Space Science Reviews

, Volume 167, Issue 1–4, pp 23–69 | Cite as

The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance in Flight

  • Kimberly Ennico
  • Mark Shirley
  • Anthony Colaprete
  • Leonid Osetinsky
Open Access
Article

Abstract

The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) was to confirm the presence or absence of water ice in a permanently shadowed region (PSR) at a lunar pole. LCROSS was classified as a NASA Class D mission. Its payload, the subject of this article, was designed, built, tested and operated to support a condensed schedule, risk tolerant mission approach, a new paradigm for NASA science missions. All nine science instruments, most of them ruggedized commercial-off-the-shelf (COTS), successfully collected data during all in-flight calibration campaigns, and most importantly, during the final descent to the lunar surface on October 9, 2009, after 112 days in space. LCROSS demonstrated that COTS instruments and designs with simple interfaces, can provide high-quality science at low-cost and in short development time frames. Building upfront into the payload design, flexibility, redundancy where possible even with the science measurement approach, and large margins, played important roles for this new type of payload. The environmental and calibration approach adopted by the LCROSS team, compared to existing standard programs, is discussed. The description, capabilities, calibration and in-flight performance of each instrument are summarized. Finally, this paper goes into depth about specific areas where the instruments worked differently than expected and how the flexibility of the payload team, the knowledge of instrument priority and science trades, and proactive margin maintenance, led to a successful science measurement by the LCROSS payload’s instrument complement.

