Advertisement

Space Science Reviews

, Volume 172, Issue 1–4, pp 23–39 | Cite as

Helios: Evolution of Distribution Functions 0.3–1 AU

  • Eckart MarschEmail author
Article

Abstract

The radial evolution of the velocity distribution functions of the protons, electrons and ions, as they were measured during the Helios mission in the solar wind between 0.3 and 1.0 AU, is discussed and analysed. Emphasis is placed on the detailed plasma measurements, and on the non-thermal features of the particles and the kinetic processes they undergo in the expanding solar wind. As the plasma is multi-component and nonuniform, complexity prevails and the observed distributions exhibit, owing to their low number densities, significant deviations from local thermal equilibrium, and reveal such suprathermal particles as the strahl electrons, as well as ion beams and temperature anisotropies. The distribution functions still carry imprints of their solar boundaries that are reflected locally, but also have ample free energy driving in situ plasma instabilities which are triggered and modulated by wave-particle interactions. The ion temperatures and their anisotropies and the non-adiabatic radial evolution of the solar wind internal energy are discussed in detail.

Keywords

Solar wind plasma Sources of solar wind Interplanetary magnetic fields MHD waves Plasma waves, turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Araneda, E. Marsch, A.-F. Viñas, Phys. Rev. Lett. 100, 125003 (2008) CrossRefADSGoogle Scholar
  2. J.A. Araneda, Y. Maneva, E. Marsch, Phys. Rev. Lett. 102, 175001 (2009) CrossRefADSGoogle Scholar
  3. S.D. Bale, J.C. Kasper, G.G. Howes, E. Quataert, C. Salem, D. Sundkvist, Phys. Rev. Lett. 103, 211101 (2009) CrossRefADSGoogle Scholar
  4. S. Bourouaine, E. Marsch, F.M. Neubauer, Geophys. Res. Lett. 37, L14104 (2010). doi: 1029/2010GL043697 CrossRefADSGoogle Scholar
  5. W.C. Feldman, E. Marsch, in Cosmic Winds and the Heliosphere, ed. by J.R. Jokipii, C.P. Sonett, M.S. Giampapa (Arizona University Press, Tucson, 1997), pp. 615–676 Google Scholar
  6. S.P. Gary, Theory of Space Plasma Microinstabilities. Cambridge Atmospheric and Space Science Series (Cambridge University Press, Cambridge, 1993) CrossRefGoogle Scholar
  7. S.P. Gary, H. Li, S.O. Rourke, D. Winske, J. Geophys. Res. 103, 14567–14575 (1998) CrossRefADSGoogle Scholar
  8. S.P. Gary, R.M. Skoug, J.T. Steinberg, C.W. Smith, Geophys. Res. Lett. 28, 2759–2762 (2001) CrossRefADSGoogle Scholar
  9. G. Gloeckler, J. Geiss, L.A. Fisk, in The Heliosphere Near Solar Minimum: The Ulysses perspective, ed. by A. Balogh, R.G. Marsden, E.J. Smith. Springer-Praxis Books in Astronomy and Space Sciences (Springer-Praxis, Berlin, 2001), pp. 287–326 Google Scholar
  10. D.A. Gurnett, in Physics of the Inner Heliosphere, ed. by R. Schwenn, E. Marsch. Particles, Waves, and Turbulence (Springer, Berlin, 1991), pp. 135–157 CrossRefGoogle Scholar
  11. P. Hellinger, P. Trávníček, J.C. Kasper, A.J. Lazarus, Geophys. Res. Lett. 33, L09101 (2006). doi: 10.1029/2006GL025925 CrossRefADSGoogle Scholar
  12. P. Hellinger, P. Trávníček, J. Geophys. Res. 113, A10109 (2008) CrossRefADSGoogle Scholar
  13. M. Heuer, E. Marsch, J. Geophys. Res. 112, A03102 (2007). doi: 10.1029/2006JA011979 ADSGoogle Scholar
  14. L.K. Jian, C.T. Russell, J.G. Luhman, R.J. Strangeway, J.S. Leisner, A.B. Galvin, Astrophys. J. 701, L105–L109 (2009) CrossRefADSGoogle Scholar
  15. J.C. Kasper, A.J. Lazarus, S.P. Gary, Geophys. Res. Lett. 29(17), 1839 (2002). doi: 10.1029/2002GL015128 CrossRefADSGoogle Scholar
  16. J.C. Kasper, A.J. Lazarus, S.P. Gary, Phys. Rev. Lett. 101, 261103 (2008) CrossRefADSGoogle Scholar
  17. M. Maksimovic, V. Pierrard, P. Riley, Geophys. Res. Lett. 24, 1151–1154 (1997) CrossRefADSGoogle Scholar
  18. M. Maksimovic, I. Zouganelis, J.-Y. Chaufray, K. Issautier, E.E. Scime, J.E. Littleton, E. Marsch, D.J. McComas, C. Salem, R.P. Lin, H. Elliott, J. Geophys. Res. 110, A09104 (2005) ADSGoogle Scholar
