Space Science Reviews

, Volume 172, Issue 1–4, pp 271–282 | Cite as

Emerging Parameter Space Map of Magnetic Reconnection in Collisional and Kinetic Regimes

Article

Abstract

In large-scale systems of interest to solar physics, there is growing evidence that magnetic reconnection involves the formation of extended current sheets which are unstable to plasmoids (secondary magnetic islands). Recent results suggest that plasmoids may play a critical role in the evolution of reconnection, and have raised fundamental questions regarding the applicability of resistive MHD to various regimes. In collisional plasmas, where the thickness of all resistive layers remain larger than the ion gyroradius, simulations results indicate that plasmoids permit reconnection to proceed much faster than the slow Sweet-Parker scaling. However, it appears these rates are still a factor of ∼10× slower than observed in kinetic regimes, where the diffusion region current sheet falls below the ion gyroradius and additional physics beyond MHD becomes crucially important. Over a broad range of interesting parameters, the formation of plasmoids may naturally induce a transition into these kinetic regimes. New insights into this scenario have emerged in recent years based on a combination of linear theory, fluid simulations and fully kinetic simulations which retain a Fokker-Planck collision operator to allow a rigorous treatment of Coulomb collisions as the reconnection electric field exceeds the runaway limit. Here, we present some new results from this approach for guide field reconnection. Based upon these results, a parameter space map is constructed that summarizes the present understanding of how reconnection proceeds in various regimes.