Keywords

Moon Mission Spectroscopy Impactor LCROSS LRO Class D 

References

  1. APR-8070.2. Ames Procedural Requirements. Class D spacecraft design and environmental test (Effective Date 17 September 2008). Current version can be found at: http://server-mpo.arc.nasa.gov/
  2. ASTM E-490. 2000 American Society for Testing & Materials (ASTM) standard extraterrestrial solar spectrum reference E-490-00 [Online] (2000). Available: http://rredc.nrel.gov/solar/spectra/am0/
  3. D. Andrews, LCROSS: a high-return, small satellite mission, in Small Satellite Systems and Services, the 4S Symposium, Funchal, Madeira, 31 May–4 June 2010 (2010) Google Scholar
  4. E.S. Barker, C.A. Prieto, T.L. Farnham, D.B. Goldstein, R.S. Nerem, J.V. Austin, J.Y. Shim, A.B. Storrs, and 32 authors, Results of observational campaigns carried out during the impact of lunar prospector into a permanently shadowed crater near the South Pole of the moon. Bull. Am. Astron. Soc. 31, 1583 (1999). American Astronomical Society, DPS Meeting 31, Abstract 59.03 ADSGoogle Scholar
  5. S.W. Brown, B.C. Johnson, S.F. Biggar, E.F. Zalewski, J. Cooper, P. Hajek, E. Hildum, P. Grant, R.A. Barnes, J.J. Butler, Radiometric validation of NASA Ames Research Center’s Sensor Calibration Laboratory. Appl. Opt., 4(30), 6426–6443 (2005) ADSCrossRefGoogle Scholar
  6. A. Colaprete, P. Schultz, J. Heldmann, M. Shirley, K. Ennico, B. Hermalyn, D. Wooden, W. Marshall, A. Ricco, R.C. Elphic, D. Goldstein, D. Summy, G.D. Bart, E. Asphaug, D. Korycansky, D. Landis, L. Sollitt, The detection of water within the LCROSS ejecta plume. Science 300, 463–468 (2010) ADSCrossRefGoogle Scholar
  7. J. Cooper, NASA GSFC Code 614.4, Calibrations NIST 30 inch Sphere NASA Ames Research Center (2007). Available: http://cf.gsfc.nasa.gov/docs/Cal/Other/Archi/2007/20070518083800Archi.txt
  8. J. Cooper, NASA GSFC Code 614.4, Calibrations NIST 30 inch Sphere NASA Ames Research Center (2008). Available: http://cf.gsfc.nasa.gov/docs/Cal/Other/Archi/2008/20080314105200Archi.txt
  9. D.R. Day, M.A. Butler, M.C. Smith, A. McAlister, E.R. Deutsch, K. Zafiriou, S.D. Senturia, Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer, in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5–9, 2005 (2005), pp. 1246–1249 Google Scholar
  10. L.R. Gauthier, L.M. Howser, D.T. Prendergast, M.P. Mattix, Radiometric dynamic scene processing for uncooled IRFPAs, infrared imaging systems: design, analysis, modeling, and testing XVII. Proc. SPIE 6207, 241–250 (2006) Google Scholar
  11. G.R. Gladstone, D.M. Hurley, K.D. Retherford, P.D. Feldman, W.R. Pryor, J. Chaufray, M. Versteeg, T.K. Greathouse, A.J. Steffl, H. Throop, J.W. Parker, D.E. Kaufmann, A.F. Egan, M.W. Davis, D.C. Slater, J. Mukherjee, P.F. Miles, A.R. Hendrix, A. Colaprete, S.A. Stern, LRO-LAMP observations of the LCROSS impact plume. Science 300, 472–476 (2010) ADSCrossRefGoogle Scholar
  12. E.W. Greisen, M.R. Calabretta, Representations of world coordinates in FITS. Astron. Astrophys. 395, 1061–1075 (2002) ADSCrossRefGoogle Scholar
  13. GSFC-STD-7000. General environmental verification standard GEVS. For GSFC flight programs and projects (2005). Current version can be found at http://standards.gsfc.nasa.gov/gsfc-stds.html
  14. P.O. Hayne, B.T. Greenhagen, M.C. Foote, M.A. Siegler, D.A. Paige, Diviner lunar radiometer observations of the LCROSS impact. Science 300, 477–479 (2010) ADSCrossRefGoogle Scholar
  15. J. Heldmann, A. Colaprete, and 67 authors. LCROSS (Lunar Crater Observation and Sensing Satellite) observation campaign: strategies, implementation, and lessons learned. Space Sci. Rev. (2011, this issue). doi:10.1007/s11214-011-9753-4
  16. W. Marshall, M. Shirley, Z. Moratto, A. Colparete, G. Neumann, D. Smith, S. Hensley, S. Hensley, B. Wilson, M. Slade, B. Kennedy, Locating the LCROSS impact crater. Space Sci. Rev. (2011, in press) Google Scholar
  17. MIL-HDBK-343 (USAF). Military Handbook: Design, Construction, and Testing Requirements for One of a Kind Space Equipment. 1 February (1986) Google Scholar
  18. MIL-HDBK-340A (USAF). Military Handbook: Test Requirements for Launch, Upper-Stage, and Space Vehicles (Vol. 1: Baselines). 1 April (1999) Google Scholar
  19. MIL-STD-1540B. Military Standard: Test Requirements for Space Vehicles. 10 October (1982) Google Scholar
  20. I.G. Mitrofanov, A.B. Sanin, W.V. Boynton, G. Chin, J.B. Garvin, D. Golovin, L.G. Evans, K. Harshman, A.S. Kozyrev, M.L. Litvak, A. Malakhov, E. Mazarico, T. McClanahan, G. Milikh, M. Mokrousov, G. Nandikotkur, G.A. Neumann, I. Nuzhdin, R. Sagdeev, V. Shevchenko, V. Shvetsov, D.E. Smith, R. Starr, V.I. Tretyakov, J. Trombka, D. Usikov, A. Varenikov, A. Vostrukhin, M.T. Zuber, Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND. Science 300, 483–485 (2010) ADSCrossRefGoogle Scholar
  21. Z. Moratto, W. Marshall, M. Shirley, M. Broxton, A. Colaprete, LCROSS derived map products, in NASA Lunar Science Forum, Moffett Field, CA, July 2010 (2010) Google Scholar
  22. NPR 8705.4. NASA procedural requirements risk classification for NASA payloads (revalidated July 9, 2008). Current version can be found at: http://nodis3.gsfc.nasa.gov/
  23. D.A. Paige, M.C. Foote, B.T. Greenhagen, J.T. Schofield, S. Calcutt, A.R. Vasavada, D.J. Preston, F.W. Taylor, C.C. Allen, K.J. Snook, B.M. Jakosky, B.C. Murray, L.A. Soderblom, B. Jau, S. Loring, J. Bulharowski, N.E. Bowles, I.R. Thoma, M.T. Sullivan, C. Avis, E.M. De Jong, W. Hartford, D.J. McCleese, The lunar reconnaissance orbiter diviner lunar radiometer experiment. Space Sci. Rev. 150, 125–160 (2010a) ADSCrossRefGoogle Scholar
  24. D.A. Paige, M.A. Siegler, J. Zhang, P.O. Hayne, E.J. Foote, K.A. Bennett, A.R. Vasavada, B.T. Greenhagen, J.T. Schofield, D.J. McCleese, M.C. Foote, E. DeJong, B.G. Bills, W. Hartford, B.C. Murray, C.C. Allen, K. Snook, L.A. Soderblom, S. Calcutt, F.W. Taylor, N.E. Bowles, J.L. Bandfield, R. Elphic, R. Ghent, T.D. Glotch, M.B. Wyatt, P.G. Lucey, Diviner lunar radiometer observations of cold traps in the Moon’s south polar region. Science 300, 479–482 (2010b) ADSCrossRefGoogle Scholar
  25. Y. Ralchenko, A.E. Kramida, J. Reader, NISTASD Team, NIST Atomic Spectra Database (version 3.1.5) [Online]. National Institute of Standards and Technology, Gaithersburg, MD (2008). Available: http://physics.nist.gov/asd3 [2010, June 27]
  26. R. Ridenoure, RocketCam systems for providing situational awareness on rockets, spacecraft, and other remote platforms. Proc. SPIE 5418, 94–103 (2004) ADSCrossRefGoogle Scholar
  27. M. Saccoccio, R. Wiens, B. Barraclough, J.D. Bernardin, A. Cros, S. Bender, S. Clegg, L. Pares, K. Gasc, D. Kouach, B. Dubois, M. Bouye, J. Thocaven, H. Seran, Y. Parot, R. Orttner, B. Faure, Y. Michel, P. Cais, M. Berthe, R. Perez, R. Stiglich, D. Landis, T. Hale, C. Hayes, C. Lindensmith, T. Elliot, The CHEMCAM instrument on Mars science laboratory: first laser induced breakdown spectroscopy instrument in space, in International Conference on Environmental Systems, Savannah, GA, USA (2009). États-Unis d’Amérique Google Scholar
  28. T.L. Segura, A.S. Lo, H. Eller, D. Dailey, E. Drucker, J. Wehner, Secondary payloads using the LCROSS architecture, in 41st Lunar and Planetary Science Conference, The Woodlands, Texas, March 1–5, 2010 (2010), p. 2673. LPI Contribution No. 1533 Google Scholar
  29. P.H. Schultz, B. Hermalyn, A. Colaprete, K. Ennico, M. Shirley, W. Marshall, The LCROSS cratering experiment. Science 300, 468–472 (2010) ADSCrossRefGoogle Scholar
  30. M.F. Skrutskie, R.M. Cutri, R. Stiening, M.D. Weinberg, S. Schneider, J.M. Carpenter, C. Beichman, R. Capps, T. Chester, J. Elias, J. Huchra, J. Liebert, C. Lonsdale, D.G. Monet, S. Price, P. Seitzer, T. Jarrett, J.D. Kirkpatrick, J.E. Gizis, E. Howard, T. Evans, J. Fowler, L. Fullmer, R. Hurt, R. Light, E.L. Kopan, K.A. Marsh, H.L. McCallon, R. Tam, S. Van Dyk, S. Wheelock, The two micron all sky survey (2MASS). Astron. J., 131, 1163–1183 (2006) ADSCrossRefGoogle Scholar
  31. H.E. Spence, The Crater Team, Lunar cosmic ray albedo measurements using the cosmic ray telescope for the effects of radiation on the lunar reconnaissance orbiter, in 41st Lunar and Planetary Science Conference, The Woodlands, March 1–5, 2010 (2010). Abstract #2659 Google Scholar
  32. P.D. Tompkins, R. Hunt, M. D’Ortenzio, J. Strong, K. Galal, J.L. Bresina, D. Foreman, R. Barber, M. Shirley, J. Munger, E. Drucker, Flight operations for the LCROSS lunar impactor mission, in AIAA Space Ops 2010 Conference, Delivering on the Dream (2010) (AIAA, Washington, 2010). Paper 2010-1986 Google Scholar
  33. TR-2004 (8583)-1 REV. A. Air force space command: test requirements for launch, upper-stage, and space vehicles. 6 September (2006) Google Scholar
  34. R. Vondrak, J. Keller, G. Chin, J. Garvin, Lunar reconnaissance orbiter (LRO): observations for lunar exploration and science. Space Sci. Rev. 150, 7–22 (2010) ADSCrossRefGoogle Scholar
  35. D. Wooden, K. Ennico, A. Colaprete, J. Heldmann, M. Shirley, E. Hildum, P. Grant, LCROSS near-IR spectrometers: characterizing the spectrometers that look for water ice in impact plume radiance, wavelength & instrument profile calibration using the Ames airborne Sensor Cal Lab (SCL), in NLSI Lunar Science Forum Workshop, Washington, 21–23 July 2009 (2009) Google Scholar

Copyright information

© US Government 2011

Authors and Affiliations

  • Kimberly Ennico
    • 1
  • Mark Shirley
    • 1
  • Anthony Colaprete
    • 1
  • Leonid Osetinsky
    • 1
  1. 1.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations