Advertisement

Space Science Reviews

, Volume 176, Issue 1–4, pp 237–252 | Cite as

Total Solar Irradiance: What Have We Learned from the Last Three Cycles and the Recent Minimum?

  • Claus FröhlichEmail author
Article

Abstract

The record of total solar irradiance (TSI) during the past 35 years shows similarities of the three solar cycles, but also important differences. During the recent minimum with an unusually long periods with no sunspots, TSI was also extremely low, namely 25% of a typical cycle amplitude lower than in 1996. Together with the values during the previous minima this points to a long-term change related to the strength of solar activity. On the other hand, activity indices as the 10.7 cm radio flux (F10.7), the CaII and MgII indices and also the Ly-α irradiance, show a much smaller decrease. This means that proxy models for TSI based on the photometric sunspot index (PSI), and on e.g. MgII index to represent faculae and network have to be complemented by a further component for the long-term change. TSI values at minima are correlated with the simultaneous values of the open magnetic field of the Sun at 1 AU and thus, these values may be used as a surrogate for the long-term change component. Such a 4-component model explains almost 85% of the variance of TSI over the three solar cycles available. This result supports also the idea that the long-term change of TSI is not due to manifestations of surface magnetism as the solar cycle modulation, but due to a change of the global temperature of Sun modulated by the strength of activity—being lower during low activity. To explain the difference between the minima in 1996 and 2008 we need a change of only 0.25 K.

