Space Science Reviews

, Volume 163, Issue 1–4, pp 263–327 | Cite as

The Dawn Framing Camera

  • H. Sierks
  • H. U. Keller
  • R. Jaumann
  • H. Michalik
  • T. Behnke
  • F. Bubenhagen
  • I. Büttner
  • U. Carsenty
  • U. Christensen
  • R. Enge
  • B. Fiethe
  • P. Gutiérrez Marqués
  • H. Hartwig
  • H. Krüger
  • W. Kühne
  • T. Maue
  • S. Mottola
  • A. Nathues
  • K.-U. Reiche
  • M. L. Richards
  • T. Roatsch
  • S. E. Schröder
  • I. Szemerey
  • M. Tschentscher
Article

Abstract

The Framing Camera (FC) is the German contribution to the Dawn mission. The camera will map 4 Vesta and 1 Ceres through a clear filter and 7 band-pass filters covering the wavelengths from the visible to the near-IR. The camera will allow the determination of the physical parameters of the asteroids, the reconstruction of their global shape as well as local topography and surface geomorphology, and provide information on composition via surface reflectance characteristics. The camera will also serve for orbit navigation. The resolution of the Framing Camera will be up to 12 m per pixel in low altitude mapping orbit at Vesta (62 m per pixel at Ceres), at an angular resolution of 93.7 μrad px−1.

The instrument uses a reclosable front door to protect the optical system and a filter-wheel mechanism to select the band-pass for observation. The detector data is read out and processed by a data processing unit. A power converter unit supplies all required power rails for operation and thermal maintenance. For redundancy reasons, two identical cameras were provided, both located side by side on the +Z-deck of the spacecraft. Each camera has a mass of 5.5 kg.

Keywords

Dawn Framing Camera CCD Imaging system Spectroscopy Asteroids Vesta Ceres Topography Global shape Mapping Mineralogy Composition Interior 

Glossary

ADC

Analog-Digital Converter

AU

Astronomical Unit

APID

Application Process Identifier

ASIC

Application Specific Integrated Circuit

BFL

Back Focal Length

CALIOPE

Calibration Operational Pipeline

CCD

Charged Coupled Device

CCSDS

Consultative Committee for Space Data Systems

CDS

Correlated Double Sampling

CH

Camera Head

COTS

Commercial-Off-The-Shelf

CRC

Cyclic Redundancy Check

DLR

Deutsches Zentrum für Luft- und Raumfahrt

DMA

Direct Memory Access

DN

Digital Number

DPU

Data Processing Unit

DSC

Dawn Science Centre

DTM

Digital Terrain Model

E-Box

Electronics Box

EEPROM

Electrically Erasable Programmable Read-Only Memory

EGSE

Electrical Ground Support Equipment

ESA

European Space Agency

FC

Framing Camera

FEE

Front-End Electronics

FIFO

First In First Out

FM

Flight Model

FOV

Field Of View

FPGA

Field-Programmable Gate Array

GFRP

Glass Fiber-Reinforced Plastic

GND

Ground

GRaND

Gammy Ray and Neutron Detector Instrument

GSEOS

Ground Support Equipment Operating System

HAMO

High Altitude Mapping Orbit

HED

Howardite-Eucrite-Diogenite meteorite

HK

Housekeeping

HRSC

High Resolution Stereo Camera

HST

Hubble Space Telescope

ICO

Initial Checkout Operations

ID

Identifier

IDA

Institute of Computer and Network Engineering

I/F

Interface

IFOV

Instantaneous Field Of View

IPS

Ion Propulsion System

IR

Infra-Red

JPL

Jet Propulsion Laboratory

L3

Level 3

LAMO

Low Altitude Mapping Orbit

LET

Linear Energy Transfer

LU

Latch-Up

MCU

Mechanism Controller Unit

MIPS

Million Instructions per Second

MLI

Multi-Layer Insulation

MMB

Mass Memory Board

MOC

Mission Operations Centre

MOSFET

Metal Oxide Semiconductor Field-Effect Transistor

MPG

Max-Planck-Gesellschaft

MPS

Max Planck Institute for Solar System Research

MTF

Modulation Transfer Function

NIR

Near Infra-Red

NVRAM

Non-Volatile Random Access Memory

OCL

Onboard Command Language

OSIRIS

Optical, Spectroscopic, and Infrared Remote Imaging System

Op-Nav

Optical Navigation

OSC

Orbital Sciences Coperation

PC

Personal Computer

PCB

Printed Circuit Board

PCU

Power Converter Unit

PDS

Planetary Data System

POP

Persistent Operational Procedures

PROM

Programmable Read Only Memory

PSF

Point Spread Function

QM

Qualification Model

RDF

Radiation Design Factor

ROLIS

Rosetta Lander Imaging System

RTEMS

Real-Time Executive for Multiprocessor Systems

RTL

Run-Time Library

SASF

Spacecraft Activity Sequence File

S/C

Spacecraft

SCET

Spacecraft Event Time

SDRAM

Synchronous Dynamic Random Access Memory

SEU

Single Event Upset

SIS

Spacecraft Interface Simulator

SNR

Signal to Noise Ratio

SoC

System on Chip

SPARC

Scalable Processor Architecture

SPIHT

Set Partitioning In Hierarchical Trees

SRAM

Static Random Access Memory

SSC

Single Symbol Correction

S/W

Software

TC

Telecommand

TM

Telemetry

TMM

Thermal Mathematical Model

TRAP

Telemetry Relational Archiving and Processing

UCLA

University of California, Los Angeles

UDP

User-Defined Program

UIRD

Unique Interface Definition Document

USAF

US Air Force

VHDL

Very High Speed Integrated Circuits Hardware Description Language

VIR

Visible and Infra-Red Imaging Spectrometer

VMC

Venus Monitoring Camera

XML

Extensible Markup Language

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Albertz, M. Attwenger, J. Barrett, S. Casley, P. Dorninger, E. Dorrer, H. Ebner, S. Gehrke, B. Giese, K. Gwinner, C. Heipke, E. Howington-Kraus, R.L. Kirk, H. Lehmann, H. Mayer, J.-P. Muller, J. Oberst, A. Ostrovskiy, J. Renter, S. Reznik, R. Schmidt, F. Scholten, M. Spiegel, U. Stilla, M. Wählisch, G. Neukum, The HRSC Co-Investigator Team, HRSC on Mars Express: Photogrammetric and cartographic research. Photogramm. Eng. Remote Sens. 71(10), 1153–1166 (2005) Google Scholar
  2. K.A. Burlov-Vasiljev et al., Sol. Phys. 157, 51 (1995) CrossRefADSGoogle Scholar
  3. K.A. Burlov-Vasiljev et al., Sol. Phys. 177, 25 (1998) CrossRefADSGoogle Scholar
  4. S.J. Bus, R.P. Binzel, Phase II of the small main-belt asteroid spectroscopic survey: The observations. Icarus 158, 106–145 (2002) CrossRefADSGoogle Scholar
  5. J.E. Colwell, A.A.S. Gulbis, M. Horanyi, S. Robertson, Dust transport in photoelectron layers and the formation of dust ponds on Eros. Icarus 175, 159–169 (2005) CrossRefADSGoogle Scholar
  6. J.E. Colwell, S. Batiste, M. Horanyi, S. Robertson, S. Sture, Lunar surface: Dust dynamics and regolith mechanics. Rev. Geophys. 45, 2006ff (2007) CrossRefADSGoogle Scholar
  7. M.J. Gaffey, Surface lithologic heterogeneity of Asteroid 4 Vesta. Icarus 127, 130–157 (1997) CrossRefADSGoogle Scholar
  8. T. Gold, G.J. Williams, Electrostatic transportation of dust on the Moon, in Photon and Particle Interactions with Surfaces in Space. Astrophysics and Space Science Library, vol. 37 (1973), p. 557ff Google Scholar
  9. R. Greeley, G. Batson, Planetary Mapping (Cambridge University Press, Cambridge, 1990) Google Scholar
  10. K. Gwinner, E. Hauber, R. Jaumann, G. Neukum, High-resolution, digital photogrammetric mapping: A tool for Earth science. Eos 81 44, 513–520 (2000) CrossRefGoogle Scholar
  11. C. Hartzell, D. Scheeres, The Dynamics of Dust Levitated from Asteroids, AAS/Division for Planetary Sciences Meeting Abstracts, 41, 50.07 (2009) Google Scholar
  12. A.L.H. Hughes, J.E. Colwell, A.W. Dewolfe, Electrostatic dust transport on Eros: 3-D simulations of pond formation. Icarus 195, 630–648 (2008) CrossRefADSGoogle Scholar
  13. R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, K. Eichentopf, J. Flohrer, S. v. Gasselt, B. Giese, K. Gwinner, E. Hauber, H. Hoffmann, A. Hoffmeister, U. Köhler, K.-D. Matz, T.B. McCord, V. Mertens, J. Oberst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Saiger, F. Scholten, G. Schwarz, K. Stephan, M. Wählisch, HRSC CoI-Team, The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007) CrossRefADSGoogle Scholar
  14. K. Keil, Geological history of Asteroid 4 Vesta: The “smallest terrestrial planet”, in Asteroids III, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel (University of Arizona Press, Tucson, 2002), pp. 573–584 Google Scholar
  15. H.U. Keller, C. Barbieri, P. Lamy, R.R.H. Rickman, R. Rodrigo, K.-P. Wenzel, H. Sierks, M.F. A’Hearn, F. Angrilli, M. Angulo, M.E. Bailey, P. Barthol, M.A. Barucci, J.-L. Bertaux, G. Bianchini, J.-L. Boit, V. Brown, J.A. Burns, I. Büttner, J.M. Castro, G. Cremonese, W. Curdt, V.D. Deppo, S. Debei, M.D. Cecco, K. Dohlen, S. Fornasier, M. Fulle, D. Germerott, F. Gliem, G.P. Guizzo, S.F. Hviid, W.-H. Ip, L. Jorda, D. Koschny, J.R. Kramm, E. Kührt, M. Küppers, L.M. Lara, A. Llebaria, A. López, A. López-Jimenez, J. López-Moreno, R. Meller, H. Michalik, M.D. Michelena, R. Müller, G. Naletto, A. Origné, G. Parzianello, M. Pertile, C. Quintana, R. Ragazzoni, P. Ramous, K.-U. Reiche, M. Reina, J. Rodríguez, G. Rousset, L. Sabau, A. Sanz, J.-P. Sivan, K. Stöckner, J. Tabero, U. Telljohann, N. Thomas, V. Timon, G. Tomasch, T. Wittrock, M. Zaccariotto, OSIRIS: The scientific camera system onboard Rosetta, in ROSETTA ESA’s Mission to the Origin of the Solar System (Springer, Berlin, 2009), pp. 315–382, Chap. 14 Google Scholar
  16. H. Krüger, A.V. Krivov, M. Sremcevic, E. Grün, Galileo measurements of impact-generated dust clouds surrounding the Galilean satellites. Icarus 164, 170–187 (2003) CrossRefADSGoogle Scholar
  17. P. Lee, Dust levitation on asteroids. Icarus 124, 181–194 (1996) CrossRefADSGoogle Scholar
  18. W.J. Markiewicz, and 26 co-authors, Venus monitoring camera for Venus express. Planet. Space Sci. 55, 1701–1711 (2007) CrossRefADSGoogle Scholar
  19. T.B. McCord, C. Sotin, Ceres: Evolution and current state. J. Geophys. Res. 110, E5 (2005) CrossRefGoogle Scholar
  20. H.Y. McSween, D.W. Mittlefehldt, A.W. Beck, R.G. Mayne, T.J. McCoy, HED meteorites and their relationship to the geology of Vesta and the Dawn Mission. Space Sci. Rev. (2010) Google Scholar
  21. S. Mottola, G. Arnold, H.-G. Grothues, R. Jaumann, H. Michaelis, G. Neukum, J.-P. Bibring, The ROLIS experiment on the Rosetta Lander. Space Sci. Rev. 128(1–4), 241–255 (2007). doi:10.1007/s11214-006-9004-2. ISSN 0038-6308 CrossRefADSGoogle Scholar
  22. J.W. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, P.C. Thomas, E.F. Young, Ceres: High-resolution imaging with HST and the determination of physical properties. Adv. Space Res. 38(9), 2039–2041 (2006) CrossRefADSGoogle Scholar
  23. J.C. Raymond et al., Space Sci. Rev. (2011, in press) Google Scholar
  24. RELAB Spectral Database, http://www.planetary.brown.edu/relabdocs/relab_disclaimer.htm. Brown University, Providence (2008)
  25. T. Roatsch, M. Waehlisch, B. Giese, A. Hoffmeister, K.-D. Matz, F. Scholten, A. Kuhn, R. Wagner, G. Neukum, P. Helfenstein, C. Porco, High-resolution Enceladus atlas derived from Cassini-ISS images. Planet. Space Sci. 56, 109–116 (2008) CrossRefADSGoogle Scholar
