, in Aeronomy of the Earth’s Atmosphere and Ionosphere. IAGA Special Sopron Book series, doi: 10.1007/978-94-007-0326-1-29 (Springer, Berlin, 2011) Google Scholar
  20. R.M. Harper, Tidal winds in the 100- to 200-km region at Arecibo. J. Geophys. Res. 82, 3243 (1977) MathSciNetADSCrossRefGoogle Scholar
  21. J.R. Holton, An Introduction to Dynamic Meteorology (Academic Press, San Diego, 1982) Google Scholar
  22. G.G. Hussey, K. Schlegel, C. Haldoupis, Simultaneous 50-MHz coherent backscatter and digital ionosonde observations in the midlatitude E region. J. Geophys. Res. 103, 6991 (1998) ADSCrossRefGoogle Scholar
  23. D.L. Hysell, M. Yamamoto, S. Fukao, Imaging radar observations and theory of type I and type II quasiperiodic echoes. J. Geophys. Res. 107, 1360 (2002) CrossRefGoogle Scholar
  24. M.F. Larsen, A shear instability seeding mechanism for quasiperiodic echoes. J. Geophys. Res. 105, 24931 (2000) ADSCrossRefGoogle Scholar
  25. M.C. Kelley, The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd edn. (Academic Press, San Diego, 2009) Google Scholar
  26. D.J. Livneh, I. Seker, F.T. Djuth, J.D. Mathews, Continuous quasiperiodic thermospheric waves over Arecibo. J. Geophys. Res. 112, A07313 (2007). doi: 10.1029/2006JA012225 CrossRefGoogle Scholar
  27. J.W. MacDougall, 110 km neutral zonal wind patterns. Planet. Space Sci. 22, 545 (1974) ADSCrossRefGoogle Scholar
  28. J.W. MacDougall, J.M. Plane, P.T. Jayachandran, Polar cap Sporadic E: part 2, modeling. J. Atmos. Sol.-Terr. Phys. 62, 1169–1176 (2000) ADSCrossRefGoogle Scholar
  29. J.D. Mathews, F.S. Bekeny, Upper atmosphere tides and the vertical motion of ionospheric sporadic layers at Arecibo. J. Geophys. Res. 84, 2743–2750 (1979) ADSCrossRefGoogle Scholar
  30. J.D. Mathews, M.P. Sulzer, P. Perillat, Aspects of layer electrodynamics from high-resolution ISR observations of the 80–270 km ionosphere. Geophys. Res. Lett. 24(11), 1411–1414 (1997) ADSCrossRefGoogle Scholar
  31. J.D. Mathews, Sporadic E: current views and recent progress. J. Atmos. Sol.-Terr. Phys. 60, 413 (1998) ADSCrossRefGoogle Scholar
  32. C.K. Meyer, J.M. Forbes, A 6.5-day westward propagating planetary wave: Origin and characteristics. J. Geophys. Res. 102, 26173 (1997) ADSCrossRefGoogle Scholar
  33. K.L. Miller, L.G. Smith, Incoherent scatter radar observations of irregular structure in mid-latitude sporadic E layers. J. Geophys. Res. 83, 3761–3775 (1978) ADSCrossRefGoogle Scholar
  34. D. Pancheva, Evidence for non-linear coupling of planetary waves and tides in the lower thermosphere over Bulgaria. J. Atmos. Sol.-Terr. Phys. 62, 115 (2000) ADSCrossRefGoogle Scholar
  35. D. Pancheva, C. Haldoupis, C.E. Meek, A.H. Manson, N.J. Mitchell, Evidence of a role for modulated atmospheric tides in the dependence of sporadic E on planetary waves, J. Geophys. Res. 108 (2003). doi: 10.1029/2002JA009788
  36. R.F. Pfaff, M. Yamamoto, P. Marioni, H. Mori, S. Fukao, Electric field measurements above and within a sporadic-E layer. Geophys. Res. Lett. 25, 1769–1772 (1998) ADSCrossRefGoogle Scholar
  37. S. Shalimov, C. Haldoupis, M. Voiculescu, K. Schlegel, Midlatitude E region plasma accumulation driven by planetary wave horizontal wind shears. J. Geophys. Res. 104, 28207 (1999) ADSCrossRefGoogle Scholar
  38. S. Shalimov, C. Haldoupis, A model of midlatitude E region plasma convergence inside a planetary wave cyclonic vortex. Ann. Geophys. 20, 1193 (2002) ADSCrossRefGoogle Scholar
  39. L.G. Smith, A sequence of rocket observations of nighttime sporadic E. J. Atmos. Sol.-Terr. Phys. 32, 1427 (1970) Google Scholar
  40. E.P. Szuszczewicz, R.G. Roble, P.J. Wilkinson, R. Hanbaba, Coupling mechanisms in the lower ionospheric-thermospheric system and manifestations in the formation and dynamics of intermediate descending layers. J. Atmos. Sol.-Terr. Phys. 57, 1483 (1995) ADSCrossRefGoogle Scholar
  41. H. Teitelbaum, F. Vial, On the tidal variability induced by non-linear interaction with planetary waves. J. Geophys. Res. 96, 14169 (1991) ADSCrossRefGoogle Scholar
  42. R. Tsunoda, M. Yamamoto, K. Igarashi, K. Hocke, S. Fukao, Quasiperiodic radar echoes from midlatitude sporadic E and role of the 5-day planetary wave. Geophys. Res. Lett. 25, 951 (1998) ADSCrossRefGoogle Scholar
  43. M. Voiculescu, C. Haldoupis, K. Schlegel, Evidence for planetary wave effects on midlatitude backscatter and sporadic E layer occurrence. Geophys. Res. Lett. 26, 1105 (1999) ADSCrossRefGoogle Scholar
  44. M. Voiculescu, C. Haldoupis, D. Pancheva, M. Ignat, K. Schlegel, S. Shalimov, More evidence for a planetary wave link with midlatitude E region coherent backscatter and sporadic E layers. Ann. Geophys. 18, 1182 (2000) ADSCrossRefGoogle Scholar
  45. J.D. Whitehead, Recent work on midlatitude and equatorial sporadic E. J. Atmos. Sol.-Terr. Phys. 51, 401 (1989) ADSCrossRefGoogle Scholar
  46. J.D. Whitehead, The formation of the sporadic E layer in the temperate zones. J. Atmos. Sol.-Terr. Phys. 20, 49 (1961) CrossRefGoogle Scholar
  47. P.J. Wilkinson, E.P. Szuszczewicz, R.G. Roble, Measurements and modelling of intermediate, descending, and sporadic layers in the lower ionosphere: Results and implications for global-scale ionospheric-thermospheric studies. Geophys. Res. Lett. 19, 95 (1992) ADSCrossRefGoogle Scholar
  48. X.M. Zuo, W.X. Wan, Planetary wave oscillations in sporadic E layer occurrence at Wuhan. Earth Planets Space 60, 647–652 (2008) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations