Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges

Abstract

We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes—ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination—is reviewed. Emphasis is placed on those key reactions that have been identified, by sensitivity analyses, as ‘crucial’ in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalyzed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.

References

  1. K. Acharyya, G.W. Fuchs, H.J. Fraser, E.F. van Dishoeck, H. Linnartz, Desorption of CO and O2 interstellar ice analogs. Astron. Astrophys. 466, 1005–1012 (2007). doi:10.1051/0004-6361:20066272

  2. N.G. Adams, D. Smith, D.C. Clary, Rate coefficients of the reactions of ions with polar molecules at interstellar temperatures. Astrophys. J. Lett. 296, 31–34 (1985). doi:10.1086/184543

  3. N.G. Adams, C.D. Molek, J.L. McLain, New flowing afterglow technique for determining products of dissociative recombination: \(\mathrm{CH}_{5}^{+}\) and N2H+. J. Phys. Conf. Ser. 192, 012004-11 (2009). doi:10.1088/1742-6596/192/1/012004

  4. M. Agúndez, J. Cernicharo, Oxygen chemistry in the circumstellar envelope of the carbon-rich star IRC +10216. Astrophys. J. 650, 374–393 (2006). doi:10.1086/506313

  5. S. Andersson, E.F. van Dishoeck, Photodesorption of water ice. A molecular dynamics study. Astron. Astrophys. 491, 907–916 (2008). doi:10.1051/0004-6361:200810374

  6. A. Andree, M. Lay, T. Zecho, J. Kupper, Pair formation and clustering of D on the basal plane of graphite. Chem. Phys. Lett. 425, 99–104 (2006). doi:10.1016/j.cplett.2006.05.015

  7. R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of O x , HO x , NO x and SO x species. Atmos. Chem. Phys. 4, 1461–1738 (2004)

  8. R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, I. Subcommittee, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II—gas phase reactions of organic species. Atmos. Chem. Phys. 6, 3625–4055 (2006)

  9. R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III—gas phase reactions of inorganic halogens. Atmos. Chem. Phys. 7, 981–1191 (2007)

  10. R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, T.J. Wallington, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV gas phase reactions of organic halogen species. Atmos. Chem. Phys. 8, 4141–4496 (2008)

  11. M. Bacchus-Montabonel, D. Talbi, Ab initio treatment of charge transfer in CS+ molecular system. Chem. Phys. Lett. 467, 28–31 (2008)

  12. B. Barzel, O. Biham, Efficient simulations of interstellar gas-grain chemistry using moment equations. Astrophys. J. Lett. 658, 37–40 (2007). doi:10.1086/513421

  13. D.R. Bates, Products of dissociative recombination of polyatomic ions. Astrophys. J. Lett. 306, 45–47 (1986). doi:10.1086/184702

  14. D.R. Bates, E. Herbst, Radiative association, in Rate Coefficients in Astrochemistry. Proceedings of a Conference held in UMIST, Manchester, United Kingdom, 21–24 September, 1987, ed. by T.J. Millar, D.A. Williams (Kluwer Academic, Dordrecht, 1988), p. 17. ISBN 90-277-2752-X. LC # QB450 .R38 1988

  15. D.R. Bates, L. Spitzer Jr., The density of molecules in interstellar space. Astrophys. J. 113, 441 (1951). doi:10.1086/145415

  16. O. Biham, I. Furman, V. Pirronello, G. Vidali, Master equation for hydrogen recombination on grain surfaces. Astrophys. J. 553, 595–603 (2001). doi:10.1086/320975

  17. M.A. Biondi, S.C. Brown, Measurement of electron-ion recombination. Phys. Rev. 76, 1697–1700 (1949). doi:10.1103/PhysRev.76.1697

  18. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, Evaluation of measurement data—Guide to the expression of uncertainty in measurement (GUM). Technical report, International Organization for Standardization (ISO), Geneva, 2008a

  19. BIPM, IEC, IFCC, ISO, IUPAP, OIML, Evaluation of measurement data—Supplement 1 to the GUM: propagation of distributions using a Monte Carlo method. Technical report, International Organization for Standardization (ISO), Geneva, 2008b

  20. S.E. Bisschop, G.W. Fuchs, E.F. van Dishoeck, H. Linnartz, H-atom bombardment of CO2, HCOOH, and CH3CHO containing ices. Astron. Astrophys. 474, 1061–1071 (2007). doi:10.1051/0004-6361:20078210

  21. J.H. Black, A. Dalgarno, Models of interstellar clouds. I—The Zeta Ophiuchi cloud. Astrophys. J. Suppl. 34, 405–423 (1977). doi:10.1086/190455

  22. G.A. Blake, J. Keene, T.G. Phillips, Chlorine in dense interstellar clouds—The abundance of HCl in OMC-1. Astrophys. J. 295, 501–506 (1985). doi:10.1086/163394

  23. M.A. Blitz, P.W. Seakins, I.W.M. Smith, An experimental confirmation of the products of the reaction between CN radicals and NH3. J. Chem. Chem. Phys. 11, 10824–10826 (2009)

  24. A.S. Bolina, A.J. Wolff, W.A. Brown, Reflection absorption infrared spectroscopy and temperature programmed desorption investigations of the interaction of methanol with a graphite surface. J. Phys. Chem. B 122, 044713 (2005). doi:10.1063/1.1839554

  25. M. Bonfanti, R. Martinazzo, G.F. Rantardini, A. Ponti, Physisorption and diffusion of hydrogen atoms on graphite from correlated calculations on the H-coronene model system. J. Phys. Chem. C 111, 16836 (2007). doi:10.1063/1.1839554

  26. V. Buch, R. Czerminski, Eigenstates of a quantum-mechanical particle on a topologically disordered surface—H(D) atom physisorbed on an amorphous ice cluster (H2O)115. J. Chem. Phys. 95, 6026–6038 (1991). doi:10.1063/1.461571

  27. G.D. Byrne, A.C. Hindmarsh, Stiff ODE solvers: A review of current and coming attractions. J. Comput. Phys. 70, 1 (1987). doi:10.1016/0021-9991(87)90001-5