Keywords

Total solar irradiance Solar variability Solar activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. (2009). doi: 10.1029/2009JA014299 Google Scholar
  2. P.N. Brandt, M. Stix, H. Weinhardt, Modeling solar irradiance variations with an area dependent photometric sunspot index. Sol. Phys. 152, 119–124 (1994). doi: 10.1007/BF01473193 ADSCrossRefGoogle Scholar
  3. G.A. Chapman, A.M. Cookson, J.J. Dobias, Variations in total solar irradiance during solar cycle 22. J. Geophys. Res. 101, 13541–13548 (1996) ADSCrossRefGoogle Scholar
  4. P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 2, 2–83 (2005) ADSGoogle Scholar
  5. D. Crommelynck, V. Domingo, A. Fichot, C. Fröhlich, B. Penelle, J. Romero, C. Wehrli, Preliminary results from the SOVA experiment on board the European Retrievable Carrier (EURECA). Metrologia 30, 375–380 (1993) ADSCrossRefGoogle Scholar
  6. D. Crommelynck, A. Fichot, R.B. Lee III, J. Romero, First realisation of the space absolute radiometric reference (SARR) during the ATLAS 2 flight period. Adv. Space Res. 16, 8–17823 (1995) ADSCrossRefGoogle Scholar
  7. S. Dewitte, D. Crommelynck, S. Mekaoui, A. Joukoff, Measurement and uncertainty of the long-term total solar irradiance trend. Sol. Phys. 224, 209–216 (2004). doi: 10.1007/s11207-005-5698-7 ADSCrossRefGoogle Scholar
  8. V. Domingo, I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, N. Krivova, G. Kopp, W. Schmutz, S.K. Solanki, H.C. Spruit, Y. Unruh, A. Vögler, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337–380 (2009). doi: 10.1007/s11214-009-9562-1 ADSCrossRefGoogle Scholar
  9. I. Ermolli, S.K. Solanki, A.G. Tlatov, N.A. Krivova, R.K. Ulrich, J. Singh, Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 698, 1000–1009 (2009). doi: 10.1088/0004-637X/698/2/1000 ADSCrossRefGoogle Scholar
  10. M. Fligge, S.K. Solanki, Inter-Cycle Variations of solar irradiance: sunspot areas as a pointer. Sol. Phys. 173, 427–439 (1997) ADSCrossRefGoogle Scholar
  11. P.V. Foukal, J. Lean, Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347–357 (1988) ADSCrossRefGoogle Scholar
  12. P.V. Foukal, J. Lean, An empirical model of total solar irradiance variation between 1874 and 1988. Science 247, 556–558 (1990) ADSCrossRefGoogle Scholar
  13. P. Foukal, L. Bertello, W. Livingston, A. Pevtsov, J. Singh, A. Tlatov, R. Ulrich, A century of solar Ca II K measurements and their implications for solar UV driving of climate. Sol. Phys. 255, 229–238 (2009). doi: 10.1007/s11207-009-9330-0 ADSCrossRefGoogle Scholar
  14. C. Fröhlich, Long-term behavior of space radiometers. Metrologia 40, 60–65 (2003) ADSCrossRefGoogle Scholar
  15. C. Fröhlich, Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21. Space Sci. Rev. 125, 53–65 (2006). doi: 10.1007/s11214-006-9046-5 ADSGoogle Scholar
  16. C. Fröhlich, Evidence of a long-term trend in total solar irradiance. Astron. Astrophys. 501, 27–30 (2009a). doi: 10.1051/0004-6361/200912318 ADSCrossRefGoogle Scholar
  17. C. Fröhlich, Total solar irradiance variability: what have we learned about its variability from the record of the last three solar cycles? in Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, ed. by T. Tsuda, R. Fujii, K. Shibata, M.A. Geller (Terra Publishing, Tokyo, 2009b), pp. 217–230. available at http://www.terrapub.co.jp/onlineproceedings/ste/CAWSES2007/index.html Google Scholar
  18. C. Fröhlich, J. Lean, The sun’s total irradiance: cycles and trends in the past two decades and associated climate change uncertainties. Geophys. Res. Lett. 25, 4377–4380 (1998) ADSCrossRefGoogle Scholar
  19. C. Fröhlich, J. Lean, Solar radiative output and its variability: evidence and mechanisms. Astron. Astrophys. Rev. 12, 273–320 (2004). doi: 10.1007/s00159-004-0024-1 ADSCrossRefGoogle Scholar
  20. C. Fröhlich, J.M. Pap, H.S. Hudson, Improvement of the photometric sunspot index and changes of disk-integrated sunspot contrast with time. Sol. Phys. 152, 111–118 (1994) ADSCrossRefGoogle Scholar
  21. C. Fröhlich, D. Crommelynck, C. Wehrli, M. Anklin, S. Dewitte, A. Fichot, W. Finsterle, A. Jiménez, A. Chevalier, H.J. Roth, In-flight performances of VIRGO solar irradiance instruments on SOHO. Sol. Phys. 175, 267–286 (1997) ADSCrossRefGoogle Scholar
  22. C. Fröhlich, A four-component proxy model for total solar irradiance calibrated during solar cycles 21–23. (2011, submitted) preprint available at ftp://ftp.pmodwrc.ch/pub/Claus/EAST-WS/caosp_frohlich.pdf
  23. J.W. Harvey, D. Branston, C.J. Henney, C.U. Keller, SOLIS and GONG Teams, seething horizontal magnetic fields in the quiet solar photosphere. Astrophys. J. 659, 177–180 (2007). doi: 10.1086/518036 ADSCrossRefGoogle Scholar
  24. K. Harvey, Irradiance models based on solar magnetic field observations, in The Sun as a Variable Star: Solar and Stellar Irradiance Variations, ed. by J.M. Pap, C. Fröhlich, H.S. Hudson, S.K. Solanki (Cambridge University Press, Cambridge, 1994), pp. 217–225 Google Scholar
  25. D.F. Heath, B.M. Schlesinger, The Mg-280 nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986) ADSCrossRefGoogle Scholar
  26. D.V. Hoyt, H.L. Kyle, J.R. Hickey, R.H. Maschhoff, The NIMBUS-7 solar total irradiance: a new algorithm for its derivation. J. Geophys. Res. 97, 51–63 (1992) ADSCrossRefGoogle Scholar
  27. H.S. Hudson, S. Silva, M. Woodard, R.C. Willson, The effects of sunspots on solar irradiance. Sol. Phys. 76, 211–218 (1982) ADSGoogle Scholar
  28. P.G. Judge, S.H. Saar, The Outer Solar Atmosphere during the maunder minimum: a stellar perspective. Astrophys. J. 663, 643–656 (2007). doi: 10.1086/513004 ADSCrossRefGoogle Scholar
  29. G. Kopp, G. Lawrence, The total irradiance monitor (TIM): instrument design. Sol. Phys. 230, 91–109 (2005). doi: 10.1007/s11207-005-7446-4 ADSCrossRefGoogle Scholar
  30. N.A. Krivova, L. Balmaceda, S.K. Solanki, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335–346 (2007). doi: 10.1051/0004-6361:20066725 ADSCrossRefGoogle Scholar
  31. N.A. Krivova, S.K. Solanki, L. Floyd, Reconstruction of solar UV irradiance in cycle 23. Astron. Astrophys. 452, 631–639 (2006). doi: 10.1051/0004-6361:20064809 ADSCrossRefGoogle Scholar
  32. N.A. Krivova, S.K. Solanki, T. Wenzler, ACRIM-gap and total solar irradiance revisited: is there a secular trend between 1986 and 1996? Geophys. Res. Lett. (2009). doi: 10.1029/2009GL040707
  33. N.A. Krivova, L.E.A. Vieira, S.K. Solanki, Reconstruction of solar spectral irradiance since the maunder minimum. J. Geophys. Res. (2010, in press). doi: 10.1029/2010JA015431
  34. N.A. Krivova, S.K. Solanki, M. Fligge, Y.C. Unruh, Reconstruction of solar total and spectral irradiance variations in cycle 23: is solar surface magnetism the cause? Astron. Astrophys. 399, 1–4 (2003) ADSCrossRefGoogle Scholar
  35. J. Lean, J. Beer, R. Bradley, Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995) ADSCrossRefGoogle Scholar
  36. R.B. Lee III, M.A. Gibson, R.S. Wilson, S. Thomas, Long-term total solar irradiance variability during sunspot cycle 22. J. Geophys. Res. 100, 1667–1675 (1995) ADSCrossRefGoogle Scholar
  37. W. Livingston, M. Penn, Are sunspots different during this solar minimum? EOS Trans. 90, 257–258 (2009). doi: 10.1029/2009EO300001 ADSCrossRefGoogle Scholar
  38. W. Livingston, L. Wallace, The Sun’s immutable basal quiet atmosphere. Sol. Phys. 212, 227–237 (2003) ADSCrossRefGoogle Scholar
  39. M. Lockwood, Solar change and climate: an update in the light of the current exceptional solar minimum. Proc. R. Soc. A 466, 303–329 (2010). doi: 10.1098/rspa.2009.0519 ADSCrossRefGoogle Scholar
  40. M. Lockwood, C. Fröhlich, Recent oppositely directed trends in solar climate forcing and the global mean surface air temperature. Proc. R. Soc. A 463, 2447–2460 (2007). doi: 10.1098/rspa.2007.1880 ADSCrossRefGoogle Scholar
  41. M. Lockwood, C. Fröhlich, Recent oppositely-directed trends in solar climate forcings and the global mean surface air temperature. II. Different reconstructions of the total solar irradiance variation and dependence on response timescale. Proc. R. Soc. A 464, 1367–1385 (2008). doi: 10.1098/rspa.2007.0347 ADSCrossRefGoogle Scholar
  42. M. Lockwood, M. Owens, A.P. Rouillard, Excess open solar magnetic flux from satellite data. 1. Analysis of the third perihelion Ulysses pass. J. Geophys. Res. (2009a). doi: 10.1029/2009JA014449
  43. M. Lockwood, M. Owens, A.P. Rouillard, Excess open solar magnetic flux from satellite data. 2. A survey of kinematic effects. J. Geophys. Res. (2009b). doi: 10.1029/2009JA014450
  44. M.R. Luther, R.B. Lee III, B.R. Barkstrom, J.E. Cooper, R.D. Cess, C.H. Duncan, Solar calibration results from two earth radiation budget experiment nonscanner instruments. Appl. Opt. 25, 540–545 (1986) ADSCrossRefGoogle Scholar
  45. S.K. Mathew, V. Martínez Pillet, S.K. Solanki, N.A. Krivova, Properties of sunspots in cycle 23. I. Dependence of brightness on sunspot size and cycle phase. Astron. Astrophys. 465, 291–304 (2007). doi: 10.1051/0004-6361:20066356 ADSCrossRefGoogle Scholar
  46. A. Ortiz, Solar cycle evolution of the contrast of small photospheric magnetic elements. Adv. Space Res. 35, 350–360 (2005). doi: 10.1016/j.asr.2005.03.014 ADSCrossRefGoogle Scholar
  47. A. Pierce, Limb darkening, in Allen’s Astrophysical Quantities, 4th edn. ed. by A. Cox (Springer, New York, 2000), pp. 355–357. Chap. 14.7 Google Scholar
  48. A.P. Rouillard, M. Lockwood, I. Finch, Centennial changes in the solar wind speed and in the open solar flux. J. Geophys. Res. (2007). doi: 10.1029/2006JA012130
  49. N. Scafetta, Climate change and its causes, a discussion about some key issues, in SPPI Original Paper (Science and Public Policy Institute, Haymarket, 2010), pp. 1–56. http://scienceandpublicpolicy.org/images/stories/papers/originals/climate_change_cause.pdf Google Scholar
  50. N. Scafetta, R.C. Willson, ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys. Res. Lett. (2009). doi: 10.1029/2008GL036307
  51. S.K. Solanki, N.A. Krivova, T. Wenzler, Irradiance models. Adv. Space Res. 35, 376–383 (2005). doi: 10.1016/j.asr.2004.12.077 ADSCrossRefGoogle Scholar
  52. M. Steinegger, P.N. Brandt, J. Pap, W. Schmidt, Sunspot photometry and the total solar irradiance deficit measured in 1980 by ACRIM. Astrophys. Space Sci. 170, 127–133 (1990) ADSCrossRefGoogle Scholar
  53. M. Steinegger, M. Vazquez, J.A. Bonet, P.N. Brandt, On the energy balance of solar active regions. Astrophys. J. 461, 478–498 (1996). doi: 10.1086/177075 ADSCrossRefGoogle Scholar
  54. F. Steinhilber, Total solar irradiance since 1996: is there a long-term variation unrelated to solar surface magnetic phenomena? Astron. Astrophys. 523, A39 (2010). doi: 10.1051/0004-6361/2008111446 ADSCrossRefGoogle Scholar
  55. F. Steinhilber, J. Beer, C. Fröhlich, Total solar irradiance during the Holocene. Geophys. Res. Lett. (2009). doi: 10.1029/2009GL040142
  56. F. Steinhilber, J. Abreu, J. Beer, K.G. McCracken, Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J. Geophys. Res. (2010) Google Scholar
  57. L. Svalgaard, E.W. Cliver, Long-term geomagnetic indices and their use in inferring solar wind parameters in the past. Adv. Space Res. 40, 1112–1120 (2007). doi: 10.1016/j.asr.2007.06.066 ADSCrossRefGoogle Scholar
  58. K.F. Tapping, D. Boteler, P. Charbonneau, A. Crouch, A. Manson, H. Paquette, Solar magnetic activity and total irradiance since the maunder minimum. Sol. Phys. 246, 309–326 (2007). doi: 10.1007/s11207-007-9047-x ADSCrossRefGoogle Scholar
  59. A.G. Tlatov, A.A. Pevtsov, J. Singh, A new method of calibration of photographic plates from three historic data sets. Sol. Phys. 255, 239–251 (2009). doi: 10.1007/s11207-009-9326-9 ADSCrossRefGoogle Scholar
  60. Y.C. Unruh, S.K. Solanki, M. Fligge, Modelling solar irradiance variations: comparison with observations, including line-ratio variations. Space Sci. Rev. 94, 145–152 (2000) ADSGoogle Scholar
  61. R.A. Viereck, M. Snow, M.T. Deland, M. Weber, L. Puga, D. Bouwer, Trends in solar UV and EUV irradiance: an update to the MgII Index and a comparison of proxies and data to evaluate trends of the last 11-year solar cycle. in AGU Fall Meeting: GC21B-0877 (2010) Google Scholar
  62. Y.M. Wang, J.L. Lean, N.R. Sheeley, Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (2005). doi: 10.1086/429689 ADSCrossRefGoogle Scholar
  63. T. Wenzler, Reconstruction of solar irradiance variations in cycles 21-23 based on surface magnetic fields. Ph.D. thesis, ETH Nr. 16199, Eidgenössische Technische Hochschule, Zürich, 2005 Google Scholar
  64. T. Wenzler, S.K. Solanki, N.A. Krivova, Reconstructed and measured total solar irradiance: is there a secular trend between 1978 and 2003? Geophys. Res. Lett. (2009). doi: 10.1029/2009GL037519
  65. T. Wenzler, S.K. Solanki, N.A. Krivova, C. Fröhlich, Reconstruction of solar irradiance variations in cycles 21-23 based on surface magnetic fields. Astron. Astrophys. 460, 583–595 (2006). doi: 10.1051/0004-6361:20065752 ADSCrossRefGoogle Scholar
  66. R.C. Willson, Irradiance observations from SMM, UARS and ATLAS experiments, in IAU Colloquium No. 143: The Sun as a Variable Star: Solar and Stellar Irradiance Variations, ed. by J. Pap, C. Fröhlich, H.S. Hudson, S. Solanki (Cambridge University Press, Cambridge, 1994), pp. 54–62 Google Scholar
  67. R.C. Willson, Total solar irradiance trend during solar cycles 21 and 22. Science 277, 1963–1965 (1997). See also comment by R. Kerr on page 1923 of the same issue of Science ADSCrossRefGoogle Scholar
  68. R.C. Willson, The ACRIMSAT/ACRIM III experiment: extending the precision, long-term total solar irradiance climate database. Earth Obs. 13, 14–17 (2001) Google Scholar
  69. R.C. Willson, H.S. Hudson, Solar maximum mission: initial observations by the active cavity radiometer. Adv. Space Res. 1, 285–288 (1981) ADSCrossRefGoogle Scholar
  70. R.C. Willson, A.V. Mordvinov, Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30, 1199 (2003). doi: 10.1029/2002GL016038 ADSCrossRefGoogle Scholar
  71. T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27216 (2000). doi: 10.1029/2000JA000051 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Physikalisch-Meteorologisches Observatorium DavosWorld Radiation CenterDavos DorfSwitzerland

Personalised recommendations