Space Science Reviews

, Volume 166, Issue 1–4, pp 97–132 | Cite as

Cosmic Rays in Galactic and Extragalactic Magnetic Fields

  • Felix Aharonian
  • Andrei Bykov
  • Etienne Parizot
  • Vladimir Ptuskin
  • Alan Watson


We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.


Cosmic rays, ISM (ISM:) supernova remnants Clusters of galaxies Shock waves Magnetic fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.U. Abbasi, T. Abu-Zayyad, M. Al-Seady, M. Allen et al., Measurement of the flux of ultra high energy cosmic rays by the stereo technique. Astropart. Phys. 32, 53–60 (2009). arXiv:0904.4500 ADSGoogle Scholar
  2. R.U. Abbasi, T. Abu-Zayyad, M. Al-Seady, M. Allen et al., Indications of proton-dominated cosmic-ray composition above 1.6 EeV. Phys. Rev. Lett. 104(16), 161101 (2010). arXiv:0910.4184 ADSGoogle Scholar
  3. R.U. Abbasi, T. Abu-Zayyad, M. Allen, J.F. Amman et al., First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys. Rev. Lett. 100(10), 101101 (2008a). arXiv:astro-ph/0703099 ADSGoogle Scholar
  4. R.U. Abbasi, T. Abu-Zayyad, M. Allen, J.F. Amman et al., Search for correlations between HiRes stereo events and active galactic nuclei. Astropart. Phys. 30, 175–179 (2008b). arXiv:0804.0382 ADSGoogle Scholar
  5. J. Abraham, P. Abreu, M. Aglietta, C. Aguirre et al., Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science 318, 938 (2007). arXiv:0711.2256 ADSGoogle Scholar
  6. J. Abraham, P. Abreu, M. Aglietta, C. Aguirre et al., Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys. 29, 188–204 (2008). arXiv:0712.2843 ADSGoogle Scholar
  7. J. Abraham, P. Abreu, M. Aglietta, E.J. Ahn et al., Measurement of the depth of maximum of extensive air showers above 1018 eV. Phys. Rev. Lett. 104(9), 091101 (2010). arXiv:1002.0699 ADSGoogle Scholar
  8. J. Abraham, M. Aglietta, I.C. Aguirre, M. Albrow et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. A 523, 50–95 (2004) ADSGoogle Scholar
  9. P. Abreu, M. Aglietta, E.J. Ahn, D. Allard et al., Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter. arXiv:1009.1855 (2010)
  10. V.A. Acciari, E. Aliu, T. Arlen, T. Aune et al., A connection between star formation activity and cosmic rays in the starburst galaxy M82. Nature 462, 770–772 (2009). arXiv:0911.0873 ADSGoogle Scholar
  11. F. Acero, F. Aharonian, A.G. Akhperjanian, G. Anton et al., Detection of gamma rays from a Starburst Galaxy. Science 326, 1080 (2009). arXiv:0909.4651 ADSGoogle Scholar
  12. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke et al., Detection of extended very-high-energy γ-ray emission towards the young stellar cluster Westerlund 2. Astron. Astrophys. 467, 1075–1080 (2007a). arXiv:astro-ph/0703427 ADSGoogle Scholar
  13. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke et al., Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations. Astron. Astrophys. 464, 235–243 (2007a). arXiv:astro-ph/0611813 ADSGoogle Scholar
  14. F. Aharonian, J. Buckley, T. Kifune, G. Sinnis, High energy astrophysics with ground-based gamma ray detectors. Rep. Prog. Phys. 71(9), 096901 (2008) ADSGoogle Scholar
  15. F.A. Aharonian, A.A. Belyanin, E.V. Derishev, V.V. Kocharovsky et al., Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics. Phys. Rev. D 66(2), 023005 (2002). arXiv:astro-ph/0202229 ADSGoogle Scholar
  16. F.A. Aharonian, L.O. Drury, H.J. Voelk, GeV/TeV gamma-ray emission from dense molecular clouds overtaken by supernova shells. Astron. Astrophys. 285, 645–647 (1994) ADSGoogle Scholar
  17. F.A. Aharonian, S.R. Kelner, A.Y. Prosekin, Angular, spectral, and time distributions of highest energy protons and associated secondary gamma rays and neutrinos propagating through extragalactic magnetic and radiation fields. Phys. Rev. D 82(4), 043002 (2010). arXiv:1006.1045 ADSGoogle Scholar
  18. H.S. Ahn, P.S. Allison, M.G. Bagliesi, J.J. Beatty et al., Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment. Astropart. Phys. 30, 133–141 (2008). arXiv:0808.1718 ADSGoogle Scholar
  19. D. Allard, M. Ave, N. Busca, M.A. Malkan et al., Cosmogenic neutrinos from the propagation of ultrahigh energy nuclei. J. Cosmol. Astropart. Phys. 9, 5 (2006). arXiv:astro-ph/0605327 ADSGoogle Scholar
  20. D. Allard, E. Parizot, A.V. Olinto, On the transition from galactic to extragalactic cosmic-rays: spectral and composition features from two opposite scenarios. Astropart. Phys. 27, 61–75 (2007). arXiv:astro-ph/0512345 ADSGoogle Scholar
  21. D. Allard, E. Parizot, A.V. Olinto, E. Khan et al., UHE nuclei propagation and the interpretation of the ankle in the cosmic-ray spectrum. Astron. Astrophys. 443, L29–L32 (2005). arXiv:astro-ph/0505566 ADSGoogle Scholar
  22. R. Aloisio, V. Berezinsky, P. Blasi, A. Gazizov et al., A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays. Astropart. Phys. 27, 76–91 (2007). arXiv:astro-ph/0608219 ADSGoogle Scholar
  23. R. Aloisio, V.S. Berezinsky, Anti-GZK effect in ultra-high-energy cosmic ray diffusive propagation. Astrophys. J. 625, 249–255 (2005). arXiv:astro-ph/0412578 ADSGoogle Scholar
  24. J.W. Armstrong, B.J. Rickett, S.R. Spangler, Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995) ADSGoogle Scholar
  25. J. Aublin, E. Parizot, On the viability of holistic cosmic-ray source models. Astron. Astrophys. 452, L19–L22 (2006). arXiv:astro-ph/0605046 ADSGoogle Scholar
  26. W.I. Axford, The origins of high-energy cosmic rays. Astrophys. J. Suppl. Ser. 90, 937–944 (1994) ADSGoogle Scholar
  27. A. Bamba, M. Ueno, H. Nakajima, K. Koyama, Thermal and nonthermal X-Rays from the large Magellanic cloud superbubble 30 Doradus C. Astrophys. J. 602, 257–263 (2004). arXiv:astro-ph/0310713 ADSGoogle Scholar
  28. H.M.J. Barbosa, F. Catalani, J.A. Chinellato, C. Dobrigkeit, Determination of the calorimetric energy in extensive air showers. Astropart. Phys. 22, 159–166 (2004). arXiv:astro-ph/0310234 ADSGoogle Scholar
  29. X. Barcons, D. Barret, M. Bautz, J. Bookbinder et al., International X-ray Observatory (IXO) assessment study report for the ESA cosmic vision 2015–2025 (2011). arXiv:1102.2845
  30. R. Beck, Galactic and extragalactic magnetic fields, in American Institute of Physics Conference Series, ed. by F.A. Aharonian, W. Hofmann, F. Rieger, vol. 1085 (2008), pp. 83–96. arXiv:0810.2923 Google Scholar
  31. A.R. Bell, The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978) ADSGoogle Scholar
  32. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004) ADSGoogle Scholar
  33. V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.L. Ginzburg, V.S. Ptuskin, Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990) Google Scholar
  34. V.S. Berezinskii, S.I. Grigor’eva, A bump in the ultra-high energy cosmic ray spectrum. Astron. Astrophys. 199, 1–12 (1988) ADSGoogle Scholar
  35. V. Berezinsky, Ultra high energy cosmic ray protons: signatures and observations. Nucl. Phys. B, Proc. Suppl. 188, 227–232 (2009). arXiv:0901.0254 ADSGoogle Scholar
  36. V. Berezinsky, A. Gazizov, S. Grigorieva, Propagation and signatures of ultra high energy cosmic rays. Nucl. Phys. B, Proc. Suppl. 136, 147–158 (2004). arXiv:astro-ph/0410650 ADSGoogle Scholar
  37. P. Bhattacharjee, G. Sigl, Origin and propagation of extremely high energy cosmic rays. Phys. Rep. 327, 109–247 (2000). arXiv:astro-ph/9811011 ADSGoogle Scholar
  38. W.R. Binns, M.E. Wiedenbeck, M. Arnould, A.C. Cummings et al., OB Associations, Wolf Rayet Stars, and the origin of galactic cosmic rays. Space Sci. Rev. 130, 439–449 (2007). arXiv:0707.4645 ADSGoogle Scholar
  39. R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks—a theory of cosmic-ray origin. Phys. Rep. 154, 1 (1987) ADSGoogle Scholar
  40. P. Blasi, The origin of ultra high energy cosmic rays. J. Phys. Conf. Ser. 39, 372–378 (2006). arXiv:astro-ph/0512438 ADSGoogle Scholar
  41. P. Blasi, R.I. Epstein, A.V. Olinto, Ultra-high-energy cosmic rays from young neutron star winds. Astrophys. J. 533, L123–L126 (2000). arXiv:astro-ph/9912240 ADSGoogle Scholar
  42. J.B.G.M. Bloemen, V.A. Dogiel, V.L. Dorman, V.S. Ptuskin Galactic diffusion and wind models of cosmic-ray transport. I—Insight from CR composition studies and gamma-ray observations. Astron. Astrophys. 267, 372–387 (1993) ADSGoogle Scholar
  43. G.R. Blumenthal, Energy loss of high-energy cosmic rays in pair-producing collisions with ambient photons. Phys. Rev. D 1, 1596–1602 (1970) ADSGoogle Scholar
  44. J. Blümer (The Pierre Auger Collaboration), The northern site of the Pierre Auger Observatory. New J. Phys. 12(3), 035001 (2010) ADSGoogle Scholar
  45. J.H. Boyer, B.C. Knapp, E.J. Mannel, M. Seman, FADC-based DAQ for HiRes Fly’s eye. Nucl. Instrum. Methods Phys. Res. A 482, 457–474 (2002) ADSGoogle Scholar
  46. D. Breitschwerdt, J.F. McKenzie, H.J. Voelk, Galactic winds. I—Cosmic ray and wave-driven winds from the Galaxy. Astron. Astrophys. 245, 79–98 (1991) ADSGoogle Scholar
  47. A.M. Bykov, Particle acceleration and nonthermal phenomena in superbubbles. Space Sci. Rev. 99, 317–326 (2001) ADSGoogle Scholar
  48. A.M. Bykov, K. Dolag, F. Durret, Cosmological shock waves. Space Sci. Rev. 134, 119–140 (2008). arXiv:0801.0995 ADSGoogle Scholar
  49. A.M. Bykov, G.D. Fleishman, On non-thermal particle generation in superbubbles. Mon. Not. R. Astron. Soc. 255, 269–275 (1992) ADSGoogle Scholar
  50. A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. 410, 39–52 (2011). arXiv:1010.0408 ADSGoogle Scholar
  51. A.M. Bykov, I.N. Toptygin, Effect of shocks on interstellar turbulence and cosmic-ray dynamics. Astrophys. Space Sci. 138, 341–354 (1987) ADSGoogle Scholar
  52. A.M. Bykov, I.N. Toptygin, Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods). Phys. Usp. 36, 1020–1052 (1993) ADSGoogle Scholar
  53. A.M. Bykov, I.N. Toptygin, A model of particle acceleration to high energies by multiple supernova explosions in OB associations. Astron. Lett. 27, 625–633 (2001) ADSGoogle Scholar
  54. A.M. Bykov, Y.A. Uvarov, J.B.G.M. Bloemen, J.W. den Herder et al., A model of polarized X-ray emission from twinkling synchrotron supernova shells. Mon. Not. R. Astron. Soc. 399, 1119–1125 (2009). arXiv:0907.2521 ADSGoogle Scholar
  55. A. Calvez, A. Kusenko, S. Nagataki, Role of galactic sources and magnetic fields in forming the observed energy-dependent composition of ultrahigh-energy cosmic rays. Phys. Rev. Lett. 105(9), 091101 (2010). arXiv:1004.2535 ADSGoogle Scholar
  56. F. Casse, M. Lemoine, G. Pelletier, Transport of cosmic rays in chaotic magnetic fields. Phys. Rev. D 65(2), 023002 (2002). arXiv:astro-ph/0109223 ADSGoogle Scholar
  57. M. Casse, J.A. Paul, On the stellar origin of the Ne-22 excess in cosmic rays. Astrophys. J. 258, 860–863 (1982) ADSGoogle Scholar
  58. C.J. Cesarsky, Cosmic-ray confinement in the galaxy. Annu. Rev. Astron. Astrophys. 18, 289–319 (1980) ADSGoogle Scholar
  59. C.J. Cesarsky, T.M. Montmerle, Cosmic rays from OB associations and supernovae—anti-protons and the origin of local cosmic rays, in International Cosmic Ray Conference, vol. 9 (1982), pp. 207–210 Google Scholar
  60. J. Cho, A. Lazarian, Compressible sub-Alfvénic MHD turbulence in low-β plasmas. Phys. Rev. Lett. 88(24), 245001 (2002). arXiv:astro-ph/0205282 ADSGoogle Scholar
  61. A.J. Davis, R.A. Mewaldt, W.R. Binns, E.R. Christian et al., On the low energy decrease in galactic cosmic ray secondary/primary ratios, in Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed. by R.A. Mewaldt, J.R. Jokipii, M.A. Lee, E. Möbius, T.H. Zurbuchen. American Institute of Physics Conference Series, vol. 528 (2000), pp. 421–424 Google Scholar
  62. B.R. Dawson (for The Auger Collaboration), Hybrid performance of the Pierre Auger Observatory, in International Cosmic Ray Conference, vol. 4 (2008), pp. 425–428. arXiv:0706.1105 Google Scholar
  63. O. Deligny, A. Letessier-Selvon, E. Parizot, Magnetic horizons of UHECR sources and the GZK feature. Astropart. Phys. 21, 609–615 (2004). arXiv:astro-ph/0303624 ADSGoogle Scholar
  64. K. Dolag, A.M. Bykov, A. Diaferio, Non-thermal processes in cosmological simulations. Space Sci. Rev. 134, 311–335 (2008). arXiv:0801.1048 ADSGoogle Scholar
  65. K. Dolag, D. Grasso, V. Springel, I. Tkachev, Constrained simulations of the magnetic field in the local Universe and the propagation of ultrahigh energy cosmic rays. J. Cosmol. Astropart. Phys. 1, 9 (2005) arXiv:astro-ph/0410419 ADSGoogle Scholar
  66. L.O. Drury, F.A. Aharonian, H.J. Voelk, The gamma-ray visibility of supernova remnants. A test of cosmic ray origin. Astron. Astrophys. 287, 959–971 (1994). arXiv:astro-ph/9305037 ADSGoogle Scholar
  67. L.O. Drury, D.E. Ellison, F.A. Aharonian, E. Berezhko et al., Test of galactic cosmic-ray source models—Working Group Report. Space Sci. Rev. 99, 329–352 (2001) ADSGoogle Scholar
  68. N. Duric, S.M. Gordon, W.M. Goss, F. Viallefond et al., The relativistic ISM in M33: role of the supernova remnants. Astrophys. J. 445, 173–181 (1995) ADSGoogle Scholar
  69. M.A. Duvernois, M. Garcia-Munoz, K.R. Pyle, J.A. Simpson et al., The isotopic composition of galactic cosmic-ray elements from carbon to silicon: the combined release and radiation effects satellite investigation. Astrophys. J. 466, 457 (1996a) ADSGoogle Scholar
  70. M.A. Duvernois, J.A. Simpson, M.R. Thayer, Interstellar propagation of cosmic rays: analysis of the ULYSSES primary and secondary elemental abundances. Astron. Astrophys. 316, 555–563 (1996b) ADSGoogle Scholar
  71. T. Ebisuzaki, Y. Takahashi, F. Kajino, H. Mase et al., The JEM-EUSO mission to explore the extreme universe, in American Institute of Physics Conference Series, ed. by H. Susa, M. Arnould, S. Gales, T. Motobayashi, C. Scheidenberger, H. Utsunomiya, vol. 1238 (2010), pp. 369–376 Google Scholar
  72. D.C. Ellison, L.O. Drury, J. Meyer, Galactic cosmic rays from supernova remnants. II. Shock acceleration of gas and dust. Astrophys. J. 487, 197 (1997). arXiv:astro-ph/9704293 ADSGoogle Scholar
  73. D.C. Ellison, D.J. Patnaude, P. Slane, J. Raymond, Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal X-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys. J. 712, 287–293 (2010). arXiv:1001.1932 ADSGoogle Scholar
  74. B.G. Elmegreen, J. Scalo, Interstellar turbulence I: Observations and processes. Annu. Rev. Astron. Astrophys. 42, 211–273 (2004). arXiv:astro-ph/0404451 ADSGoogle Scholar
  75. J.J. Engelmann, P. Ferrando, A. Soutoul, P. Goret et al., Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI—results from HEAO-3-C2. Astron. Astrophys. 233, 96–111 (1990) ADSGoogle Scholar
  76. J.E. Everett, E.G. Zweibel, R.A. Benjamin, D. McCammon et al., Does the Milky Way launch a large-scale wind? Astrophys. Space Sci. 311, 105–110 (2007) ADSGoogle Scholar
  77. J.E. Everett, E.G. Zweibel, R.A. Benjamin, D. McCammon et al., The Milky Way’s kiloparsec-scale wind: a hybrid cosmic-ray and thermally driven outflow. Astrophys. J. 674, 258–270 (2008). arXiv:0710.3712 ADSGoogle Scholar
  78. A.J. Farmer, P. Goldreich Wave damping by magnetohydrodynamic turbulence and its effect on cosmic-ray propagation in the interstellar medium. Astrophys. J. 604, 671–674 (2004). arXiv:astro-ph/0311400 ADSGoogle Scholar
  79. C. Ferrari, F. Govoni, S. Schindler, A.M. Bykov et al., Observations of extended radio emission in clusters. Space Sci. Rev. 134, 93–118 (2008). arXiv:0801.0985 ADSGoogle Scholar
  80. K.M. Ferrière, The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001). arXiv:astro-ph/0106359 ADSGoogle Scholar
  81. S. Galtier, S.V. Nazarenko, A.C. Newell, A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447–488 (2000). arXiv:astro-ph/0008148 ADSGoogle Scholar