Keywords

Magnetic Reconnection Plasmoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bhattacharjee, K. Germaschewski, C. Ng, Current singularities:drivers of impulsive reconnection. Phys. Plasmas 12, 042305 (2005) MathSciNetCrossRefADSGoogle Scholar
  2. A. Bhattacharjee, Y.M. Huang, H. Yang, B. Rogers, Fast reconnection in high-Lundquist-number plasmas due to secondary tearing instabilities. Phys. Plasmas 16, 112102 (2009) CrossRefADSGoogle Scholar
  3. J. Birn, J. Drake, M. Shay, B. Rogers, R. Denton, M. Hesse, M. Kuznetsova, Z. Ma, A. Bhattacharjee, A. Otto, P. Pritchett, Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715 (2001) CrossRefADSGoogle Scholar
  4. D. Biskamp, Magnetic reconnection via current sheets. Phys. Fluids 29, 1520 (1986) CrossRefADSMATHGoogle Scholar
  5. K.J. Bowers, B.J. Albright, L. Yin, B. Bergen, T.J.T. Kwan, Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15, 055703 (2008) CrossRefADSGoogle Scholar
  6. K. Bowers, B. Albright, L. Yin, W. Daughton, V. Roytershteyn, B. Bergen, T. Kwan, Advances in petascale kinetic simulations with VPIC and Roadrunner. J. Phys. Conf. Ser. 180, 012055 (2009) CrossRefADSGoogle Scholar
  7. P.A. Cassak, J.F. Drake, The impact of microscopic magnetic reconnection on pre-flare energy storage. Astrophys. J. 707, 158 (2009) CrossRefADSGoogle Scholar
  8. P.A. Cassak, M. Shay, Magnetic reconnection for coronal conditions: Reconnection rates, secondary islands and onset. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9755-2 Google Scholar
  9. P.A. Cassak, M.A. Shay, J.F. Drake, Scaling of sweet–parker reconnection with secondary islands. Phys. Plasmas 16, 120702 (2009) CrossRefADSGoogle Scholar
  10. P. Cassak, M. Shay, J. Drake, Catastrophe model for fast magnetic reconnection onset. Phys. Rev. Lett. 95, 235002 (2005) CrossRefADSGoogle Scholar
  11. P. Chen, K. Shibata, D. Brooks, H. Isobe, A re-examination of the evidence for reconnection inflow. Astrophys. J. 602, 61–64 (2004) CrossRefADSGoogle Scholar
  12. W. Daughton, J. Scudder, H. Karimabadi, Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13, 072101 (2006) CrossRefADSGoogle Scholar
  13. W. Daughton, V. Roytershteyn, B.J. Albright, H. Karimabadi, L. Yin, K.J. Bowers, Influence of coulomb collisions on the structure of reconnection layers. Phys. Plasmas 16, 072117 (2009a) CrossRefADSGoogle Scholar
  14. W. Daughton, V. Roytershteyn, B.J. Albright, H. Karimabadi, L. Yin, K.J. Bowers, Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett. 103, 065004 (2009b) CrossRefADSGoogle Scholar
  15. W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B. Albright, B. Bergen, K. Bowers, Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Physics, (2011a, submitted) Google Scholar
  16. W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B.J. Albright, S. Gary, K.J. Bowers, Secondary island formation in collisional and collisionless kinetic simulations of magnetic reconnection, in AIP Conference on Modern Challenges in Nonlinear Plasma Physics, vol. 1320, ed. by D. Vassiliadis (American Institute of Physics, College Park, 2011b), p. 144. doi:10.1063/1.3544319 Google Scholar
  17. J. Egedal, W. Fox, N. Katz, M. Porkolab, K. Reim, E. Zhang, Laboratory observations of spontaneous magnetic reconnection. Phys. Rev. Lett. 98, 015003 (2006) CrossRefADSGoogle Scholar
  18. L. Fletcher, J. Pollock, H. Potts, Tracking of trace ultraviolet flare footpoints. Sol. Phys. 222, 279–298 (2004) CrossRefADSGoogle Scholar
  19. Z. Fu, L. Lee, Multiple x line reconnection. II. the dynamics. J. Geophys. Res. 91(A12), 13373–13383 (1986) CrossRefADSGoogle Scholar
  20. M. Georgoulis, D. Rust, P. Bernasconi, B. Schmieder, Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575, 506 (2002) CrossRefADSGoogle Scholar
  21. M. Hesse, J. Birn, M. Kuznetsova, Collisionless magnetic reconnection: Electron processes and transport modeling. J. Geophys. Res. 106, 3721 (2001) CrossRefADSGoogle Scholar
  22. Y.M. Huang, A. Bhattacharjee, Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime. Phys. Plasmas 17, 062104 (2010) CrossRefADSGoogle Scholar
  23. D. Innes, B. Inhester, W. Axford, K. Wilhelm, Bi-directional plasma jets produced by magnetic reconnection on the sun. Nature 386, 811–813 (1997) CrossRefADSGoogle Scholar
  24. H. Isobe, K. Shibata, Reconnection in solar flares: Outstanding questions. Astron. Astrophys. 30, 79–85 (2009) CrossRefGoogle Scholar
  25. H. Karimabadi, W. Daughton, J. Scudder, Multi-scale structure of the electron the electron diffusion region. Geophys. Res. Lett. 34, 13104 (2007) CrossRefADSGoogle Scholar
  26. M. Karlicky, M. Barta, H. Meszarosova, P. Zlobec, Time scales of the slowly drifting pulsating structure observed during the April 12, 2001 flare. Astron. Astrophys. 432, 705 (2005) CrossRefADSGoogle Scholar
  27. B. Kliem, M. Karlicky, A. Benz, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715 (2000) ADSGoogle Scholar
  28. A. Klimas, M. Hesse, S. Zenitani, Particle-in-cell simulations of collisionless reconnection with open outflow boundaries. Phys. Plasmas 15, 082102 (2008) CrossRefADSGoogle Scholar
  29. G. Lapenta, Self-feeding turbulent reconnection on macroscopic scales. Phys. Rev. Lett. 100, 235001 (2008) CrossRefADSGoogle Scholar
  30. J. Lin, Y.K. Ko, L. Sui, J. Raymond, G. Stenborg, Y. Jiang, S. Zhao, S. Mancuso, Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys. J. 622, 1251–1264 (2005) CrossRefADSGoogle Scholar
