Space Science Reviews

, Volume 176, Issue 1–4, pp 21–34

Time-Variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth

Article

Abstract

During the solar journey through galactic space, variations in the physical properties of the surrounding interstellar medium (ISM) modify the heliosphere and modulate the flux of galactic cosmic rays (GCR) at the surface of the Earth, with consequences for the terrestrial record of cosmogenic radionuclides. One phenomenon that needs studying is the effect on cosmogenic isotope production of changing anomalous cosmic ray fluxes at Earth due to variable interstellar ionizations. The possible range of interstellar ram pressures and ionization levels in the low density solar environment generate dramatically different possible heliosphere configurations, with a wide range of particle fluxes of interstellar neutrals, their secondary products, and GCRs arriving at Earth. Simple models of the distribution and densities of ISM in the downwind direction give cloud transition timescales that can be directly compared with cosmogenic radionuclide geologic records. Both the interstellar data and cosmogenic radionuclide data are consistent with two cloud transitions, within the past 10,000 years and a second one 20,000–30,000 years ago, with large and assumption-dependent uncertainties. The geomagnetic timeline derived from cosmic ray fluxes at Earth may require adjustment to account for the disappearance of anomalous cosmic rays when the Sun is immersed in ionized gas.

Keywords

ISM Heliosphere Cosmogenic radionuclides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.C. Bohlin, B.D. Savage, J.F. Drake, A survey of interstellar H I from L-alpha absorption measurements. Astrophys. J. 224, 132–142 (1978) ADSCrossRefGoogle Scholar
  2. L.A. Fisk, B. Kozlovsky, R. Ramaty, An interpretation of the observed oxygen and nitrogen enhancements in low energy cosmic rays. Astrophys. J. 190, L35–L38 (1974) ADSCrossRefGoogle Scholar
  3. V. Florinski, G.P. Zank, The galactic cosmic ray intensity in the heliosphere in response to variable interstellar environments, in Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth (Springer, Berlin, 2006), pp. 281–316 CrossRefGoogle Scholar
  4. V. Florinski, G.P. Zank, W.I. Axford, The solar system in a dense interstellar cloud: implications for cosmic-ray fluxes at Earth and 10Be records. Geophys. Res. Lett. 30, 5–1 (2003) CrossRefGoogle Scholar
  5. P.C. Frisch, Morphology and ionization of the interstellar cloud surrounding the solar system. Science 265, 1423 (1994) ADSCrossRefGoogle Scholar
  6. P.C. Frisch, Journey of the Sun. astro-ph/9705231 (1997)
  7. P.C. Frisch, Local interstellar matter: the apex cloud. Astrophys. J. 593, 868–873 (2003) ADSCrossRefGoogle Scholar
  8. P.C. Frisch, The S1 shell and interstellar magnetic field and gas near the heliosphere. Astrophys. J. 714, 1679–1688 (2010) ADSCrossRefGoogle Scholar
  9. P.C. Frisch, D.J. McComas, The Interstellar Boundary Explorer (IBEX): tracing the interaction between the heliosphere and surrounding interstellar material with energetic neutral atoms. Space Sci. Rev. (2010). doi:10.1007/s11214-010-9725-0, this issue Google Scholar
  10. P.C. Frisch, J.M. Dorschner, J. Geiss, J.M. Greenberg, E. Grün, M. Landgraf, P. Hoppe, A.P. Jones, W. Krätschmer, T.J. Linde, G.E. Morfill, W. Reach, J.D. Slavin, J. Svestka, A.N. Witt, G.P. Zank, Dust in the local interstellar wind. Astrophys. J. 525, 492–516 (1999) ADSCrossRefGoogle Scholar
  11. P.C. Frisch, L. Grodnicki, D.E. Welty, The velocity distribution of the nearest interstellar gas. Astrophys. J. 574, 834–846 (2002) ADSCrossRefGoogle Scholar
  12. P.C. Frisch, M. Bzowski, E. Grün, V. Izmodenov, H. Krüger, J.L. Linsky, D.J. McComas, E. Möbius, S. Redfield, N. Schwadron, R.R. Shelton, J.D. Slavin, B.E. Wood, The galactic environment of the Sun: interstellar material inside and outside of the heliosphere. Space Sci. Rev. 28 (2009) Google Scholar
  13. P.C. Frisch, B. Andersson, A. Berdyugin, H.O. Funsten, M. Magalhaes, D.J. McComas, V. Piirola, N.A. Schwadron, J.D. Slavin, S.J. Wiktorowicz, Comparisons of the interstellar magnetic field directions obtained from the IBEX ribbon and interstellar polarizations. Astrophys. J. 724, 1473–1479 (2010) ADSCrossRefGoogle Scholar
  14. P.C. Frisch, S. Redfield, J.D. Slavin, The interstellar medium surrounding the Sun. Annu. Rev. Astron. Astrophys. 49 (2011, in press) Google Scholar
  15. J. Goldston Peek, C. Heiles, K.M.G. Peek, D. Meyer, The Leo cloud: our local bubble laboratory, in AAS Meeting Abstracts, vol. 216 (2010), p. 206.01 Google Scholar
  16. J.T. Gosling, A study of the relationship between absorption-time profiles of polar-cap-absorption events and for bush decreases of cosmic ray intensity. J. Geophys. Res. 69, 1233–1238 (1964) ADSCrossRefGoogle Scholar
  17. U. Haud, Gaussian decomposition of HI surveys. V. Search for very cold clouds. Astron. Astrophys. 514, A27 (2010) ADSCrossRefGoogle Scholar
  18. G. Hebrard, C. Mallouris, R. Ferlet, D. Koester, M. Lemoine, A. Vidal-Madjar, D. York, Ultraviolet observations of Sirius A and Sirius B with HST-GHRS. An interstellar cloud with a possible low deuterium abundance. Astron. Astrophys. 350, 643–658 (1999) ADSGoogle Scholar
  19. C. Heiles, Whence the local bubble, gum, orion? GSH 238+00+09, a nearby major superbubble toward Galactic longitude 238 degrees. Astrophys. J. 498, 689–703 (1998) ADSCrossRefGoogle Scholar
  20. T.E. Holzer, Interaction between the solar wind and the interstellar medium. Annu. Rev. Astron. Astrophys. 27, 199–234 (1989) ADSCrossRefGoogle Scholar
  21. J. Kirkby, K.S. Carslaw, Variations of galactic cosmic rays and the Earth’s climate, in Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth, ed. by P.C. Frisch (Springer, Berlin, 2006) Google Scholar
  22. R. Lallement, R. Ferlet, A.M. Lagrange, M. Lemoine, A. Vidal-Madjar, Local cloud structure from HST-GHRS. Astron. Astrophys. 304, 461–474 (1995) ADSGoogle Scholar
  23. R.A. Leske, A.C. Cummings, C.M.S. Cohen et al., Changing anomalous cosmic ray oxygen radial intensity gradients between 1 AU and Voyager with the return to solar minimum, in International Cosmic Ray Conference, vol. 1 (2008), pp. 807–810 Google Scholar
  24. R.A. Leske, A.C. Cummings, R.A. Mewaldt, E.C. Stone, Anomalous and galactic cosmic rays at 1 AU during the cycle 23/24 solar minimum. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9772-1, this issue Google Scholar
  25. K.G. McCracken, Geomagnetic and atmospheric effects upon the cosmogenic Be10 observed in polar ice. J. Geophys. Res. 109, 4101 (2004) CrossRefGoogle Scholar
  26. K.G. McCracken, J. Beer, F.B. McDonald, Long-term variability of the cosmic radiation intensity at Earth as recorded by the cosmogenic nuclides. ISSI Sci. Rep. Ser. 3, 83 (2005) ADSGoogle Scholar
  27. R.A. Mewaldt, A.C. Cummings, E.C. Stone, Anomalous cosmic ray: interstellar interlopers in the heliosphere and magnetosphere, in From the Sun, Auroras, Magnetic Storms, Solar Flares, Cosmic Rays, ed. by S.T. Suess, B.T. Tsurutani (1998), p. 133 Google Scholar
  28. D.M. Meyer, J.T. Lauroesch, C. Heiles, J.E.G. Peek, K. Engelhorn, A cold nearby cloud inside the local bubble. Astrophys. J. Lett. 650, L67–L70 (2006) ADSCrossRefGoogle Scholar
  29. E. Möbius, M. Bzowski, S. Chalov, H. Fahr, G. Gloeckler, V. Izmodenov, R. Kallenbach, R. Lallement, D. McMullin, H. Noda, M. Oka, A. Pauluhn, J. Raymond, D. Ruciński, R. Skoug, T. Terasawa, W. Thompson, J. Vallerga, R. von Steiger, M. Witte, Synopsis of the interstellar He parameters from combined neutral gas, pickup ion and UV scattering observations and related consequences. Astron. Astrophys. 426, 897–907 (2004) ADSCrossRefGoogle Scholar
  30. H. Müller, L.M. Woodman, G.P. Zank, in Proceedings of the 7th Ann. Intern. Astrophysics Conf. on Particle Acceleration and Transport in the Heliosphere and Beyond, ed. by G. Li et al. AIP Conference Series, vol. 1039 (2008), pp. 384–389 Google Scholar
  31. H. Müller, P.C. Frisch, B.D. Fields, G.P. Zank, The heliosphere in time. Space Sci. Rev. 143, 415–425 (2009) ADSCrossRefGoogle Scholar
  32. H.-R. Müller, P.C. Frisch, V. Florinski, G.P. Zank, Heliospheric response to different possible interstellar environments. Astrophys. J. 647, 1491–1505 (2006) ADSCrossRefGoogle Scholar
  33. R. Muscheler, J. Beer, P.W. Kubik, H. Synal, Geomagnetic field intensity during the last 60,000 years based on Be10 and Cl36 from the Summit ice cores and C14. Quat. Sci. Rev. 24, 1849–1860 (2005) ADSCrossRefGoogle Scholar
  34. M.A.C. Perryman, The HIPPARCOS catalogue. Astron. Astrophys. 323, L49–L52 (1997) ADSGoogle Scholar
  35. N.V. Pogorelov, S.N. Borovikov, G.P. Zank, T. Ogino, Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. III. The effects of solar rotation and activity cycle. Astrophys. J. 696, 1478–1490 (2009) ADSCrossRefGoogle Scholar
  36. S. Redfield, J.L. Linsky, The structure of the local interstellar medium. II. Observations of D I, C II, N I, O I, Al II, and Si II toward stars within 100 parsecs. Astrophys. J. 602, 776–802 (2004a) ADSCrossRefGoogle Scholar
  37. S. Redfield, J.L. Linsky, The structure of the local interstellar medium. III. Temperature and turbulence. Astrophys. J. 613, 1004–1022 (2004b) ADSCrossRefGoogle Scholar
  38. S. Redfield, J.L. Linsky, The structure of the local interstellar medium. IV. Dynamics, morphology, physical properties, and implications of cloud-cloud interactions. Astrophys. J. 673, 283–314 (2008) ADSCrossRefGoogle Scholar
  39. M. Salvati, The local Galactic magnetic field in the direction of Geminga. Astron. Astrophys. 513, A28 (2010) ADSCrossRefGoogle Scholar
  40. R. Schönrich, J. Binney, W. Dehnen, Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010) ADSCrossRefGoogle Scholar
  41. J.D. Slavin, P.C. Frisch, Boundary conditions of heliosphere: photoionization models constrained by interstellar and in situ data. Astron. Astrophys. 491, 53–68 (2008) ADSCrossRefGoogle Scholar
  42. C.P. Sonett, G.E. Morfill, J.R. Jokipii, Interstellar shock waves and 10Be from ice cores. Nature 330, 458 (1987) ADSCrossRefGoogle Scholar
  43. S. Stanimirović, Exotic clouds in the local interstellar medium. Space Sci. Rev. 143, 291–301 (2009) ADSCrossRefGoogle Scholar
  44. I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 5, 3 (2008) ADSGoogle Scholar
  45. W.R. Webber, P.R. Higbie, K.G. McCracken, Production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the Earth’s atmosphere by solar and galactic cosmic rays. J. Geophys. Res. 112(A11), 10106 (2007) CrossRefGoogle Scholar
  46. B. Wolff, D. Koester, R. Lallement, Evidence for an ionization gradient in the local interstellar medium: euve observations of white dwarfs. Astron. Astrophys. 346, 969–978 (1999) ADSGoogle Scholar
  47. M. Wolleben, A new model for the loop I (North Polar Spur) region. Astrophys. J. 664, 349–356 (2007) ADSCrossRefGoogle Scholar
  48. B.E. Wood, S. Redfield, J.L. Linsky, H.-R. Müller, G.P. Zank, Stellar Lyα emission lines in the Hubble space telescope archive: intrinsic line fluxes and absorption from the heliosphere and astrospheres. Astrophys. J. Suppl. Ser. 159, 118–140 (2005) ADSCrossRefGoogle Scholar
  49. A. Yeghikyan, H. Fahr, Accretion of interstellar material into the heliosphere and onto Earth, in Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth, ed. by P.C. Frisch (Springer, Berlin, 2006) Google Scholar
  50. G.P. Zank, H.-R. Müller, The dynamical heliosphere. J. Geophys. Res. 108, 1240 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.University of ChicagoChicagoUSA
  2. 2.Dartmouth CollegeHanoverUSA

Personalised recommendations