Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Magnetic Fields in Cosmic Particle Acceleration Sources

Abstract

We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. In particular, we discuss a number of cosmic-ray (CR) driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. The finite size twinkling, intermittent structures—dots, clumps, and filaments—are most apparent in the cut-off region of the synchrotron spectrum. Even though these X-ray synchrotron structures result from turbulent magnetic fields, they could still be highly polarized providing an important diagnostic of the spectrum of the turbulence. We discuss both the thermal and non-thermal observational consequences of magnetic field amplification in supernova remnants and radio-galaxies. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.

This is a preview of subscription content, log in to check access.

References

  1. A.A. Abdo, M. Ackermann, M. Ajello, L. Baldini et al., Observation of supernova remnant IC 443 with the Fermi large area telescope. Astrophys. J. 712, 459–468 (2010). arXiv:1002.2198

  2. T. Abel, G.L. Bryan, M.L. Norman, The formation of the first star in the universe. Science 295, 93–98 (2002). arXiv:astro-ph/0112088

  3. A. Achterberg, R.D. Blandford, S.P. Reynolds, Evidence for enhanced MHD turbulence outside sharp-rimmed supernova remnants. Astron. Astrophys. 281, 220–230 (1994)

  4. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, B. Behera et al., Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4–0.1) field. Astron. Astrophys. 481, 401–410 (2008). arXiv:0801.3555

  5. J. Albert, E. Aliu, H. Anderhub, P. Antoranz et al., Discovery of very high energy gamma radiation from IC 443 with the MAGIC telescope. Astrophys. J. 664, L87–L90 (2007). arXiv:0705.3119

  6. E. Amato, P. Blasi, A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon. Not. R. Astron. Soc. Lett. 392, 1591–1600 (2009). arXiv:0806.1223

  7. A. Bamba, R. Yamazaki, T. Yoshida, T. Terasawa et al., A spatial and spectral study of nonthermal filaments in historical supernova remnants: observational results with Chandra. Astrophys. J. 621, 793–802 (2005). arXiv:astro-ph/0411326

  8. A. Bamba, R. Yamazaki, T. Yoshida, T. Terasawa et al., Small-scale structure of non-thermal X-rays in historical SNRs. Adv. Space Res. 37, 1439–1442 (2006)

  9. K. Bamert, R. Kallenbach, J.A. le Roux, M. Hilchenbach et al., Evidence for Iroshnikov-Kraichnan-type turbulence in the solar wind upstream of interplanetary traveling shocks. Astrophys. J. 675, L45–L48 (2008)

  10. K. Bamert, R. Kallenbach, N.F. Ness, C.W. Smith et al., Hydromagnetic wave excitation upstream of an interplanetary traveling shock. Astrophys. J. 601, L99–L102 (2004)

  11. R. Bandiera, O. Petruk, A statistical approach to radio emission from shell-type SNRs. I. Basic ideas, techniques, and first results. Astron. Astrophys. 509, A34 (2010). arXiv:0911.0829

  12. R. Beck, Galactic and extragalactic magnetic fields, in American Institute of Physics Conference Series, ed. by F.A. Aharonian, W. Hofmann, F. Rieger. American Institute of Physics Conference Series, vol. 1085 (2008), pp. 83–96. arXiv:0810.2923

  13. R. Beck, A. Brandenburg, D. Moss, A. Shukurov et al., Galactic magnetism: recent developments and perspectives. Annu. Rev. Astron. Astrophys. 34, 155–206 (1996)

  14. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004)

  15. A.R. Bell, The interaction of cosmic rays and magnetized plasma. Mon. Not. R. Astron. Soc. Lett. 358, 181–187 (2005)

  16. A. Beresnyak, T.W. Jones, A. Lazarian, Turbulence-induced magnetic fields and structure of cosmic ray modified shocks. Astrophys. J. 707, 1541–1549 (2009). arXiv:0908.2806

  17. V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.L. Ginzburg et al., Astrophysics of cosmic rays (1990)

  18. M.L. Bernet, F. Miniati, S.J. Lilly, P.P. Kronberg et al., Strong magnetic fields in normal galaxies at high redshift. Nature 454, 302–304 (2008). arXiv:0807.3347

  19. R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks—a theory of cosmic-ray origin. Phys. Rep. 154, 1 (1987)

  20. R. Blandford, S. Funk, The magnetic bootstrap, in The First GLAST Symposium, ed. by S. Ritz, P. Michelson, C.A. Meegan. American Institute of Physics Conference Series, vol. 921 (2007), pp. 62–64

  21. A. Brandenburg, K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005). arXiv:astro-ph/0405052

  22. Y.M. Butt, T.A. Porter, B. Katz, E. Waxman, X-ray hotspot flares and implications for cosmic ray acceleration and magnetic field amplification in supernova remnants. Mon. Not. R. Astron. Soc. Lett. 386, L20–L22 (2008). arXiv:0801.4954

  23. A.M. Bykov, R.A. Chevalier, D.C. Ellison et al., Nonthermal emission from a supernova remnant in a molecular cloud. Astrophys. J. 538, 203–216 (2000). arXiv:astro-ph/0003235

  24. A.M. Bykov, K. Dolag, F. Durret, Cosmological shock waves. Space Sci. Rev. 134, 119–140 (2008a). arXiv:0801.0995

  25. A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. Lett. 410, 39–52 (2011). arXiv:1010.0408

  26. A.M. Bykov, I.N. Toptygin, Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods). Phys. Usp. 36, 1020–1052 (1993)

  27. A.M. Bykov, I.N. Toptygin, A model of particle acceleration to high energies by multiple supernova explosions in OB associations. Astron. Lett. 27, 625–633 (2001)

  28. A.M. Bykov, I.N. Toptygin, Generation of magnetic fluctuations near a shock front in a partially ionized medium. Astron. Lett. 31, 748–754 (2005)

  29. A.M. Bykov, Y.A. Uvarov, J.B.G.M. Bloemen, J.W. den Herder et al., A model of polarized X-ray emission from twinkling synchrotron supernova shells. Mon. Not. R. Astron. Soc. Lett. 399, 1119–1125 (2009). arXiv:0907.2521

  30. A.M. Bykov, Y.A. Uvarov, D.C. Ellison, Dots, clumps, and filaments: the intermittent images of synchrotron emission in random magnetic fields of young supernova remnants. Astrophys. J. 689, L133–L136 (2008b). arXiv:0811.2498

  31. G. Cassam-Chenaï, J.P. Hughes, J. Ballet, A. Decourchelle, The blast wave of Tycho’s supernova remnant. Astrophys. J. 665, 315–340 (2007). arXiv:astro-ph/0703239

  32. G. Cassam-Chenaï, J.P. Hughes, E.M. Reynoso, C. Badenes et al., Morphological evidence for Azimuthal variations of the cosmic-ray ion acceleration at the blast wave of SN 1006. Astrophys. J. 680, 1180–1197 (2008)

  33. D. Castro, P. Slane, Fermi large area telescope observations of supernova remnants interacting with molecular clouds. Astrophys. J. 717, 372–378 (2010). arXiv:1002.2738

  34. S.V. Chalov, Instability of the structure of strong oblique MHD cosmic-ray shocks. Astrophys. Space Sci. 148, 175–187 (1988)

  35. R.A. Chevalier, Magnetic field amplification in interstellar collisionless shock waves. Nature 266, 701 (1977)

  36. K.T. Chyzy, Magnetic fields in dwarfs versus early-type galaxies. Highlights Astron. 15, 454–455 (2010)

  37. E. Costa, R. Bellazzini, G. Tagliaferri, G. Matt et al. POLARIX: a pathfinder mission of X-ray polarimetry. Exp. Astron. 9 (2010)

  38. J.H. Croston, R.P. Kraft, M.J. Hardcastle, M. Birkinshaw et al., High-energy particle acceleration at the radio-lobe shock of Centaurus A. Mon. Not. R. Astron. Soc. Lett. 395, 1999–2012 (2009). arXiv:0901.1346

  39. A. Crusius, R. Schlickeiser, Synchrotron radiation in random magnetic fields. Astron. Astrophys. 164, L16–L18 (1986)

  40. E.A. Dorfi, L.O. Drury, A cosmic ray driven instability, in International cosmic ray conference, ed. by F.C. Jones. International Cosmic Ray Conference, vol. 3 (1985), pp. 121–123

  41. L.O. Drury, S.A.E.G. Falle, On the stability of shocks modified by particle acceleration. Mon. Not. R. Astron. Soc. Lett. 223, 353 (1986)

  42. Y. Dubois, R. Teyssier, Magnetised winds in dwarf galaxies. Astron. Astrophys. 523, A72 (2010). arXiv:0908.3862

  43. D.C. Ellison, M.G. Baring, F.C. Jones, Nonlinear particle acceleration in oblique shocks. Astrophys. J. 473, 1029 (1996). arXiv:astro-ph/9609182

  44. D.C. Ellison, E. Moebius, G. Paschmann, Particle injection and acceleration at earth’s bow shock—comparison of upstream and downstream events. Astrophys. J. 352, 376–394 (1990)

  45. D.C. Ellison, D.J. Patnaude, P. Slane, J. Raymond, Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal X-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys. J. 712, 287–293 (2010). arXiv:1001.1932

  46. K. Ferriere, Effect of the explosion of supernovae and superbubbles on the Galactic dynamo. Astrophys. J. 391, 188–198 (1992)

  47. B. Fryxell, C.C. Kuranz, R.P. Drake, M.J. Grosskopf et al., The possible effects of magnetic fields on laser experiments of Rayleigh-Taylor instabilities. High Energy Density Phys. 6, 162–165 (2010)

  48. V.L. Ginzburg, S.I. Syrovatskii, The Origin of Cosmic Rays (Macmillan, New York, 1964)

  49. V.L. Ginzburg, S.I. Syrovatskii, Cosmic Magnetobremsstrahlung (synchrotron Radiation). Ann. Rev. Astron. Astrophys. 3, 297 (1965)

  50. H. Hanayama, K. Takahashi, K. Tomisaka, Generation of seed magnetic fields in primordial supernova remnants. arXiv:0912.2686 (2009)

  51. L. Harvey-Smith, B.M. Gaensler, R. Kothes, R. Townsend et al., Faraday rotation of the supernova remnant G296.5+10.0: evidence for a magnetized progenitor wind. Astrophys. J. 712, 1157–1165 (2010). arXiv:1001.3462

  52. C. Heiles, Clustered supernovae versus the gaseous disk and halo. Astrophys. J. 354, 483–491 (1990)

  53. E.A. Helder, J. Vink, C.G. Bassa, A. Bamba et al., Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325, 719 (2009). arXiv:0906.4553

  54. T.S. Horbury, M. Forman, S. Oughton, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101(17), 175 005 (2008). arXiv:0807.3713

  55. G.G. Howes, Inertial range turbulence in kinetic plasmas. Phys. Plasmas 15(5), 055 904 (2008). arXiv:0711.4358

  56. F.C. Jones, D.C. Ellison, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991)

  57. B. Jun, M.L. Norman, On the origin of radial magnetic fields in Young supernova remnants. Astrophys. J. 472, 245 (1996). arXiv:astro-ph/9606096

  58. T.R. Kallman, J.H. Swank, G.E.M.S. Team, The gravity and extreme magnetism small explorer (GEMS). Bull. Am. Astron. Soc. 41, 737 (2010).

  59. T.N. Kato, H. Takabe, Nonrelativistic collisionless shocks in weakly magnetized electron-ion plasmas: two-dimensional particle-in-cell simulation of perpendicular shock. Astrophys. J. 721, 828–842 (2010). arXiv:1008.0265

  60. R.M. Kulsrud, Plasma Physics for Astrophysics (Princeton University Press, Princeton, 2005)

  61. R.M. Kulsrud, E.G. Zweibel, On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71(4), 046 901 (2008). arXiv:0707.2783

  62. Q. Luo, D. Melrose, Saturated magnetic field amplification at supernova shocks. Mon. Not. R. Astron. Soc. 397, 1402–1409 (2009). arXiv:0904.1038

  63. M.A. Malkov, L. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001)

  64. M.A. Malkov, P.H. Diamond, Nonlinear dynamics of acoustic instability in a cosmic ray shock precursor and its impact on particle acceleration. Astrophys. J. 692, 1571–1581 (2009)

  65. M.A. Malkov, P.H. Diamond, R.Z. Sagdeev, On the structure and scale of cosmic ray modified shocks. arXiv:1007.3042 (2010)

  66. A. Marcowith, F. Casse, Postshock turbulence and diffusive shock acceleration in young supernova remnants. Astron. Astrophys. 515, A90 (2010). arXiv:1001.2111

  67. A. Marcowith, M. Lemoine, G. Pelletier, Turbulence and particle acceleration in collisionless supernovae remnant shocks. II. Cosmic-ray transport. Astron. Astrophys. 453, 193–202 (2006). arXiv:astro-ph/0603462

  68. W.H. Matthaeus, S. Ghosh, S. Oughton, D.A. Roberts, Anisotropic three-dimensional MHD turbulence. J. Geophys. Res. 101, 7619–7630 (1996)

  69. D.K. Milne, Polarization and magnetic fields in supernova remnants, in Galactic and Intergalactic Magnetic Fields, ed. by R. Beck, R. Wielebinski, P.P. Kronberg. IAU Symposium, vol. 140 (1990), pp. 67–72

  70. F. Miniati, A.R. Bell, Resistive magnetic field generation at cosmic dawn. arXiv:1001.2011 (2010)

  71. Y. Ohira, T. Terasawa, F. Takahara, Plasma instabilities as a result of charge exchange in the downstream region of supernova remnant shocks. Astrophys. J. 703, L59–L62 (2009). arXiv:0908.3369

  72. D.J. Patnaude, RA Fesen, Proper motions and brightness variations of nonthermal X-ray filaments in the Cassiopeia a supernova remnant. Astrophys. J. 697, 535–543 (2009). arXiv:0808.0692

  73. G. Pelletier, M. Lemoine, A. Marcowith, Turbulence and particle acceleration in collisionless supernovae remnant shocks. I. Anisotropic spectra solutions. Astron. Astrophys. 453, 181–191 (2006). arXiv:astro-ph/0603461

  74. O. Petruk, G. Dubner, G. Castelletti et al., Aspect angle for interstellar magnetic field in SN 1006. Mon. Not. R. Astron. Soc. 393, 1034–1040 (2009). arXiv:0811.2319

  75. J.J. Podesta, Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986–999 (2009). arXiv:0901.4940

  76. M. Pohl, H. Yan, A. Lazarian, Magnetically limited X-ray filaments in young supernova remnants. Astrophys. J. 626, L101–L104 (2005)

  77. V. Ptuskin, V. Zirakashvili, E. Seo, Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophys. J. 718, 31–36 (2010). arXiv:1006.0034

  78. E. Quataert, A. Gruzinov, Turbulence and particle heating in advection-dominated accretion flows. Astrophys. J. 520, 248–255 (1999). arXiv:astro-ph/9803112

  79. M.J. Rees, Origin of cosmic magnetic fields. Astron. Nachr. 327, 395 (2006)

  80. B. Reville, J.G. Kirk, P. Duffy, S. O’Sullivan, A cosmic ray current-driven instability in partially ionised media. Astron. Astrophys. 475, 435–439 (2007). arXiv:0707.3743

  81. S.P. Reynolds, Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008)

  82. M.A. Riquelme, A. Spitkovsky, Nonlinear study of bell’s cosmic ray current-driven instability. Astrophys. J. 694, 626–642 (2009). arXiv:0810.4565

  83. M.A. Riquelme, A. Spitkovsky, Magnetic amplification by magnetized cosmic rays in supernova remnant shocks. Astrophys. J. 717, 1054–1066 (2010). arXiv:0912.4990

  84. A.A. Ruzmaikin, D.D. Sokolov, A.M. Shukurov (eds.), Magnetic Fields of Galaxies, Astrophysics and Space Science Library, vol. 133 (Springer, Berlin, 1988)

  85. D. Ryu, H. Kang, J. Cho, S. Das, Turbulence and magnetic fields in the large-scale structure of the universe. Science 320, 909 (2008). arXiv:0805.2466

  86. S. Samui, K. Subramanian, R. Srianand, Cosmic ray driven outflows from high-redshift galaxies. Mon. Not. R. Astron. Soc. 402, 2778–2791 (2010). arXiv:0909.3854

  87. D.R.G. Schleicher, R. Banerjee, S. Sur, T.G. Arshakian et al., Small-scale dynamo action during the formation of the first stars and galaxies. I. The ideal MHD limit. Astron. Astrophys. 522, A115 (2010). arXiv:1003.1135

  88. R. Schlickeiser, Cosmic Ray Astrophysics (Springer, Berlin, 2002)

  89. K.M. Schure, J. Vink, A. Achterberg, R. Keppens, Evolution of magnetic fields in supernova remnants, in Revista Mexicana de Astronomia y Astrofisica Conference Series, vol. 36 (2009), p. 350. arXiv:0810.5150

  90. H. Siejkowski, M. Soida, K. Otmianowska-Mazur, M. Hanasz et al., Cosmic-ray driven dynamo in the interstellar medium of irregular galaxies. Astron. Astrophys. 510, A97 (2010). arXiv:0909.0926

  91. J.M. Stone, T. Gardiner, The magnetic Rayleigh-Taylor instability in three dimensions. Astrophys. J. 671, 1726–1735 (2007). arXiv:0709.0452

  92. W. Stroman, M. Pohl, Radio polarimetry signatures of strong magnetic turbulence in supernova remnants. arXiv:0902.1701 (2009)

  93. I.N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (1985)

  94. R.A. Treumann, W. Baumjohann, Advanced Space Plasma Physics (1997)

  95. Y. Uchiyama, F.A. Aharonian, T. Tanaka et al., Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449, 576–578 (2007)

  96. Y. Uchiyama, R. Blandford, S. Funk, H. Tajima et al., Gamma-ray emission from crushed clouds in supernova remnants. arXiv:1008.1840 (2010)

  97. J. Vink, Multiwavelength signatures of cosmic ray acceleration by young supernova remnants, in AIP Conference Series, vol. 1085. ed. by F.A. Aharonian et al. (2008), p. 169

  98. J. Vink, J.M. Laming, On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys. J. 584, 758–769 (2003). arXiv:astro-ph/0210669

  99. A. Vladimirov, D.C. Ellison, A. Bykov, Nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 652, 1246–1258 (2006). arXiv:astro-ph/0606433

  100. A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 688, 1084–1101 (2008). arXiv:0807.1321

  101. A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks. Astrophys. J. 703, L29–L32 (2009). arXiv:0908.2602

  102. D.G. Wentzel, Cosmic-ray propagation in the Galaxy—Collective effects. Annu. Rev. Astron. Astrophys. 12, 71–96 (1974)

  103. K.C. Westfold, The polarization of synchrotron radiation. Astrophys. J. 130, 241 (1959)

  104. L.M. Widrow, Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775–823 (2002). arXiv:astro-ph/0207240

  105. A.M. Wolfe, R.A. Jorgenson, T. Robishaw, C. Heiles et al., An 84-μG magnetic field in a galaxy at redshift z=0.692. Nature 455, 638–640 (2008). arXiv:0811.2408

  106. H. Xu, B.W. O’Shea, D.C. Collins, M.L. Norman et al., The Biermann battery in cosmological MHD simulations of population III star formation. Astrophys. J. 688, L57–L60 (2008). arXiv:0807.2647

  107. G.P. Zank, W.I. Axford, J.F. McKenzie, Instabilities in energetic particle modified shocks. Astron. Astrophys. 233, 275–284 (1990)

  108. Y.B. Zel’dovich, S.A. Molchanov, A.A. Ruzmaikin, D.D. Sokoloff, Intermittency in random media. Sov. Phys. Usp. 30, 353–369 (1987)

  109. V.N. Zirakashvili, V.S. Ptuskin, Diffusive shock acceleration with magnetic amplification by nonresonant streaming instability in supernova remnants. Astrophys. J. 678, 939–949 (2008). arXiv:0801.4488

  110. V.N. Zirakashvili, V.S. Ptuskin, H.J. Völk, Modeling Bell’s nonresonant cosmic-ray instability. Astrophys. J. 678, 255–261 (2008). arXiv:0801.4486

  111. E.G. Zweibel, Cosmic-ray history and its implications for galactic magnetic fields. Astrophys. J. 587, 625–637 (2003). arXiv:astro-ph/0212559

  112. E.G. Zweibel, J.E. Everett, Environments for magnetic field amplification by cosmic rays. Astrophys. J. 709, 1412–1419 (2010). arXiv:0912.3511

Download references

Author information

Correspondence to Andrei M. Bykov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bykov, A.M., Ellison, D.C. & Renaud, M. Magnetic Fields in Cosmic Particle Acceleration Sources. Space Sci Rev 166, 71–95 (2012). https://doi.org/10.1007/s11214-011-9761-4

Download citation

Keywords

  • Radiation mechanisms: non-thermal
  • X-rays: ISM
  • (ISM:) supernova remnants
  • Clusters of galaxies
  • Shock waves
  • Magnetic fields