  26. M.S. Robinson, P.C. Thomas, J. Veverka, S. Murchie, B. Carcich, The nature of ponded deposits on Eros. Nature 413, 396–400 (2001) CrossRefADSGoogle Scholar
  27. A. Said, W.A. Pearlman, A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996) CrossRefGoogle Scholar
  28. D.J. Scheeres, O. Pinon, R.W. Gaskell, Dynamics of dust fines on asteroids: Applications to Eros and Itokawa, in Bulletin of the American Astronomical Society. Bulletin of the American Astronomical Society, vol. 38 (2007), p. 433ff Google Scholar
  29. F. Scholten, K. Gwinner, T. Roatsch, K.-D. Matz, M. Wählisch, B. Giese, J. Oberst, R. Jaumann, G. Neukum, The HRSC Co-Investigator Team, Mars Express HRSC data processing: Methods and operational aspects. Photogramm. Eng. Remote Sens. 71(10), 1143–1152 (2005) Google Scholar
  30. F. Spahn, N. Albers, M. Hörning, S. Kempf, A.V. Krivov, M. Makuch, J. Schmidt, M. Seiss, M. Sremcevic, E ring dust sources: Implications from Cassini’s dust measurements. Planet. Space Sci. 54, 1024–1032 (2006) CrossRefADSGoogle Scholar
  31. M. Spiegel, U. Stilla, B. Giese, G. Neukum, The HRSC Co-Investigator Team, Bündelausgleichung von HRSC Bilddaten mit Mars Observer Laser Altimeter-Daten als Passinformation. Photogramm. Fernerkund. Geoinf. 5, 381–386 (2005) Google Scholar
  32. P.C. Thomas, R.P. Binzel, M.J. Gaffey, A.D. Storrs, E.N. Wells, B.H. Zellner, Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997a) CrossRefADSGoogle Scholar
  33. P.C. Thomas, R.P. Binzel, M.J. Gaffey, B.H. Zellner, A.D. Storrs, E. Wells, Vesta: Spin pole, size, and shape from HST images. Icarus 128(1), 88–94 (1997b) CrossRefADSGoogle Scholar
  34. P.C. Thomas, J.W. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, E.F. Young, Differentiation of the asteroid Ceres as revealed by its shape. Nature 437(7056), 224–226 (2005) CrossRefADSGoogle Scholar
  35. S. Tompkins, C.M. Pieters, Mineralogy of the lunar crust: Results from Clementine. Meteorit. Planet. Sci. 34(1), 25–41 (1999) CrossRefADSGoogle Scholar
  36. J. Veverka, P.C. Thomas, M. Robinson, S. Murchie, C. Chapman, M. Bell, A. Harch, W.J. Merline, J.F. Bell, B. Bussey, B. Carcich, A. Cheng, B. Clark, D. Domingue, D. Dunham, R. Farquhar, M.J. Gaffey, E. Hawkins, N. Izenberg, J. Joseph, R. Kirk, H. Li, P. Lucey, M. Malin, L. McFadden, J.K. Miller, W.M. Owen, C. Peterson, L. Prockter, J. Warren, D. Wellnitz, B.G. Williams, D.K. Yeomans, Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith. Science 292, 484–488 (2001) CrossRefADSGoogle Scholar
  37. F. Wewel, Determination of conjugate points of stereoscopic three line scanner data of Mars96 mission. Int. Arch. Photogramm. Remote Sens. 31(B3), 936–939 (1996) Google Scholar
  38. F. Wewel, F. Scholten, K. Gwinner, High resolution stereo camera (HRSC): Multispectral 3D-data acquisition and photogrammetric data processing. Can. J. Remote Sens. 26, 466–474 (2000) Google Scholar
  39. E.C. Whipple, Potentials of surfaces. Rep. Prog. Phys. 44, 1197 (1981) CrossRefADSGoogle Scholar
  40. T.N. Woods et al., J. Geophys. Res. 101, 9541 (1996) CrossRefADSGoogle Scholar
  41. S. Xu, R.P. Binzel, T.H. Burbine, S.J. Bus, Small main-belt asteroid spectroscopic survey: Initial results. Icarus 115, 1–35 (1995) CrossRefADSGoogle Scholar
  42. H. Yano, T. Kubota, H. Miyamoto, T. Okada, D. Scheeres, Y. Takagi, K. Yoshida, M. Abe, S. Abe, O. Barnouin-Jha, A. Fujiwara, S. Hasegawa, T. Hashimoto, M. Ishiguro, M. Kato, J. Kawaguchi, T. Mukai, J. Saito, S. Sasaki, M. Yoshikawa, Touchdown of the Hayabusa spacecraft at the Muses sea on Itokawa. Science 312, 1350–1353 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • H. Sierks
    • 1
  • H. U. Keller
    • 1
  • R. Jaumann
    • 2
  • H. Michalik
    • 3
  • T. Behnke
    • 2
  • F. Bubenhagen
    • 3
  • I. Büttner
    • 1
  • U. Carsenty
    • 2
  • U. Christensen
    • 1
  • R. Enge
    • 1
  • B. Fiethe
    • 3
  • P. Gutiérrez Marqués
    • 1
  • H. Hartwig
    • 1
  • H. Krüger
    • 1
  • W. Kühne
    • 1
  • T. Maue
    • 1
  • S. Mottola
    • 2
  • A. Nathues
    • 1
  • K.-U. Reiche
    • 3
  • M. L. Richards
    • 1
  • T. Roatsch
    • 2
  • S. E. Schröder
    • 1
  • I. Szemerey
    • 1
  • M. Tschentscher
    • 2
  1. 1.Max Planck Institute for Solar System ResearchKatlenburg-LindauGermany
  2. 2.Institute of Planetary ResearchGerman Aerospace Center (DLR)BerlinGermany
  3. 3.Institute of Computer and Network EngineeringUniversity of BraunschweigBraunschweigGermany

Personalised recommendations