  82. V.L. Ginzburg, Cosmic Rays and Plasma Phenomena in the Galaxy and Metagalaxy. Sov. Astron. 9, 877 (1965) ADSGoogle Scholar
  83. N. Globus, D. Allard, E. Parizot, Propagation of high-energy cosmic rays in extragalactic turbulent magnetic fields: resulting energy spectrum and composition. Astron. Astrophys. 479, 97–110 (2008). arXiv:0709.1541 ADSGoogle Scholar
  84. P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. Astrophys. J. 438, 763–775 (1995) ADSGoogle Scholar
  85. P. Goldreich, S. Sridhar, Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680 (1997). arXiv:astro-ph/9612243 ADSGoogle Scholar
  86. K. Greisen, End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966) ADSGoogle Scholar
  87. M. Hanasz, G. Kowal, K. Otmianowska-Mazur, H. Lesch, Amplification of galactic magnetic fields by the cosmic-ray-driven dynamo. Astrophys. J. 605, L33–L36 (2004). arXiv:astro-ph/0402662 ADSGoogle Scholar
  88. M. Hanasz, K. Otmianowska-Mazur, G. Kowal, H. Lesch, Cosmic ray driven dynamo in galactic disks: effects of resistivity, SN rate and spiral arms. Astron. Nachr. 327, 469 (2006) ADSGoogle Scholar
  89. F.A. Harrison, S. Boggs, F. Christensen, W. Craig et al., The nuclear spectroscopic telescope array (NuSTAR), in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7732 (2010). arXiv:1008.1362 Google Scholar
  90. J.C. Higdon, R.E. Lingenfelter, R. Ramaty, Cosmic-ray acceleration from supernova ejecta in superbubbles. Astrophys. J. 509, L33–L36 (1998) ADSGoogle Scholar
  91. A.M. Hillas, The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425–444 (1984) ADSGoogle Scholar
  92. A.M. Hillas, TOPICAL REVIEW: can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J. Phys. G, Nucl. Part. Phys. 31, 95 (2005) ADSGoogle Scholar
  93. J.R. Hörandel, N.N. Kalmykov, A.V. Timokhin, Propagation of super-high-energy cosmic rays in the Galaxy. Astropart. Phys. 27, 119–126 (2007). arXiv:astro-ph/0609490 ADSGoogle Scholar
  94. F.M. Ipavich, Galactic winds driven by cosmic rays. Astrophys. J. 196, 107–120 (1975) ADSGoogle Scholar
  95. P.S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566 (1964) MathSciNetADSGoogle Scholar
  96. F.C. Jones, A. Lukasiak, V. Ptuskin, W. Webber, The modified weighted slab technique: models and results. Astrophys. J. 547, 264–271 (2001). arXiv:astro-ph/0007293 ADSGoogle Scholar
  97. T.J. Jones, L. Rudnick, T. DeLaney, J. Bowden, The identification of infrared synchrotron radiation from Cassiopeia A. Astrophys. J. 587, 227–234 (2003). arXiv:astro-ph/0212544 ADSGoogle Scholar
  98. H. Kang, D. Ryu, R. Cen, D. Song, Shock-heated gas in the large-scale structure of the universe. Astrophys. J. 620, 21–30 (2005). arXiv:astro-ph/0410477 ADSGoogle Scholar
  99. H. Kawai, T. Nunomura, N. Sakurai, S. Yoshida et al., Telescope array; progress of surface array, in International Cosmic Ray Conference, vol. 8 (2005), p. 181 Google Scholar
  100. C.F. Kennel, F. Engelmann, Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids 9, 2377–2388 (1966) ADSGoogle Scholar
  101. E. Khan, S. Goriely, D. Allard, E. Parizot et al., Photodisintegration of ultra-high-energy cosmic rays revisited. Astropart. Phys. 23, 191–201 (2005). arXiv:astro-ph/0412109 ADSGoogle Scholar
  102. K. Kotera, D. Allard, A.V. Olinto, Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV. arXiv:1009.1382 (2010)
  103. K. Kotera, M. Lemoine, Inhomogeneous extragalactic magnetic fields and the second knee in the cosmic ray spectrum. Phys. Rev. D 77(2), 023005 (2008a). arXiv:0706.1891 ADSGoogle Scholar
  104. K. Kotera, M. Lemoine, Inhomogeneous extragalactic magnetic fields and the second knee in the cosmic ray spectrum. Phys. Rev. D 77(2), 023005 (2008b). arXiv:0706.1891 ADSGoogle Scholar
  105. K. Kotera, M. Lemoine, Optical depth of the Universe to ultrahigh energy cosmic ray scattering in the magnetized large scale structure. Phys. Rev. D 77(12), 123003 (2008c). arXiv:0801.1450 ADSGoogle Scholar
  106. R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965) MathSciNetADSGoogle Scholar
  107. R.M. Kulsrud, Plasma Physics for Astrophysics (Princeton University Press, Princeton, 2005) Google Scholar
  108. R.M. Kulsrud, E.G. Zweibel, On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71(4), 046901 (2008). arXiv:0707.2783 ADSGoogle Scholar
  109. D. Kushnir, B. Katz, E. Waxman, Magnetic fields and cosmic rays in clusters of galaxies. J. Cosmol. Astropart. Phys. 9, 24 (2009). arXiv:0903.2275 ADSGoogle Scholar
  110. T. Kuwabara, K. Nakamura, C.M. Ko, Nonlinear Parker instability with the effect of cosmic-ray diffusion. Astrophys. J. 607, 828–839 (2004). arXiv:astro-ph/0402350 ADSGoogle Scholar
  111. M. Lemoine, Extragalactic magnetic fields and the second knee in the cosmic-ray spectrum. Phys. Rev. D 71(8), 083007 (2005). arXiv:astro-ph/0411173 ADSGoogle Scholar
  112. M. Lemoine, E. Waxman, Anisotropy vs chemical composition at ultra-high energies. J. Cosmol. Astropart. Phys. 11, 9 (2009). arXiv:0907.1354 ADSGoogle Scholar
  113. R.E. Lingenfelter, R. Ramaty, B. Kozlovsky, Supernova grains: the source of cosmic-ray metals. Astrophys. J. 500, L153 (1998) ADSGoogle Scholar
  114. Y. Lithwick, P. Goldreich, Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279–296 (2001). arXiv:astro-ph/0106425 ADSGoogle Scholar
  115. M.S. Longair, High Energy Astrophysics (Cambridge University Press, Cambridge, 2010) Google Scholar
  116. T.A. Lozinskaya, Supernovae and Stellar Wind in the Interstellar Medium (American Institute of Physics, New York, 1992) Google Scholar
  117. A. Lukasiak, Voyager measurements of the charge and isotopic composition of cosmic ray Li, Be and B nuclei and implications for their production in the galaxy, in International Cosmic Ray Conference, vol. 3 (1999), p. 41 Google Scholar
  118. M.A. Malkov, L. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001) ADSGoogle Scholar
  119. A. Marcowith, F. Casse, Postshock turbulence and diffusive shock acceleration in young supernova remnants. Astron. Astrophys. 515, A90 (2010). arXiv:1001.2111 ADSGoogle Scholar
  120. P. Mészáros, Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2321 (2006). arXiv:astro-ph/0605208 Google Scholar
  121. R.A. Mewaldt, The time delay between nucleosynthesis and acceleration based on ACE measurements of primary electron-capture nuclides, in International Cosmic Ray Conference, vol. 3 (1999), p. 1 Google Scholar
  122. J. Meyer, L.O. Drury, D.C. Ellison Galactic cosmic rays from supernova remnants. I. A cosmic-ray composition controlled by volatility and mass-to-charge ratio. Astrophys. J. 487, 182 (1997). arXiv:astro-ph/9704267 ADSGoogle Scholar
  123. M. Milgrom, V. Usov, Possible association of ultra-high-energy cosmic-ray events with strong gamma-ray bursts. Astrophys. J. 449, L37 (1995). arXiv:astro-ph/9505009 ADSGoogle Scholar
  124. G. Morlino, P. Blasi, E. Amato, Gamma rays and neutrinos from SNR RX J1713.7-3946. Astropart. Phys. 31, 376–382 (2009). arXiv:0903.4565 ADSGoogle Scholar
  125. M. Nagano, A.A. Watson, Observations and implications of the ultrahigh-energy cosmic rays. Rev. Mod. Phys. 72, 689–732 (2000) ADSGoogle Scholar
  126. C.A. Norman, D.B. Melrose, A. Achterberg, The origin of cosmic rays above 10 18.5 eV. Astrophys. J. 454, 60 (1995) ADSGoogle Scholar
  127. A.V. Olinto, J.H. Adams, C.D. Dermer, J.F. Krizmanic et al., White paper on ultra-high energy cosmic rays, in astro2010: The Astronomy and Astrophysics Decadal Survey. ArXiv Astrophysics e-prints, vol. 2010 (2009), p. 225. arXiv:0903.0205 Google Scholar
  128. E. Parizot, GZK horizon and magnetic fields. Nucl. Phys. B, Proc. Suppl. 136, 169–178 (2004). arXiv:astro-ph/0409191 ADSGoogle Scholar
  129. E.N. Parker, The dynamical state of the interstellar gas and field. Astrophys. J. 145, 811 (1966) ADSGoogle Scholar
  130. E.N. Parker, Fast dynamos, cosmic rays, and the galactic magnetic field. Astrophys. J. 401, 137–145 (1992) ADSGoogle Scholar
  131. Pierre Auger Collaboration, J. Abraham, P. Abreu, M. Aglietta et al., Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Phys. Lett. B 685, 239–246 (2010a). arXiv:1002.1975 ADSGoogle Scholar
  132. Pierre Auger Collaboration, J. Abraham, P. Abreu, M. Aglietta et al., Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Phys. Lett. B 685, 239–246 (2010b). arXiv:1002.1975 ADSGoogle Scholar
  133. S. Profumo, Dissecting cosmic-ray electron-positron data with Occam’s Razor: the role of known Pulsars (2008). arXiv:0812.4457
  134. V. Ptuskin, V. Zirakashvili, E. Seo, Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophys. J. 718, 31–36 (2010). arXiv:1006.0034 ADSGoogle Scholar
  135. V.S. Ptuskin, I.V. Moskalenko, F.C. Jones, A.W. Strong et al., Dissipation of magnetohydrodynamic waves on energetic particles: impact on interstellar turbulence and cosmic-ray transport. Astrophys. J. 642, 902–916 (2006). arXiv:astro-ph/0510335 ADSGoogle Scholar
  136. V.S. Ptuskin, H.J. Voelk, V.N. Zirakashvili, D. Breitschwerdt, Transport of relativistic nucleons in a galactic wind driven by cosmic rays. Astron. Astrophys. 321, 434–443 (1997) ADSGoogle Scholar
  137. V.S. Ptuskin, V.N. Zirakashvili, A.A. Plesser, Non-linear diffusion of cosmic rays. Adv. Space Res. 42, 486–490 (2008) ADSGoogle Scholar
  138. J.L. Puget, F.W. Stecker, J.H. Bredekamp, Photonuclear interactions of ultrahigh energy cosmic rays and their astrophysical consequences. Astrophys. J. 205, 638–654 (1976) ADSGoogle Scholar
  139. S.P. Reynolds, Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008) ADSGoogle Scholar
  140. D. Ryu, J. Kim, S.S. Hong, T.W. Jones, The effect of cosmic-ray diffusion on the Parker instability. Astrophys. J. 589, 338–346 (2003). arXiv:astro-ph/0301625 ADSGoogle Scholar
  141. J. Scalo, B.G. Elmegreen, Interstellar turbulence II: Implications and effects. Annu. Rev. Astron. Astrophys. 42, 275–316 (2004). arXiv:astro-ph/0404452 ADSGoogle Scholar
  142. R. Schlickeiser, Cosmic Ray Astrophysics (Springer, Berlin, 2002) Google Scholar
  143. E.S. Seo, V.S. Ptuskin, Stochastic reacceleration of cosmic rays in the interstellar medium. Astrophys. J. 431, 705–714 (1994) ADSGoogle Scholar
  144. G. Sigl, Time structure and multi-messenger signatures of ultra-high energy cosmic ray sources. New J. Phys. 11(6), 065014 (2009) ADSGoogle Scholar
  145. M. Simon, W. Heinrich, K.D. Mathis, Propagation of injected cosmic rays under distributed reacceleration. Astrophys. J. 300, 32–40 (1986) ADSGoogle Scholar
  146. J. Skilling, Cosmic ray streaming. I—Effect of Alfvén waves on particles. Mon. Not. R. Astron. Soc. Lett. 172, 557–566 (1975a) Google Scholar
  147. J. Skilling, Cosmic ray streaming. III—Self-consistent solutions. Mon. Not. R. Astron. Soc. Lett. 173, 255–269 (1975b) ADSGoogle Scholar
  148. S.A. Stephens, R.E. Streitmatter, Cosmic-ray propagation in the galaxy: techniques and the mean matter traversal. Astrophys. J. 505, 266–277 (1998) ADSGoogle Scholar
  149. A.W. Strong, I.V. Moskalenko, Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509, 212–228 (1998). arXiv:astro-ph/9807150 ADSGoogle Scholar
  150. A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285–327 (2007). arXiv:astro-ph/0701517 ADSGoogle Scholar
  151. T. Takahashi, K. Mitsuda, R. Kelley, F. Aharonian et al., The ASTRO-H mission, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7732 (2010). arXiv:1010.4972 Google Scholar
  152. A.M. Taylor, I. Vovk, A. Neronov, EGMF constraints from simultaneous GeV-TeV observations of Blazars (2011). arXiv:1101.0932
  153. I.N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Reidel, Dordrecht, 1985) Google Scholar
  154. D.F. Torres, L.A. Anchordoqui, Astrophysical origins of ultrahigh energy cosmic rays. Rep. Prog. Phys. 67, 1663–1730 (2004). arXiv:astro-ph/0402371 ADSGoogle Scholar
  155. G. Vannoni, F.A. Aharonian, S. Gabici, S.R. Kelner et al., Acceleration and radiation of ultra-high energy protons in galaxy clusters (2009). arXiv:0910.5715
  156. M. Véron-Cetty, P. Véron, A catalogue of quasars and active nuclei: 12th edition. Astron. Astrophys. 455, 773–777 (2006) ADSGoogle Scholar
  157. M. Vietri, The acceleration of ultra-high-energy cosmic rays in gamma-ray bursts. Astrophys. J. 453, 883 (1995). arXiv:astro-ph/9506081 ADSGoogle Scholar
  158. J. Vink, Multiwavelength signatures of cosmic ray acceleration by young supernova remnants. in American Institute of Physics Conference Series, ed. by F.A. Aharonian, W. Hofmann, F. Rieger, vol. 1085 (2008), pp. 169–180 Google Scholar
  159. F. Vissani, F. Aharonian, N. Sahakyan, On the detectability of high-energy galactic neutrino sources (2011). arXiv:1101.4842
  160. E. Waxman, Cosmological gamma-ray bursts and the highest energy cosmic rays. Phys. Rev. Lett. 75, 386–389 (1995). arXiv:astro-ph/9505082 ADSGoogle Scholar
  161. E. Waxman, High-energy cosmic rays from gamma-ray burst sources: a stronger case. Astrophys. J. 606, 988–993 (2004). arXiv:astro-ph/0210638 ADSGoogle Scholar
  162. G.M. Webb, E.K. Kaghashvili, J.A. le Roux, A. Shalchi et al., Compound and perpendicular diffusion of cosmic rays and random walk of the field lines: II. Non-parallel particle transport and drifts. J. Phys. A, Math. Gen. 42(23), 235502 (2009) ADSGoogle Scholar
  163. D.G. Wentzel, Cosmic-ray propagation in the Galaxy—collective effects. Annu. Rev. Astron. Astrophys. 12, 71–96 (1974) ADSGoogle Scholar
  164. M.E. Wiedenbeck, N.E. Yanasak, A.C. Cummings, A.J. Davis et al., The origin of primary cosmic rays: constraints from ACE elemental and isotopic composition observations. Space Sci. Rev. 99, 15–26 (2001) ADSGoogle Scholar
  165. N.E. Yanasak, M.E. Wiedenbeck, R.A. Mewaldt, A.J. Davis et al., Measurement of the secondary radionuclides and implications for the galactic cosmic-ray age. Astrophys. J. 563, 768–792 (2001) ADSGoogle Scholar
  166. G.T. Zatsepin, V.A. Kuzmin, Upper limit of the spectrum of cosmic rays. JETP Lett. 4, 78–80 (1966) ADSGoogle Scholar
  167. Y. Zhou, W.H. Matthaeus, P. Dmitruk, Colloquium: magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas. Rev. Mod. Phys. 76, 1015–1035 (2004) ADSGoogle Scholar
  168. V.N. Zirakashvili, F.A. Aharonian, Nonthermal radiation of young supernova remnants: the case of RX J1713.7-3946. Astrophys. J. 708, 965–980 (2010). arXiv:0909.2285 ADSGoogle Scholar
  169. V.N. Zirakashvili, D. Breitschwerdt, V.S. Ptuskin, H.J. Voelk, Magnetohydrodynamic wind driven by cosmic rays in a rotating galaxy. Astron. Astrophys. 311, 113–126 (1996) ADSGoogle Scholar
  170. V.N. Zirakashvili, D.N. Pochepkin, V.S. Ptuskin, S.I. Rogovaya, Propagation of ultra-high-energy cosmic rays in Galactic magnetic fields. Astron. Lett. 24, 139–143 (1998) ADSGoogle Scholar
  171. V.N. Zirakashvili, V.S. Ptuskin, Diffusive shock acceleration with magnetic amplification by nonresonant streaming instability in supernova remnants. Astrophys. J. 678, 939–949 (2008). arXiv:0801.4488 ADSGoogle Scholar
  172. E.G. Zweibel, Cosmic-ray history and its implications for galactic magnetic fields. Astrophys. J. 587, 625–637 (2003). arXiv:astro-ph/0212559 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Felix Aharonian
    • 1
    • 2
  • Andrei Bykov
    • 3
  • Etienne Parizot
    • 4
  • Vladimir Ptuskin
    • 5
  • Alan Watson
    • 6
  1. 1.Center for Astroparticle Physics and AstrophysicsDIASDublinIreland
  2. 2.MPIKHeidelbergGermany
  3. 3.Ioffe Institute for Physics and TechnologySt. PetersburgRussia
  4. 4.APCUniversité Paris Diderot 10Paris Cedex 13France
  5. 5.Pushkov Institute of Terrestrial MagnetismIonosphere and Radio Wave Propagation of the Russian Academy of Science (IZMIRAN)TroitskRussia
  6. 6.School of Physics and Astronomy University of LeedsLeedsUK

Personalised recommendations