  28. A. Canosa, F. Goulay, I.R. Sims, B.R. Rowe, Gas-phase reactive collisions at very low temperature: Recent experimental advances and perspectives, in Low Temperatures and Cold Molecules, ed. by I.W.M. Smith (Imperial College Press, London, 2008), pp. 55–120

  29. N. Carrasco, P. Pernot, Modeling of branching ratio uncertainty in chemical networks by Dirichlet distributions. J. Phys. Chem. A 111, 3507–3512 (2007)

  30. N. Carrasco, O. Dutuit, R. Thissen, M. Banaszkiewicz, P. Pernot, Uncertainty analysis of bimolecular reactions in Titan ionosphere chemistry model. Planet. Space Sci. 55, 141–157 (2007). doi:10.1016/j.pss.2006.06.004

  31. N. Carrasco, C. Alcaraz, O. Dutuit, S. Plessis, R. Thissen, V. Vuitton, R. Yelle, P. Pernot, Sensitivity of a Titan ionospheric model to the ion-molecule reaction parameters. Planet. Space Sci. 56, 1644–1657 (2008). doi:10.1016/j.pss.2008.04.007

  32. G.R. Carruthers, Rocket observation of interstellar molecular hydrogen. Astrophys. J. Lett. 161, 81–65 (1970). doi:10.1086/180575

  33. P. Caselli, C.M. Walmsley, R. Terzieva, E. Herbst, The ionization fraction in dense cloud cores. Astrophys. J. 499, 234–249 (1998). doi:10.1086/305624

  34. P. Caselli, T. Stantcheva, O. Shalabiea, V.I. Shematovich, E. Herbst, Deuterium fractionation on interstellar grains studied with modified rate equations and a Monte Carlo approach. Planet. Space Sci. 50, 1257–1266 (2002)

  35. S. Casolo, O.M. Løvvik, R. Martinazzo, G.F. Tantardini, Understanding adsorption of hydrogen atoms on graphene. J. Chem. Phys. 130, 054704 (2009). doi:10.1063/1.3072333

  36. S. Cazaux, A.G.G.M. Tielens, H2 formation on grain surfaces. Astrophys. J. 604, 222–237 (2004). doi:10.1086/381775

  37. Q. Chang, H.M. Cuppen, E. Herbst, Continuous-time random-walk simulation of H2 formation on interstellar grains. Astron. Astrophys. 434, 599–611 (2005). doi:10.1051/0004-6361:20041842

  38. S.B. Charnley, Stochastic astrochemical kinetics. Astrophys. J. Lett. 509, 121–124 (1998). doi:10.1086/311764

  39. S.B. Charnley, Stochastic theory of molecule formation on dust. Astrophys. J. Lett. 562, 99–102 (2001). doi:10.1086/324753

  40. S.B. Charnley, S.D. Rodgers, Pathways to molecular complexity, in Astrochemistry: Recent Successes and Current Challenges, ed. by D.C. Lis, G.A. Blake, E. Herbst. IAU Symposium, vol. 231 (2005), pp. 237–246. doi:10.1017/S174392130600723X

  41. S.B. Charnley, A.G.G.M. Tielens, S.D. Rodgers, Deuterated methanol in the orion compact ridge. Astrophys. J. Lett. 482, 203–206 (1997). doi:10.1086/310697

  42. I. Cherchneff, A.E. Glassgold, G.A. Mamon, The formation of cyanopolyyne molecules in IRC + 10216. Astrophys. J. 410, 188–201 (1993). doi:10.1086/172737

  43. A.C. Cheung, D.M. Rank, C.H. Townes, D.D. Thornton, W.J. Welch, Detection of NH3 molecules in the interstellar medium by their microwave emission. Phys. Rev. Lett. 21, 1701–1705 (1968). doi:10.1103/PhysRevLett.21.1701

  44. D.C. Clary, Rate constants for the reactions of ions with dipolar polyatomic molecules. J. Chem. Soc. Faraday Trans. II 83, 139–148 (1987)

  45. D.C. Clary, Theory of reactive collisions at low temperatures, in Rate Coefficients in Astrochemistry. Proceedings of a Conference. UMIST, Manchester, United Kingdom, 21–24 September, 1987, ed. by T.J. Millar, D.A. Williams (Kluwer Academic, Dordrecht, 1988). ISBN 90-277-2752-X. LC# QB450.R38

  46. M.P. Collings, M.A. Anderson, R. Chen, J.W. Dever, S. Viti, D.A. Williams, M.R.S. McCoustra, A laboratory survey of the thermal desorption of astrophysically relevant molecules. Mon. Not. R. Astron. Soc. Lett. 354, 1133–1140 (2004). doi:10.1111/j.1365-2966.2004.08272.x

  47. E. Congiu, E. Matar, L.E. Kristensen, F. Dulieu, J.L. Lemaire, Laboratory evidence for the non-detection of excited nascent H2 in dark clouds. Mon. Not. R. Astron. Soc. Lett. 397, 96–100 (2009). doi:10.1111/j.1745-3933.2009.00692.x

  48. M.A. Cordiner, T.J. Millar, Density-enhanced gas and dust shells in a new chemical model for IRC+10216. Astrophys. J. 697, 68–78 (2009). doi:10.1088/0004-637X/697/1/68

  49. H.M. Cuppen, E. Herbst, Monte Carlo simulations of H2 formation on grains of varying surface roughness. Mon. Not. R. Astron. Soc. Lett. 361, 565–576 (2005). doi:10.1111/j.1365-2966.2005.09189.x

  50. H.M. Cuppen, L. Hornekær, Kinetic Monte Carlo studies of hydrogen abstraction from graphite. J. Chem. Phys. 128, 174707 (2008). doi:10.1063/1.2913238

  51. H.M. Cuppen, O. Morata, E. Herbst, Monte Carlo simulations of H2 formation on stochastically heated grains. Mon. Not. R. Astron. Soc. Lett. 367, 1757–1765 (2006). doi:10.1111/j.1365-2966.2006.10079.x

  52. H.M. Cuppen, E.F. van Dishoeck, E. Herbst, A.G.G.M. Tielens, Microscopic simulation of methanol and formaldehyde ice formation in cold dense cores. Astron. Astrophys. 508, 275–287 (2009). doi:10.1051/0004-6361/200913119

  53. A. Dalgarno, J.H. Black, Molecule formation in the interstellar gas. Rep. Prog. Phys. 39, 573–612 (1976). doi:10.1088/0034-4885/39/6/002

  54. E. Dartois, G.M. Muñoz Caro, D. Deboffle, G. Montagnac, L. D’Hendecourt, Ultraviolet photoproduction of ISM dust. Laboratory characterisation and astrophysical relevance. Astron. Astrophys. 432, 895–908 (2005). doi:10.1051/0004-6361:20042094

  55. E. de Rocquigny, N. Devictor, S. Tarantola, Uncertainty in Industrial Practice: A Guide to Quantitative Uncertainty Management (Wiley, Chichester, 2008)

  56. L.B. D’Hendecourt, L.J. Allamandola, R.J.A. Grim, J.M. Greenberg, Time-dependent chemistry in dense molecular clouds. II—Ultraviolet photoprocessing and infrared spectroscopy of grain mantles. Astron. Astrophys. 158, 119–134 (1986)

  57. M. Dobrijevic, J.P. Parisot, Effect of chemical kinetics uncertainties on hydrocarbon production in the stratosphere of Neptune. Planet. Space Sci. 46, 491–505 (1998)

  58. M. Dobrijevic, J.L. Ollivier, F. Billebaud, J. Brillet, J.P. Parisot, Effect of chemical kinetic uncertainties on photochemical modeling results: Application to Saturn’s atmosphere. Astron. Astrophys. 398, 335–344 (2003). doi:10.1051/0004-6361:20021659

  59. M. Dobrijevic, N. Carrasco, E. Hébrard, P. Pernot, Epistemic bimodality and kinetic hypersensitivity in photochemical models of Titan’s atmosphere. Planet. Space Sci. 56, 1630–1643 (2008). doi:10.1016/j.pss.2008.05.016

  60. M. Dobrijevic, E. Hébrard, S. Plessis, N. Carrasco, M. Bruno-Claeys, P. Pernot, Adv. Space Res. (2010). doi:10.1016/j.pss.2008.05.016

  61. S.F. Dos Santos, V. Kokoouline, C.H. Greene, Dissociative recombination of \(\mathrm{H}_{3}^{+}\) in the ground and excited vibrational states. J. Chem. Phys. 127, 124309–8 (2007). doi:10.1063/1.2784275

  62. S.D. Doty, C.M. Leung, Detailed chemical modeling of the circumstellar envelopes of carbon stars: Application to IRC +10216. Astrophys. J. 502, 898 (1998). doi:10.1086/305911

  63. F. Dulieu, L. Amiaud, S. Baouche, A. Momeni, J. Fillion, J.L. Lemaire, Isotopic segregation of molecular hydrogen on water ice surface at low temperature. Chem. Phys. Lett. 404, 187–191 (2005). doi:10.1016/j.cplett.2005.01.044

  64. F. Dulieu, L. Amiaud, J. Fillion, E. Matar, A. Momeni, V. Pirronello, J.L. Lemaire, Experimental evidence of water formation on interstellar dust grains, in Molecules in Space and Laboratory (2007)

  65. P. Ehrenfreund, W.A. Schutte, Infrared observations of interstellar ices, in From Molecular Clouds to Planetary Systems, ed. by Y.C. Minh, E.F. van Dishoeck, IAU Symposium, vol. 197 (2000), p. 135

  66. A.J. Farebrother, A.J.H.M. Meijer, D.C. Clary, A.J. Fisher, Formation of molecular hydrogen on a graphite surface via an Eley-Rideal mechanism. Chem. Phys. Lett. 319, 303–308 (2000). doi:10.1016/S0009-2614(00)00128-7

  67. Y. Ferro, Density functional theory investigation of the diffusion and recombination of H on a graphite surface. Chem. Phys. Lett. 368, 609–615 (2003). doi:10.1016/S0009-2614(02)01908-5

  68. J. Fillion, L. Amiaud, E. Congiu, F. Dulieu, A. Momeni, J. Lemaire, D2 desorption kinetics on amorphous solid water: from compact to porous ice films. Phys. Chem. Chem. Phys. 11, 4396 (2009). doi:10.1039/b822492g

  69. D.R. Flower, G. Pineau des Forets, T.W. Hartquist, Theoretical studies of interstellar molecular shocks. I—General formulation and effects of the ion-molecule chemistry. Mon. Not. R. Astron. Soc. Lett. 216, 775–794 (1985)

  70. H.J. Fraser, M.P. Collings, M.R.S. McCoustra, D.A. Williams, Thermal desorption of water ice in the interstellar medium. Mon. Not. R. Astron. Soc. Lett. 327, 1165–1172 (2001). doi:10.1046/j.1365-8711.2001.04835.x

  71. G.W. Fuchs, H.M. Cuppen, S. Ioppolo, C. Romanzin, S.E. Bisschop, S. Andersson, E.F. van Dishoeck, H. Linnartz, Hydrogenation reactions in interstellar CO ice analogues. A combined experimental/theoretical approach. Astron. Astrophys. 505, 629–639 (2009). doi:10.1051/0004-6361/200810784

  72. R.T. Garrod, A new modified-rate approach for gas-grain chemical simulations. Astron. Astrophys. 491, 239–251 (2008). doi:10.1051/0004-6361:200810518

  73. R.T. Garrod, E. Herbst, Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 457, 927–936 (2006). doi:10.1051/0004-6361:20065560

  74. R.T. Garrod, V. Wakelam, E. Herbst, Non-thermal desorption from interstellar dust grains via exothermic surface reactions. Astron. Astrophys. 467, 1103–1115 (2007). doi:10.1051/0004-6361:20066704

  75. R.T. Garrod, S.L.W. Weaver, E. Herbst, Complex chemistry in star-forming regions: An expanded gas-grain warm-up chemical model. Astrophys. J. 682, 283–302 (2008). doi:10.1086/588035

  76. E. Gavardi, H.M. Cuppen, L. Hornekær, A kinetic Monte Carlo study of desorption of H2 from graphite (0 0 0 1). Chem. Phys. Lett. 477, 285–289 (2009)

  77. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (1971)

  78. W.D. Geppert, M. Hamberg, R.D. Thomas, F. Österdahl, F. Hellberg, V. Zhaunerchyk, A. Ehlerding, T.J. Millar, H. Roberts, J. Semaniak, M.A. Ugglas, A. Källberg, A. Simonsson, M. Kaminska, M. Larsson, Dissociative recombination of protonated methanol. Chem. Evol. Universe, Faraday Discuss. 133, 177–190 (2006). doi:10.1039/b516010c

  79. D. Gerlich, The study of cold collisions using ion guides and traps, in Low Temperatures and Cold Molecules, ed. by I.W.M. Smith (Imperial College Press, London, 2008), pp. 295–343

  80. D. Gerlich, S. Horning, Experimental investigations of radiative association processes as related to interstellar chemistry. Chem. Rev. 92, 1509–1539 (1992)

  81. E.L. Gibb, D.C.B. Whittet, W.A. Schutte, A.C.A. Boogert, J.E. Chiar, P. Ehrenfreund, P.A. Gerakines, J.V. Keane, A.G.G.M. Tielens, E.F. van Dishoeck, O. Kerkhof, An inventory of interstellar ices toward the embedded protostar W33A. Astrophys. J. 536, 347–356 (2000). doi:10.1086/308940

  82. J. Glosík, R. Plašil, I. Korolov, T. Kotrík, O. Novotný, P. Hlavenka, P. Dohnal, J. Varju, V. Kokoouline, C.H. Greene, Temperature dependence of binary and ternary recombination of H3+ ions with electrons. Phys. Rev. A 79, 052707 (2009). doi:10.1103/PhysRevA.79.052707

  83. N.J.B. Green, T. Toniazzo, M.J. Pilling, D.P. Ruffle, N. Bell, T.W. Hartquist, A stochastic approach to grain surface chemical kinetics. Astron. Astrophys. 375, 1111–1119 (2001). doi:10.1051/0004-6361:20010961

  84. S.D. Green, A.S. Bolina, R. Chen, M.P. Collings, W.A. Brown, M.R.S. McCoustra, Applying laboratory thermal desorption data in an interstellar context: sublimation of methanol thin films. Mon. Not. R. Astron. Soc. Lett. 398, 357–367 (2009). doi:10.1111/j.1365-2966.2009.15144.x

  85. W. Hagen, L.J. Allamandola, J.M. Greenberg, Interstellar molecule formation in grain mantles—The laboratory analog experiments, results and implications. Astrophys. Space. Sci. 65, 215–240 (1979). doi:10.1007/BF00643502

  86. J.B. Halpern, G.E. Miller, H. Okabe, The reaction of CN radicals with cyanoacetylene. Chem. Phys. Lett. 155, 347–350 (1989). doi:10.1016/0009-2614(89)87167-2

  87. N. Harada, E. Herbst, Modeling carbon chain anions in L1527. Astrophys. J. 685, 272–280 (2008). doi:10.1086/590468

  88. T.I. Hasegawa, E. Herbst, New gas-grain chemical models of quiescent dense interstellar clouds—The effects of H2 tunnelling reactions and cosmic ray induced desorption. Mon. Not. R. Astron. Soc. Lett. 261, 83–102 (1993)

  89. T.I. Hasegawa, E. Herbst, C.M. Leung, Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys. J. Suppl. 82, 167–195 (1992). doi:10.1086/191713

  90. E. Hébrard, M. Dobrijevic, Y. Bénilan, F. Raulin, Photochemical kinetics uncertainties in modeling Titan’s atmosphere: A review. J. Photochem. Photobiol. C, Photochem. Rev. 7, 211–230 (2006)

  91. E. Hébrard, M. Dobrijevic, Y. Bénilan, F. Raulin, Photochemical kinetics uncertainties in modeling Titan’s atmosphere: First consequences. Planet. Space Sci. 55, 1470–1489 (2007). doi:10.1016/j.pss.2007.04.006

  92. E. Hébrard, P. Pernot, M. Dobrijevic, N. Carrasco, A. Bergeat, K.M. Hickson, A. Canosa, S.D. Le Picard, I.R. Sims, How measurements of rate coefficients at low temperature increase the predictivity of photochemical models of Titan’s atmosphere. J. Phys. Chem. A 113, 11227–11237 (2009)

  93. J.C. Helton, J.D. Johnson, C.J. Sallaberry, C.B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91, 1175–1209 (2006)

  94. E. Herbst, What are the products of polyatomic ion-electron dissociative recombination reactions. Astrophys. J. 222, 508–516 (1978). doi:10.1086/156163

  95. E. Herbst, Can negative molecular ions be detected in dense interstellar clouds. Nature 289, 656 (1981). doi:10.1038/289656a0

  96. E. Herbst, An approach to the estimation of polyatomic vibrational radiative relaxation rates. Chem. Phys. 65, 185–195 (1982). doi:10.1016/0301-0104(82)85067-2

  97. E. Herbst, Gas phase reactions, in Atomic, Molecular & Optical Physics Handbook, ed. by G.W.F. Drake (1996), p. 429

  98. E. Herbst, H.M. Cuppen, Interstellar chemistry special feature: Monte Carlo studies of surface chemistry and nonthermal desorption involving interstellar grains. Proc. Natl. Acad. Sci. USA 103, 12257–12262 (2006). doi:10.1073/pnas.0601556103

  99. E. Herbst, W. Klemperer, The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185, 505–534 (1973). doi:10.1086/152436

  100. E. Herbst, W. Klemperer, Is X-Ogen HCO+? Astrophys. J. 188, 255–256 (1974). doi:10.1086/152712

  101. E. Herbst, C.M. Leung, Effects of large rate coefficients for ion-polar neutral reactions on chemical models of dense interstellar clouds. Astrophys. J. 310, 378–382 (1986). doi:10.1086/164691

  102. E. Herbst, T.J. Millar, The chemistry of cold interstellar cloud cores, in Low Temperatures and Cold Molecules, ed. by I.W.M. Smith (Imperial College Press, London, 2008), pp. 1–54

  103. E. Herbst, Y. Osamura, Calculations on the formation rates and mechanisms for C n H anions in interstellar and circumstellar media. Astrophys. J. 679, 1670–1679 (2008). doi:10.1086/587803

  104. E. Herbst, E.F. van Dishoeck, Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427–480 (2009). doi:10.1146/annurev-astro-082708-101654

  105. E. Herbst, J.G. Schubert, P.R. Certain, The radiative association of \(\mathrm{CH}_{2}^{+}\). Astrophys. J. 213, 696–704 (1977). doi:10.1086/155199

  106. F. Hersant, V. Wakelam, A. Dutrey, S. Guilloteau, E. Herbst, Cold CO in circumstellar disks. On the effects of photodesorption and vertical mixing. Astron. Astrophys. 493, 49–52 (2009). doi:10.1051/0004-6361:200811082

  107. D.J. Hollenbach, A.G.G.M. Tielens, Dense Photodissociation Regions (PDRs). Annu. Rev. Astron. Astrophys. 35, 179–216 (1997). doi:10.1146/annurev.astro.35.1.179

  108. L. Hornekær, A. Baurichter, V.V. Petrunin, D. Field, A.C. Luntz, Importance of surface morphology in interstellar H2 formation. Science 302, 1943–1946 (2003). doi:10.1126/science.1090820

  109. L. Hornekær, A. Baurichter, V.V. Petrunin, A.C. Luntz, B.D. Kay, A. Al-Halabi, Influence of surface morphology on D2 desorption kinetics from amorphous solid water. J. Chem. Phys. 122, 124701–124711 (2005). doi:10.1063/1.1874934

  110. L. Hornekær, E. Rauls, W. Xu, Ž. Šljivančanin, R. Otero, I. Stensgaard, E. Lægsgaard, B. Hammer, F. Besenbacher, Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys. Rev. Lett. 97, 186102-4 (2006b). doi:10.1103/PhysRevLett.97.186102

  111. L. Hornekær, Ž. Šljivančanin, W. Xu, R. Otero, E. Rauls, I. Stensgaard, E. Lægsgaard, B. Hammer, F. Besenbacher, Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett. 96, 156104-4 (2006a). doi:10.1103/PhysRevLett.96.156104

  112. S. Ioppolo, H.M. Cuppen, C. Romanzin, E.F. van Dishoeck, H. Linnartz, Laboratory evidence for efficient water formation in interstellar ices. Astrophys. J. 686, 1474–1479 (2008). doi:10.1086/591506

  113. L. Jeloaica, DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface. Chem. Phys. Lett. 300, 157–162 (1999). doi:10.1016/S0009-2614(98)01337-2

  114. M.J. Jensen, R.C. Bilodeau, C.P. Safvan, K. Seiersen, L.H. Andersen, H.B. Pedersen, O. Heber, Dissociative recombination of H3O+, HD2O+, and D3O+. Astrophys. J. 543, 764–774 (2000). doi:10.1086/317137

  115. M. Jofi, P. Honvault, State-to-state quantum reactive scattering calculations and rate constant for nitrogen atoms in collision with NO radicals at low temperatures. J. Phys. Chem. A 113, 10648–10651 (2009)

  116. M. Jura, Formation and destruction rates of interstellar H2. Astrophys. J. 191, 375–379 (1974). doi:10.1086/152975

  117. N. Katz, I. Furman, O. Biham, V. Pirronello, G. Vidali, Molecular hydrogen formation on astrophysically relevant surfaces. Astrophys. J. 522, 305–312 (1999). doi:10.1086/307642

  118. C.N. Keller, V.G. Anicich, T.E. Cravens, Model of Titans ionosphere with detailed hydrocarbon ion chemistry. Planet. Space Sci. 46, 1157–1174 (1998)

  119. M. Larsson, A.E. Orel, Dissociative Recombination of Molecular Ions (Cambridge University Press, Cambridge, 2008)

  120. J. Le Bourlot, G. Pineau des Forets, E. Roueff, P. Schilke, Bistability in dark cloud chemistry. Astrophys. J. Lett. 416, 87 (1993). doi:10.1086/187077

  121. C.M. Leung, E. Herbst, W.F. Huebner, Synthesis of complex molecules in dense interstellar clouds via gas-phase chemistry—A pseudo time-dependent calculation. Astrophys. J. Suppl. 56, 231–256 (1984). doi:10.1086/190982

  122. A. Lipshtat, O. Biham, Efficient simulations of gas-grain chemistry in interstellar clouds. Phys. Rev. Lett. 93, 170601-4 (2004). doi:10.1103/PhysRevLett.93.170601

  123. A. Lipshtat, O. Biham, E. Herbst, Enhanced production of HD and D2 molecules on small dust grains in diffuse clouds. Mon. Not. R. Astron. Soc. Lett. 348, 1055–1064 (2004). doi:10.1111/j.1365-2966.2004.07437.x

  124. A.I. Maergoiz, E.E. Nikitin, J. Troe, Capture of asymmetric top dipolar molecules by ions. Int. J. Mass Spectrom. 280, 42–49 (2009). doi:10.1016/j.ijms.2008.08.019

  125. G.A. Mamon, A.E. Glassgold, P.J. Huggins, The photodissociation of CO in circumstellar envelopes. Astrophys. J. 328, 797–808 (1988). doi:10.1086/166338

  126. J.B. Marquette, B.R. Rowe, G. Dupeyrat, G. Poissant, C. Rebrion, Ionpolar-molecule reactions: A CRESU study of He+, C+, N+ + H2O, NH3 at 27, 68 and 163 K. Chem. Phys. Lett. 122, 431–435 (1985)

  127. R. Martinazzo, G.F. Tantardini, Quantum study of Eley-Rideal reaction and collision induced desorption of hydrogen atoms on a graphite surface. I. H-chemisorbed case. J. Chem. Phys. 124, 124702 (2006). doi:10.1063/1.2177654

  128. E. Matar, E. Congiu, F. Dulieu, A. Momeni, J.L. Lemaire, Mobility of D atoms on porous amorphous water ice surfaces under interstellar conditions. Astron. Astrophys. 492, 17–20 (2008). doi:10.1051/0004-6361:200810434

  129. B.J. McCall, A.J. Huneycutt, R.J. Saykally, T.R. Geballe, N. Djuric, G.H. Dunn, J. Semaniak, O. Novotny, A. Al-Khalili, A. Ehlerding, F. Hellberg, S. Kalhori, A. Neau, R. Thomas, F. Österdahl, M. Larsson, An enhanced cosmic-ray flux towards ζ Persei inferred from a laboratory study of the \(\mathrm{H}_{3}^{+}\)–e recombination rate. Nature 422, 500–502 (2003). doi:10.1038/nature01498

  130. W.H. McCrea, D. McNally, The formation of Population I stars, II. The formation of molecular hydrogen in interstellar matter. Mon. Not. R. Astron. Soc. Lett. 121, 238 (1960)

  131. A.J.H.M. Meijer, A.J. Farebrother, D.C. Clary, A.J. Fisher, Time-dependent quantum mechanical calculations on the formation of molecular hydrogen on a graphite surface via an eley-rideal mechanism. J. Phys. Chem. A 105, 2173–2182 (2001)

  132. I.A. Mikhailov, V. Kokoouline, Å. Larson, S. Tonzani, C.H. Greene, Renner-Teller effects in HCO+ dissociative recombination. Phys. Rev. A 74, 032707 (2006). doi:10.1103/PhysRevA.74.032707

  133. T.J. Millar, E. Herbst, A new chemical model of the circumstellar envelope surrounding IRC+10216. Astron. Astrophys. 288, 561–571 (1994)

  134. T.J. Millar, A. Bennett, J.M.C. Rawlings, P.D. Brown, S.B. Charnley, Gas phase reactions and rate coefficients for use in astrochemistry—The UMIST ratefile. Astron. Astrophys. 87, 585–619 (1991)

  135. T.J. Millar, E. Herbst, R.P.A. Bettens, Large molecules in the envelope surrounding IRC+10216. Mon. Not. R. Astron. Soc. Lett. 316, 195–203 (2000). doi:10.1046/j.1365-8711.2000.03560.x

  136. Y. Miura, H. Kasai, W. Diño, H. Nakanishi, T. Sugimoto, First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 93, 3395–3400 (2003). doi:10.1063/1.1555701

  137. N. Miyauchi, H. Hidaka, T. Chigai, A. Nagaoka, N. Watanabe, A. Kouchi, Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10 K. Chem. Phys. Lett. 456, 27–30 (2008). doi:10.1016/j.cplett.2008.02.095

  138. H. Mokrane, H. Chaabouni, M. Accolla, E. Congiu, F. Dulieu, M. Chehrouri, J.L. Lemaire, Experimental evidence for water formation via ozone hydrogenation on dust grains at 10 K. Astrophys. J. Lett. 705, 195–198 (2009). doi:10.1088/0004-637X/705/2/L195

  139. S. Morisset, M. Aguillon, M. Sizun, V. Sidis, Role of surface relaxation in the Eley-Rideal formation of H2 on a graphite surface. J. Phys. Chem. A 108, 8571–8579 (2004)

  140. M. Nuevo, Y. Chen, T. Yih, W. Ip, H. Fung, C. Cheng, H. Tsai, C. Wu, Amino acids formed from the UV/EUV irradiation of inorganic ices of astrophysical interest. Adv. Space Res. 40, 1628–1633 (2007). doi:10.1016/j.asr.2007.04.056

  141. Y. Oba, N. Miyauchi, H. Hidaka, T. Chigai, N. Watanabe, A. Kouchi, Formation of compact amorphous H2O ice by codeposition of hydrogen atoms with oxygen molecules on grain surfaces. Astrophys. J. 701, 464–470 (2009). doi:10.1088/0004-637X/701/1/464

  142. K.I. Öberg, Complex processes in simple ices: laboratory and observational studies of gas-grain interactions during star formation. PhD thesis, Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands, 2009

  143. K.I. Öberg, F. van Broekhuizen, H.J. Fraser, S.E. Bisschop, E.F. van Dishoeck, S. Schlemmer, Competition between CO and N2 desorption from interstellar ices. Astrophys. J. Lett. 621, 33–36 (2005). doi:10.1086/428901

  144. K.I. Öberg, G.W. Fuchs, Z. Awad, H.J. Fraser, S. Schlemmer, E.F. van Dishoeck, H. Linnartz, Photodesorption of CO Ice. Astrophys. J. Lett. 662, 23–26 (2007). doi:10.1086/519281

  145. K.I. Öberg, S. Bottinelli, E.F. van Dishoeck, Cold gas as an ice diagnostic toward low mass protostars. Astron. Astrophys. 494, 13–16 (2009a). doi:10.1051/0004-6361:200811228

  146. K.I. Öberg, E.C. Fayolle, H.M. Cuppen, E.F. van Dishoeck, H. Linnartz, Quantification of segregation dynamics in ice mixtures. Astron. Astrophys. 505, 183–194 (2009e). doi:10.1051/0004-6361/200912464

  147. K.I. Öberg, R.T. Garrod, E.F. van Dishoeck, H. Linnartz, Formation rates of complex organics in UV irradiated CH3OH-rich ices. I. Experiments. Astron. Astrophys. 504, 891–913 (2009d). doi:10.1051/0004-6361/200912559

  148. K.I. Öberg, H. Linnartz, R. Visser, E.F. van Dishoeck, Photodesorption of ices. II. H2O and D2O. Astrophys. J. 693, 1209–1218 (2009c). doi:10.1088/0004-637X/693/2/1209

  149. K.I. Öberg, E.F. van Dishoeck, H. Linnartz, Photodesorption of ices I: CO, N2, and CO2. Astron. Astrophys. 496, 281–293 (2009b). doi:10.1051/0004-6361/200810207

  150. M. Ohishi, W.M. Irvine, N. Kaifu, Molecular abundance variations among and within cold, dark molecular clouds(rp), in Astrochemistry of Cosmic Phenomena, ed. by P.D. Singh. IAU Symposium, vol. 150 (1992), p. 171

  151. H.B. Perets, O. Biham, Molecular hydrogen formation on porous dust grains. Mon. Not. R. Astron. Soc. Lett. 365, 801–806 (2006). doi:10.1111/j.1365-2966.2005.09803.x

  152. H.B. Perets, O. Biham, G. Manicó, V. Pirronello, J. Roser, S. Swords, G. Vidali, Molecular hydrogen formation on ice under interstellar conditions. Astrophys. J. 627, 850–860 (2005). doi:10.1086/430435

  153. J.S.A. Perry, S.D. Price, Detection of rovibrationally excited H2 formed through the heterogeneous recombination of H atoms on a cold HOPG surface. Astrophys. Space. Sci. 285, 769–776 (2003). doi:10.1023/A:1026181815008

  154. S. Petrie, Y. Osamura, NCCN and NCCCCN formation in Titan’s atmosphere: 2. HNC as a viable precursor. J. Phys. Chem. A 108, 3623–3631 (2004)

  155. V. Pirronello, O. Biham, C. Liu, L. Shen, G. Vidali, Efficiency of molecular hydrogen formation on silicates. Astrophys. J. Lett. 483, 131–134 (1997b). doi:10.1086/310746

  156. V. Pirronello, C. Liu, L. Shen, G. Vidali, Laboratory synthesis of molecular hydrogen on surfaces of astrophysical interest. Astrophys. J. Lett. 475, 69–72 (1997a). doi:10.1086/310464

  157. V. Pirronello, C. Liu, J.E. Roser, G. Vidali, Measurements of molecular hydrogen formation on carbonaceous grains. Astron. Astrophys. 344, 681–686 (1999)

  158. S.S. Prasad, W.T. Huntress Jr., A model for gas phase chemistry in interstellar clouds. I—The basic model, library of chemical reactions, and chemistry among C, N, and O compounds. Astrophys. J. Suppl. 43, 1–35 (1980a). doi:10.1086/190665

  159. S.S. Prasad, W.T. Huntress Jr., A model for gas phase chemistry in interstellar clouds. II—Nonequilibrium effects and effects of temperature and activation energies. Astrophys. J. 239, 151–165 (1980b). doi:10.1086/158097

  160. C. Rebrion, J.B. Marquette, B.R. Rowe, D.C. Clary, Low-temperature reactions of He+ and C+ with HCl, SO2 and H2S. Chem. Phys. Lett. 143, 130–134 (1988). doi:10.1016/0009-2614(88)87026-X

  161. B.J. Robinson, F.F. Gardner, K.J. van Damme, J.G. Bolton, An intense concentration of Oh near the Galactic Centre. Nature 202, 989–991 (1964). doi:10.1038/202989a0

  162. M. Röllig, N.P. Abel, T. Bell, F. Bensch, J. Black, G.J. Ferland, B. Jonkheid, I. Kamp, M.J. Kaufman, J. Le Bourlot, F. Le Petit, R. Meijerink, O. Morata, V. Ossenkopf, E. Roueff, G. Shaw, M. Spaans, A. Sternberg, J. Stutzki, W. Thi, E.F. van Dishoeck, P.A.M. van Hoof, S. Viti, M.G. Wolfire, A photon dominated region code comparison study. Astron. Astrophys. 467, 187–206 (2007). doi:10.1051/0004-6361:20065918

  163. N. Rougeau, D. Teillet-Billy, V. Sidis, Double H atom adsorption on a cluster model of a graphite surface. Chem. Phys. Lett. 431, 135–138 (2006). doi:10.1016/j.cplett.2006.09.069

  164. B.R. Rowe, Studies of ion/molecule reactions at T∼80 K, in Rate Coefficients in Astrochemistry. Proceedings of a Conference. UMIST, Manchester, United Kingdom, 21–24 September 1987, ed. by T.J. Millar, D.A. Williams (Kluwer Academic, Dordrecht, 1988), p. 135. ISBN 90-277-2752-X. LC # QB450 .R38

  165. H. Sabbah, L. Biennier, I.R. Sims, Y. Georgievskii, S.J. Klippenstein, I.W.M. Smith, Understanding reactivity at very low temperatures: The reactions of oxygen atoms with alkenes. Science 317, 102–105 (2007). doi:10.1126/science.1142373

  166. K. Sakimoto, K. Takayanagi, Influence of the dipole interaction on the low-energy ion-molecule reactions. J. Phys. Soc. Jpn. 48, 2076 (1980)

  167. A. Saltelli, K. Chan, E.M. Scott, Sensitivity Analysis (Wiley, Chichester, 2000)

  168. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice. A Guide to Assessing Scientific Models (Wiley, Chichester, 2004)

  169. S.P. Sander, A.R. Ravishankara, D.M. Golden, C.E. Kolb, M.J. Kurylo, M.J. Molina, G.K. Moortgat, B.J. Finlayson-Pitts, P.H. Wine, R.E. Huie, Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number 15, JPL publication 06-2, 2006

  170. X. Sha, First-principles study of the structural and energetic properties of H atoms on a graphite (0 0 0 1) surface. Surf. Sci. 496, 318–330 (2002). doi:10.1016/S0039-6028(01)01602-8

  171. X. Sha, B. Jackson, D. Lemoine, Quantum studies of Eley-Rideal reactions between H atoms on a graphite surface. J. Chem. Phys. 116, 7158–7169 (2002). doi:10.1063/1.1463399

  172. I.R. Sims, J. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B.R. Rowe, I.W.M. Smith, Ultralow temperature kinetics of neutral-neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH3 down to 25 K. J. Chem. Phys. 100, 4229–4241 (1994). doi:10.1063/1.467227

  173. I.W.M. Smith, Kinetics and Dynamics of Elementary Gas Reactions (Butterworth, London, 1980)

  174. I.W.M. Smith, A.M. Sage, N.M. Donahue, E. Herbst, D. Quan, The temperature-dependence of rapid low temperature reactions: experiment, understanding and prediction. Chem. Evol. Universe, Faraday Discuss. 133, 137 (2006). doi:10.1039/b600721j

  175. T.P. Snow, V.M. Bierbaum, Ion chemistry in the interstellar medium. Annu. Rev. Anal. Chem. 1, 229–259 (2008). doi:10.1146/annurev.anchem.1.031207.112907

  176. T. Stantcheva, V.I. Shematovich, E. Herbst, On the master equation approach to diffusive grain-surface chemistry: The H, O, CO system. Astron. Astrophys. 391, 1069–1080 (2002). doi:10.1051/0004-6361:20020838

  177. T. Su, W.J. Chesnavich, Parametrization of the ion-polar molecule collision rate constant by trajectory calculations. J. Chem. Phys. 76, 5183–5185 (1982). doi:10.1063/1.442828

  178. D. Talbi, I.W.M. Smith, A theoretical analysis of the reaction between CN radicals and NH3. Phys. Chem. Chem. Phys. 11, 8477 (2009). doi:10.1039/b908416a

  179. A.G.G.M. Tielens, W. Hagen, Model calculations of the molecular composition of interstellar grain mantles. Astron. Astrophys. 114, 245–260 (1982)

  180. J. Troe, Statistical adiabatic channel model for ion-molecule capture processes. J. Chem. Phys. 87, 2773–2780 (1987). doi:10.1063/1.453701

  181. J. Troe, Statistical adiabatic channel model for ion-molecule capture processes. II. Analytical treatment of ion-dipole capture. J. Chem. Phys. 105, 6249–6262 (1996). doi:10.1063/1.472479

  182. J. Troe, T.M. Miller, A.A. Viggiano, Low-energy electron attachment to SF6. I. Kinetic modeling of nondissociative attachment. J. Chem. Phys. 127, 244303-12 (2007a). doi:10.1063/1.2804761

  183. J. Troe, T.M. Miller, A.A. Viggiano, Low-energy electron attachment to SF6. II. Temperature and pressure dependences of dissociative attachment. J. Chem. Phys. 127, 244304-13 (2007b). doi:10.1063/1.2804762

  184. H.C. van de Hulst, The Solid Particles in Interstellar Space (1949), p. 2

  185. A.I. Vasyunin, D. Semenov, T. Henning, V. Wakelam, E. Herbst, A.M. Sobolev, Chemistry in protoplanetary disks: A sensitivity analysis. Astrophys. J. 672, 629–641 (2008). doi:10.1086/523887

  186. A.I. Vasyunin, D.A. Semenov, D.S. Wiebe, T. Henning, A unified Monte Carlo treatment of gas-grain chemistry for large reaction networks. I. Testing validity of rate equations in molecular clouds. Astrophys. J. 691, 1459–1469 (2009). doi:10.1088/0004-637X/691/2/1459

  187. A.A. Viggiano, S. Williams, Advances in Gas-Phase Ion Chemistry, vol. 4 (Elsevier, Amsterdam, 2001)

  188. V. Wakelam, E. Herbst, Polycyclic Aromatic Hydrocarbons in Dense Cloud Chemistry. Astrophys. J. 680, 371–383 (2008). doi:10.1086/587734

  189. V. Wakelam, F. Selsis, E. Herbst, P. Caselli, Estimation and reduction of the uncertainties in chemical models: application to hot core chemistry. Astron. Astrophys. 444, 883–891 (2005). doi:10.1051/0004-6361:20053673

  190. V. Wakelam, E. Herbst, F. Selsis, The effect of uncertainties on chemical models of dark clouds. Astron. Astrophys. 451, 551–562 (2006). doi:10.1051/0004-6361:20054682

  191. V. Wakelam, J. Loison, E. Herbst, D. Talbi, D. Quan, F. Caralp, A sensitivity study of the neutral-neutral reactions C + C3 and C + C5 in cold dense interstellar clouds. Astron. Astrophys. 495, 513–521 (2009). doi:10.1051/0004-6361:200810967

  192. N. Watanabe, A. Kouchi, Efficient formation of formaldehyde and methanol by the addition of hydrogen atoms to CO in H2O-CO ice at 10 K. Astrophys. J. Lett. 571, 173–176 (2002). doi:10.1086/341412

  193. W.D. Watson, Interstellar molecule reactions. Rev. Mod. Phys. 48, 513–552 (1976). doi:10.1103/RevModPhys.48.513

  194. S. Weinreb, Radio observations of OH in the interstellar medium. Nature 200, 829–831 (1963). doi:10.1038/200829a0

  195. J. Woodall, M. Agúndez, A.J. Markwick-Kemper, T.J. Millar, The UMIST database for astrochemistry 2006. Astron. Astrophys. 466, 1197–1204 (2007). doi:10.1051/0004-6361:20064981

  196. D.E. Woon, E. Herbst, Quantum chemical predictions of the properties of known and postulated neutral interstellar molecules. Astrophys. J. Suppl. 185, 273–288 (2009). doi:10.1088/0067-0049/185/2/273

  197. T. Zecho, Abstraction of D chemisorbed on graphite (0001) with gaseous H atoms. Chem. Phys. Lett. 366, 188–195 (2002). doi:10.1016/S0009-2614(02)01573-7

  198. T. Zecho, A. Guttler, X. Sha, B. Jackson, J. Kuppers, Adsorption of hydrogen and deuterium atoms on the (0001) graphite surface. J. Chem. Phys. 117, 8486–8492 (2002). doi:10.1063/1.1511729

  199. V. Zhaunerchyk, M. Kamińska, E. Vigren, M. Hamberg, W.D. Geppert, M. Larsson, R.D. Thomas, J. Semaniak, Sequential formation of the CH3+H+H channel in the dissociative recombination of \(\mathrm{CH}_{5}^{+}\). Phys. Rev. A 79, 030701 (2009). doi:10.1103/PhysRevA.79.030701

  200. L.M. Ziurys, P. Friberg, W.M. Irvine, Interstellar SiO as a tracer of high-temperature chemistry. Astrophys. J. 343, 201–207 (1989). doi:10.1086/167696

Download references

Author information

Correspondence to V. Wakelam.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Wakelam, V., Smith, I.W.M., Herbst, E. et al. Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges. Space Sci Rev 156, 13–72 (2010). https://doi.org/10.1007/s11214-010-9712-5

Download citation

Keywords

  • Astrochemistry
  • Reaction rate coefficients
  • Gas-phase chemistry
  • Grain-surface chemistry
  • Chemical modelling
  • Uncertainty propagation
  • Sensitivity analysis