  19. Y. Maneva, J.A. Araneda, E. Marsch, in CP1121, ed. by I. Zhelyazkov. Space Plasma Physics (American Institute of Physics, New York, 2009), pp. 122–126 Google Scholar
  20. F. Mariani, F.M. Neubauer, in Physics of the Inner Heliosphere, vol. I: Large-Scale Phenomena, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), pp. 183–206 CrossRefGoogle Scholar
  21. E. Marsch, in Physics of the Inner Heliosphere, vol. II: Particles, Waves and Turbulence, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1991a), pp. 45–133 CrossRefGoogle Scholar
  22. E. Marsch, in Physics of the Inner Heliosphere, vol. II: Particles, Waves and Turbulence, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1991b), pp. 159–241 CrossRefGoogle Scholar
  23. E. Marsch, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3 (2006). http://www.livingreviews.org/lrsp-2006-1
  24. E. Marsch, A.K. Richter, Ann. Geophys. 5A(2), 71–82 (1986) ADSGoogle Scholar
  25. E. Marsch, H. Goldstein, J. Geophys. Res. 88(A12), 9933–9940 (1983) CrossRefADSGoogle Scholar
  26. E. Marsch, C.-Y. Tu, J. Geophys. Res. 106, 8359–8361 (2001) ADSGoogle Scholar
  27. E. Marsch, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, K.U. Denskat, J. Geophys. Res. 86, 9199–9203 (1981) CrossRefADSGoogle Scholar
  28. E. Marsch, K.-H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W. Pilipp, F.M. Neubauer, J. Geophys. Res. 87, 52–72 (1982a) CrossRefADSGoogle Scholar
  29. E. Marsch, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, F.M. Neubauer, J. Geophys. Res. 87, 35–51 (1982b) CrossRefADSGoogle Scholar
  30. E. Marsch, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, J. Geophys. Res. 88, 2982–2992 (1983) CrossRefADSGoogle Scholar
  31. E. Marsch, W.G. Pilipp, K.M. Thieme, H. Rosenbauer, J. Geophys. Res. 94, 6893–6898 (1989) CrossRefADSGoogle Scholar
  32. E. Marsch, X.-Z. Ao, C.-Y. Tu, J. Geophys. Res. 109, A04102 (2004). doi: 10.1029/2003JA010330 ADSGoogle Scholar
  33. E. Marsch, L. Zhao, C.-Y. Tu, Ann. Geophys. 24, 2057–2063 (2006) CrossRefADSGoogle Scholar
  34. L. Matteini, S. Landi, P. Hellinger, M. Velli, J. Geophys. Res. 111, A10101 (2006) CrossRefADSGoogle Scholar
  35. L. Matteini, S. Landi, P. Hellinger, F. Pantellini, M. Maksimovic, M. Velli, B.E. Goldstein, E. Marsch, Geophys. Res. Lett. 34, L20105 (2007). doi: 10.1029/2007GL030920 CrossRefADSGoogle Scholar
  36. W.G. Pilipp, H. Miggenrieder, M.D. Montgomery, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, J. Geophys. Res. 92, 1075–1092 (1987a) CrossRefADSGoogle Scholar
  37. W.G. Pilipp, H. Miggenrieder, K.-H. Mühlhäuser, H. Rosenbauer, R. Schwenn, F.M. Neubauer, J. Geophys. Res. 92, 1103–1118 (1987b) CrossRefADSGoogle Scholar
  38. H. Rosenbauer, R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M.D. Montgomery, K.-H. Mühlhäuser, W. Pilipp, W. Voges, S.M. Zink, J. Geophys. 42, 561–580 (1977) Google Scholar
  39. R. Schwenn, in Physics of the Inner Heliosphere, vol. I: Large-Scale Phenomena, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), pp. 99–181 CrossRefGoogle Scholar
  40. C.-Y. Tu, E. Marsch, Space Sci. Rev. 73, 1–210 (1995) CrossRefADSGoogle Scholar
  41. C.-Y. Tu, E. Marsch, J. Geophys. Res. 107, 1249 (2002). doi: 10.1029/2001JA000150 CrossRefGoogle Scholar
  42. C.-Y. Tu, E. Marsch, Z.-R. Qin, J. Geophys. Res. 109 A05101 (2004) ADSGoogle Scholar
  43. R. von Steiger, J. Geiss, G. Gloeckler, A.B. Galvin, Space Sci. Rev. 72, 71–76 (1995) CrossRefADSGoogle Scholar
  44. R. von Steiger, J. Geiss, G. Gloeckler, in Cosmic Winds and the Heliosphere, ed. by J.R. Jokipii, C.P. Sonett, M.S. Giampapa. Space Science Series (Arizona University Press, Tucson, 1997), pp. 581–616 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Max Planck Institute for Solar System ResearchKatlenburg-LindauGermany

Personalised recommendations