  31. Y. Litvinenko, S. Martin, Magnetic reconnection as the cause of a photospheric canceling feature and mass flows in a filament. Sol. Phys. 190, 45–58 (1999) CrossRefADSGoogle Scholar
  32. N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14(10), 100703 (2007) CrossRefADSGoogle Scholar
  33. Z. Ma, A. Bhattacharjee, Fast impulsive reconnection and current sheet intensification due to electron pressure gradients in semi-collisional plasmas. Geophys. Res. Lett. 23, 1673 (1996) CrossRefADSGoogle Scholar
  34. F. Malara, P. Veltri, V. Carbone, Competition among nonlinear effects in tearing instability saturation. Phys. Fluids B 4, 3070 (1992) CrossRefADSGoogle Scholar
  35. P. Martens, Yohkoh-SXT observations of reconnection. Adv. Space Res. 32, 905–916 (2003) CrossRefADSGoogle Scholar
  36. S. Masuda, T. Kosugi, H. Hara, Y. Ogawara, A loop top hard X-ray source in a compact solar-flare as evidence for magnetic reconnection. Nature 371, 495 (1994) CrossRefADSGoogle Scholar
  37. W. Matthaeus, S. Lamkin, Rapid reconnection caused by finite amplitude fluctuations. Phys. Fluids 28, 303 (1985) CrossRefADSGoogle Scholar
  38. N. Narukage, K. Shibata, Statistical analysis of reconnection inflows in solar flares observed with SOHO EIT. Astrophys. J. 637, 1122–1134 (2006) CrossRefADSGoogle Scholar
  39. L. Ni, K. Germaschewski, Y.M. Huang, B.P. Sullivan, H. Yang, A. Bhattacharjee, Linear plasmoid instability of thin current sheets with shear flow. Phys. Plasmas 17, 052109 (2010) CrossRefADSGoogle Scholar
  40. E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509 (1957) CrossRefADSGoogle Scholar
  41. H. Petschek, Magnetic field annihilation, in AAS-NASA Symposium on the Physics of Solar Flares, ed. by W. Hess (NASA, Washington, 1964), pp. 425–439. NASA SP-50 Google Scholar
  42. P. Pritchett, Geospace environmental modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code. J. Geophys. Res. 106, 3783 (2001) CrossRefADSGoogle Scholar
  43. V. Roytershteyn, W. Daughton, L. Yin, B. Albright, K. Bowers, S. Dorfman, Y. Ren, H. Ji, M. Yamada, H. Karimabadi, Driven magnetic reconnection near the Dreicer limit. Phys. Plasmas 17, 055706 (2010) CrossRefADSGoogle Scholar
  44. R. Samtaney, N.F. Loureiro, D.A. Uzdensky, A. Schekochihin, S.C. Cowley, Formation of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103, 105004 (2009) CrossRefADSGoogle Scholar
  45. M. Shay, J. Drake, B. Rogers, R. Denton, Alfvénic collisionless magnetic reconnection and the Hall term. J. Geophys. Res. 106, 3759 (2001) CrossRefADSGoogle Scholar
  46. M. Shay, J. Drake, M. Swisdak, Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. 99, 155002 (2007) CrossRefADSGoogle Scholar
  47. L.S. Shepherd, P.A. Cassak, Comparison of secondary islands in collisional reconnection to hall reconnection. Phys. Rev. Lett. 105, 015004 (2010) CrossRefADSGoogle Scholar
  48. K. Shibata, Evidence of magnetic reconnection in solar flares and a unified model of flares. Astrophys. Space Sci. 264, 129–144 (1999) CrossRefADSMATHGoogle Scholar
  49. K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473 (2001) CrossRefADSGoogle Scholar
  50. K. Shibata, S. Masuda, M. Shimojo, H. Hara, T. Yokoyama, S. Tsuneta, T. Kosugi, Y. Ogawara, Hot-plasma ejections associated with compact-loop solar flares. Astrophys. J. Lett. 451, 83–85 (1995) CrossRefADSGoogle Scholar
  51. K. Shibata, T. Nakamura, T. Matsumoto, K. Otsuji, T. Okamoto, N. Nishizuka, T. Kawate, H. Watanabe, S. Nagata, S. UeNo, R. Kitai, S. Nozawa, S. Tsuneta, Y. Suematsu, K. Ichimoto, T. Shimizu, Y. Katsukawa, T. Tarbell, T. Berger, B. Lites, R. Shine, A. Title, Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591–1594 (2007) CrossRefADSGoogle Scholar
  52. A.N. Simakov, L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in hall magnetohydrodynamics. Phys. Rev. Lett. 101, 105003 (2008) CrossRefADSGoogle Scholar
  53. T. Takizuka, H. Abe, A binary collision model for plasma simulation with a particle code. J. Comput. Phys. 25, 205 (1977) CrossRefADSMATHGoogle Scholar
  54. S. Tsuneta, H. Hara, T. Shimizu, L. Acton, K. Strong, H. Hudson, Y. Ogawara, Observation of a solar-flare at the limb with the Yohkoh soft-X-ray telescope. Publ. Astron. Soc. Jpn. 44, 63–69 (1992) ADSGoogle Scholar
  55. M. Ugai, T. Tsuda, Magnetic field-line reconnection by localized enhancement of resistivity. J. Plasma Phys. 17, 337 (1977) CrossRefADSGoogle Scholar
  56. D. Uzdensky, The fast collisionless reconnection condition and the self-organization of solar coronal heating. Astrophys. J. 671, 2139 (2007) CrossRefADSGoogle Scholar
  57. D. Uzdensky, R. Kulsrud, Two-dimensional numerical simulations of the resistive layer. Phys. Plasmas 7, 4018 (2000) CrossRefADSGoogle Scholar
  58. D.A. Uzdensky, N.F. Loureiro, A. Schekochihin, Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002 (2010) CrossRefADSGoogle Scholar
  59. W. Wan, G. Lapenta, Electron self-reinforcing process of magnetic reconnection. Phys. Rev. Lett. 101, 015001 (2008) CrossRefADSGoogle Scholar
  60. M. Yamada, Y. Ren, H. Ji, J. Breslau, S. Gerhardt, R. Kulsrud, A. Kuritsyn, Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas 13(5), 052119 (2006). doi:10.1063/1.2203950 CrossRefADSGoogle Scholar
  61. M. Yan, L. Lee, E. Priest, Fast magnetic reconnection with small shock angles. J. Geophys. Res. 97, 8277 (1992) CrossRefADSGoogle Scholar
  62. T. Yokoyama, K. Akita, T. Morimoto, K. Inoue, J. Newmark, Clear evidence of reconnection inflow of a solar flare. Astrophys. J. Lett. 546, 69–72 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations