Space Science Reviews

, Volume 156, Issue 1–4, pp 13–72

Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges

  • V. Wakelam
  • I. W. M. Smith
  • E. Herbst
  • J. Troe
  • W. Geppert
  • H. Linnartz
  • K. Öberg
  • E. Roueff
  • M. Agúndez
  • P. Pernot
  • H. M. Cuppen
  • J. C. Loison
  • D. Talbi
Open Access
Article

Abstract

We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes—ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination—is reviewed. Emphasis is placed on those key reactions that have been identified, by sensitivity analyses, as ‘crucial’ in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalyzed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.

Keywords

Astrochemistry Reaction rate coefficients Gas-phase chemistry Grain-surface chemistry Chemical modelling Uncertainty propagation Sensitivity analysis 

References

  1. K. Acharyya, G.W. Fuchs, H.J. Fraser, E.F. van Dishoeck, H. Linnartz, Desorption of CO and O2 interstellar ice analogs. Astron. Astrophys. 466, 1005–1012 (2007). doi:10.1051/0004-6361:20066272 ADSGoogle Scholar
  2. N.G. Adams, D. Smith, D.C. Clary, Rate coefficients of the reactions of ions with polar molecules at interstellar temperatures. Astrophys. J. Lett. 296, 31–34 (1985). doi:10.1086/184543 ADSGoogle Scholar
  3. N.G. Adams, C.D. Molek, J.L. McLain, New flowing afterglow technique for determining products of dissociative recombination: \(\mathrm{CH}_{5}^{+}\) and N2H+. J. Phys. Conf. Ser. 192, 012004-11 (2009). doi:10.1088/1742-6596/192/1/012004 ADSGoogle Scholar
  4. M. Agúndez, J. Cernicharo, Oxygen chemistry in the circumstellar envelope of the carbon-rich star IRC +10216. Astrophys. J. 650, 374–393 (2006). doi:10.1086/506313 ADSGoogle Scholar
  5. S. Andersson, E.F. van Dishoeck, Photodesorption of water ice. A molecular dynamics study. Astron. Astrophys. 491, 907–916 (2008). doi:10.1051/0004-6361:200810374 ADSGoogle Scholar
  6. A. Andree, M. Lay, T. Zecho, J. Kupper, Pair formation and clustering of D on the basal plane of graphite. Chem. Phys. Lett. 425, 99–104 (2006). doi:10.1016/j.cplett.2006.05.015 ADSGoogle Scholar
  7. R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 4, 1461–1738 (2004) ADSGoogle Scholar
  8. R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, I. Subcommittee, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II—gas phase reactions of organic species. Atmos. Chem. Phys. 6, 3625–4055 (2006) ADSGoogle Scholar
  9. R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III—gas phase reactions of inorganic halogens. Atmos. Chem. Phys. 7, 981–1191 (2007) ADSGoogle Scholar
  10. R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, J. Troe, T.J. Wallington, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV gas phase reactions of organic halogen species. Atmos. Chem. Phys. 8, 4141–4496 (2008) ADSGoogle Scholar
  11. M. Bacchus-Montabonel, D. Talbi, Ab initio treatment of charge transfer in CS+ molecular system. Chem. Phys. Lett. 467, 28–31 (2008) ADSGoogle Scholar
  12. B. Barzel, O. Biham, Efficient simulations of interstellar gas-grain chemistry using moment equations. Astrophys. J. Lett. 658, 37–40 (2007). doi:10.1086/513421 ADSGoogle Scholar
  13. D.R. Bates, Products of dissociative recombination of polyatomic ions. Astrophys. J. Lett. 306, 45–47 (1986). doi:10.1086/184702 ADSGoogle Scholar
  14. D.R. Bates, E. Herbst, Radiative association, in Rate Coefficients in Astrochemistry. Proceedings of a Conference held in UMIST, Manchester, United Kingdom, 21–24 September, 1987, ed. by T.J. Millar, D.A. Williams (Kluwer Academic, Dordrecht, 1988), p. 17. ISBN 90-277-2752-X. LC # QB450 .R38 1988 Google Scholar
  15. D.R. Bates, L. Spitzer Jr., The density of molecules in interstellar space. Astrophys. J. 113, 441 (1951). doi:10.1086/145415 ADSGoogle Scholar
  16. O. Biham, I. Furman, V. Pirronello, G. Vidali, Master equation for hydrogen recombination on grain surfaces. Astrophys. J. 553, 595–603 (2001). doi:10.1086/320975 ADSGoogle Scholar
  17. M.A. Biondi, S.C. Brown, Measurement of electron-ion recombination. Phys. Rev. 76, 1697–1700 (1949). doi:10.1103/PhysRev.76.1697 ADSGoogle Scholar
  18. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, Evaluation of measurement data—Guide to the expression of uncertainty in measurement (GUM). Technical report, International Organization for Standardization (ISO), Geneva, 2008a Google Scholar
  19. BIPM, IEC, IFCC, ISO, IUPAP, OIML, Evaluation of measurement data—Supplement 1 to the GUM: propagation of distributions using a Monte Carlo method. Technical report, International Organization for Standardization (ISO), Geneva, 2008b Google Scholar
  20. S.E. Bisschop, G.W. Fuchs, E.F. van Dishoeck, H. Linnartz, H-atom bombardment of CO2, HCOOH, and CH3CHO containing ices. Astron. Astrophys. 474, 1061–1071 (2007). doi:10.1051/0004-6361:20078210 ADSGoogle Scholar
  21. J.H. Black, A. Dalgarno, Models of interstellar clouds. I—The Zeta Ophiuchi cloud. Astrophys. J. Suppl. 34, 405–423 (1977). doi:10.1086/190455 ADSGoogle Scholar
  22. G.A. Blake, J. Keene, T.G. Phillips, Chlorine in dense interstellar clouds—The abundance of HCl in OMC-1. Astrophys. J. 295, 501–506 (1985). doi:10.1086/163394 ADSGoogle Scholar
  23. M.A. Blitz, P.W. Seakins, I.W.M. Smith, An experimental confirmation of the products of the reaction between CN radicals and NH3. J. Chem. Chem. Phys. 11, 10824–10826 (2009) Google Scholar
  24. A.S. Bolina, A.J. Wolff, W.A. Brown, Reflection absorption infrared spectroscopy and temperature programmed desorption investigations of the interaction of methanol with a graphite surface. J. Phys. Chem. B 122, 044713 (2005). doi:10.1063/1.1839554 Google Scholar
  25. M. Bonfanti, R. Martinazzo, G.F. Rantardini, A. Ponti, Physisorption and diffusion of hydrogen atoms on graphite from correlated calculations on the H-coronene model system. J. Phys. Chem. C 111, 16836 (2007). doi:10.1063/1.1839554 Google Scholar
  26. V. Buch, R. Czerminski, Eigenstates of a quantum-mechanical particle on a topologically disordered surface—H(D) atom physisorbed on an amorphous ice cluster (H2O)115. J. Chem. Phys. 95, 6026–6038 (1991). doi:10.1063/1.461571 ADSGoogle Scholar
  27. G.D. Byrne, A.C. Hindmarsh, Stiff ODE solvers: A review of current and coming attractions. J. Comput. Phys. 70, 1 (1987). doi:10.1016/0021-9991(87)90001-5 MathSciNetADSMATHGoogle Scholar
  28. A. Canosa, F. Goulay, I.R. Sims, B.R. Rowe, Gas-phase reactive collisions at very low temperature: Recent experimental advances and perspectives, in Low Temperatures and Cold Molecules, ed. by I.W.M. Smith (Imperial College Press, London, 2008), pp. 55–120 Google Scholar
  29. N. Carrasco, P. Pernot, Modeling of branching ratio uncertainty in chemical networks by Dirichlet distributions. J. Phys. Chem. A 111, 3507–3512 (2007) Google Scholar
  30. N. Carrasco, O. Dutuit, R. Thissen, M. Banaszkiewicz, P. Pernot, Uncertainty analysis of bimolecular reactions in Titan ionosphere chemistry model. Planet. Space Sci. 55, 141–157 (2007). doi:10.1016/j.pss.2006.06.004 ADSGoogle Scholar
  31. N. Carrasco, C. Alcaraz, O. Dutuit, S. Plessis, R. Thissen, V. Vuitton, R. Yelle, P. Pernot, Sensitivity of a Titan ionospheric model to the ion-molecule reaction parameters. Planet. Space Sci. 56, 1644–1657 (2008). doi:10.1016/j.pss.2008.04.007 ADSGoogle Scholar
  32. G.R. Carruthers, Rocket observation of interstellar molecular hydrogen. Astrophys. J. Lett. 161, 81–65 (1970). doi:10.1086/180575 ADSGoogle Scholar
  33. P. Caselli, C.M. Walmsley, R. Terzieva, E. Herbst, The ionization fraction in dense cloud cores. Astrophys. J. 499, 234–249 (1998). doi:10.1086/305624 ADSGoogle Scholar
  34. P. Caselli, T. Stantcheva, O. Shalabiea, V.I. Shematovich, E. Herbst, Deuterium fractionation on interstellar grains studied with modified rate equations and a Monte Carlo approach. Planet. Space Sci. 50, 1257–1266 (2002) ADSGoogle Scholar
  35. S. Casolo, O.M. Løvvik, R. Martinazzo, G.F. Tantardini, Understanding adsorption of hydrogen atoms on graphene. J. Chem. Phys. 130, 054704 (2009). doi:10.1063/1.3072333 ADSGoogle Scholar
  36. S. Cazaux, A.G.G.M. Tielens, H2 formation on grain surfaces. Astrophys. J. 604, 222–237 (2004). doi:10.1086/381775 ADSGoogle Scholar
  37. Q. Chang, H.M. Cuppen, E. Herbst, Continuous-time random-walk simulation of H2 formation on interstellar grains. Astron. Astrophys. 434, 599–611 (2005). doi:10.1051/0004-6361:20041842 ADSGoogle Scholar
  38. S.B. Charnley, Stochastic astrochemical kinetics. Astrophys. J. Lett. 509, 121–124 (1998). doi:10.1086/311764 ADSGoogle Scholar
  39. S.B. Charnley, Stochastic theory of molecule formation on dust. Astrophys. J. Lett. 562, 99–102 (2001). doi:10.1086/324753 ADSGoogle Scholar
  40. S.B. Charnley, S.D. Rodgers, Pathways to molecular complexity, in Astrochemistry: Recent Successes and Current Challenges, ed. by D.C. Lis, G.A. Blake, E. Herbst. IAU Symposium, vol. 231 (2005), pp. 237–246. doi:10.1017/S174392130600723X Google Scholar
  41. S.B. Charnley, A.G.G.M. Tielens, S.D. Rodgers, Deuterated methanol in the orion compact ridge. Astrophys. J. Lett. 482, 203–206 (1997). doi:10.1086/310697 ADSGoogle Scholar
  42. I. Cherchneff, A.E. Glassgold, G.A. Mamon, The formation of cyanopolyyne molecules in IRC + 10216. Astrophys. J. 410, 188–201 (1993). doi:10.1086/172737 ADSGoogle Scholar
  43. A.C. Cheung, D.M. Rank, C.H. Townes, D.D. Thornton, W.J. Welch, Detection of NH3 molecules in the interstellar medium by their microwave emission. Phys. Rev. Lett. 21, 1701–1705 (1968). doi:10.1103/PhysRevLett.21.1701 ADSGoogle Scholar
  44. D.C. Clary, Rate constants for the reactions of ions with dipolar polyatomic molecules. J. Chem. Soc. Faraday Trans. II 83, 139–148 (1987) Google Scholar
  45. D.C. Clary, Theory of reactive collisions at low temperatures, in Rate Coefficients in Astrochemistry. Proceedings of a Conference. UMIST, Manchester, United Kingdom, 21–24 September, 1987, ed. by T.J. Millar, D.A. Williams (Kluwer Academic, Dordrecht, 1988). ISBN 90-277-2752-X. LC# QB450.R38 Google Scholar
  46. M.P. Collings, M.A. Anderson, R. Chen, J.W. Dever, S. Viti, D.A. Williams, M.R.S. McCoustra, A laboratory survey of the thermal desorption of astrophysically relevant molecules. Mon. Not. R. Astron. Soc. Lett. 354, 1133–1140 (2004). doi:10.1111/j.1365-2966.2004.08272.x ADSGoogle Scholar
  47. E. Congiu, E. Matar, L.E. Kristensen, F. Dulieu, J.L. Lemaire, Laboratory evidence for the non-detection of excited nascent H2 in dark clouds. Mon. Not. R. Astron. Soc. Lett. 397, 96–100 (2009). doi:10.1111/j.1745-3933.2009.00692.x ADSGoogle Scholar
  48. M.A. Cordiner, T.J. Millar, Density-enhanced gas and dust shells in a new chemical model for IRC+10216. Astrophys. J. 697, 68–78 (2009). doi:10.1088/0004-637X/697/1/68 ADSGoogle Scholar
  49. H.M. Cuppen, E. Herbst, Monte Carlo simulations of H2 formation on grains of varying surface roughness. Mon. Not. R. Astron. Soc. Lett. 361, 565–576 (2005). doi:10.1111/j.1365-2966.2005.09189.x Google Scholar
  50. H.M. Cuppen, L. Hornekær, Kinetic Monte Carlo studies of hydrogen abstraction from graphite. J. Chem. Phys. 128, 174707 (2008). doi:10.1063/1.2913238 ADSGoogle Scholar
  51. H.M. Cuppen, O. Morata, E. Herbst, Monte Carlo simulations of H2 formation on stochastically heated grains. Mon. Not. R. Astron. Soc. Lett. 367, 1757–1765 (2006). doi:10.1111/j.1365-2966.2006.10079.x ADSGoogle Scholar
  52. H.M. Cuppen, E.F. van Dishoeck, E. Herbst, A.G.G.M. Tielens, Microscopic simulation of methanol and formaldehyde ice formation in cold dense cores. Astron. Astrophys. 508, 275–287 (2009). doi:10.1051/0004-6361/200913119 ADSGoogle Scholar
  53. A. Dalgarno, J.H. Black, Molecule formation in the interstellar gas. Rep. Prog. Phys. 39, 573–612 (1976). doi:10.1088/0034-4885/39/6/002 ADSGoogle Scholar
  54. E. Dartois, G.M. Muñoz Caro, D. Deboffle, G. Montagnac, L. D’Hendecourt, Ultraviolet photoproduction of ISM dust. Laboratory characterisation and astrophysical relevance. Astron. Astrophys. 432, 895–908 (2005). doi:10.1051/0004-6361:20042094 ADSGoogle Scholar
  55. E. de Rocquigny, N. Devictor, S. Tarantola, Uncertainty in Industrial Practice: A Guide to Quantitative Uncertainty Management (Wiley, Chichester, 2008) Google Scholar
  56. L.B. D’Hendecourt, L.J. Allamandola, R.J.A. Grim, J.M. Greenberg, Time-dependent chemistry in dense molecular clouds. II—Ultraviolet photoprocessing and infrared spectroscopy of grain mantles. Astron. Astrophys. 158, 119–134 (1986) ADSGoogle Scholar
  57. M. Dobrijevic, J.P. Parisot, Effect of chemical kinetics uncertainties on hydrocarbon production in the stratosphere of Neptune. Planet. Space Sci. 46, 491–505 (1998) ADSGoogle Scholar
  58. M. Dobrijevic, J.L. Ollivier, F. Billebaud, J. Brillet, J.P. Parisot, Effect of chemical kinetic uncertainties on photochemical modeling results: Application to Saturn’s atmosphere. Astron. Astrophys. 398, 335–344 (2003). doi:10.1051/0004-6361:20021659 ADSGoogle Scholar
  59. M. Dobrijevic, N. Carrasco, E. Hébrard, P. Pernot, Epistemic bimodality and kinetic hypersensitivity in photochemical models of Titan’s atmosphere. Planet. Space Sci. 56, 1630–1643 (2008). doi:10.1016/j.pss.2008.05.016 ADSGoogle Scholar
  60. M. Dobrijevic, E. Hébrard, S. Plessis, N. Carrasco, M. Bruno-Claeys, P. Pernot, Adv. Space Res. (2010). doi:10.1016/j.pss.2008.05.016
  61. S.F. Dos Santos, V. Kokoouline, C.H. Greene, Dissociative recombination of \(\mathrm{H}_{3}^{+}\) in the ground and excited vibrational states. J. Chem. Phys. 127, 124309–8 (2007). doi:10.1063/1.2784275 ADSGoogle Scholar
  62. S.D. Doty, C.M. Leung, Detailed chemical modeling of the circumstellar envelopes of carbon stars: Application to IRC +10216. Astrophys. J. 502, 898 (1998). doi:10.1086/305911 ADSGoogle Scholar
  63. F. Dulieu, L. Amiaud, S. Baouche, A. Momeni, J. Fillion, J.L. Lemaire, Isotopic segregation of molecular hydrogen on water ice surface at low temperature. Chem. Phys. Lett. 404, 187–191 (2005). doi:10.1016/j.cplett.2005.01.044 ADSGoogle Scholar
  64. F. Dulieu, L. Amiaud, J. Fillion, E. Matar, A. Momeni, V. Pirronello, J.L. Lemaire, Experimental evidence of water formation on interstellar dust grains, in Molecules in Space and Laboratory (2007) Google Scholar
  65. P. Ehrenfreund, W.A. Schutte, Infrared observations of interstellar ices, in From Molecular Clouds to Planetary Systems, ed. by Y.C. Minh, E.F. van Dishoeck, IAU Symposium, vol. 197 (2000), p. 135 Google Scholar
  66. A.J. Farebrother, A.J.H.M. Meijer, D.C. Clary, A.J. Fisher, Formation of molecular hydrogen on a graphite surface via an Eley-Rideal mechanism. Chem. Phys. Lett. 319, 303–308 (2000). doi:10.1016/S0009-2614(00)00128-7 ADSGoogle Scholar
  67. Y. Ferro, Density functional theory investigation of the diffusion and recombination of H on a graphite surface. Chem. Phys. Lett. 368, 609–615 (2003). doi:10.1016/S0009-2614(02)01908-5 ADSGoogle Scholar
  68. J. Fillion, L. Amiaud, E. Congiu, F. Dulieu, A. Momeni, J. Lemaire, D2 desorption kinetics on amorphous solid water: from compact to porous ice films. Phys. Chem. Chem. Phys. 11, 4396 (2009). doi:10.1039/b822492g Google Scholar
  69. D.R. Flower, G. Pineau des Forets, T.W. Hartquist, Theoretical studies of interstellar molecular shocks. I—General formulation and effects of the ion-molecule chemistry. Mon. Not. R. Astron. Soc. Lett. 216, 775–794 (1985) ADSGoogle Scholar
  70. H.J. Fraser, M.P. Collings, M.R.S. McCoustra, D.A. Williams, Thermal desorption of water ice in the interstellar medium. Mon. Not. R. Astron. Soc. Lett. 327, 1165–1172 (2001). doi:10.1046/j.1365-8711.2001.04835.x Google Scholar
  71. G.W. Fuchs, H.M. Cuppen, S. Ioppolo, C. Romanzin, S.E. Bisschop, S. Andersson, E.F. van Dishoeck, H. Linnartz, Hydrogenation reactions in interstellar CO ice analogues. A combined experimental/theoretical approach. Astron. Astrophys. 505, 629–639 (2009). doi:10.1051/0004-6361/200810784 ADSGoogle Scholar
  72. R.T. Garrod, A new modified-rate approach for gas-grain chemical simulations. Astron. Astrophys. 491, 239–251 (2008). doi:10.1051/0004-6361:200810518 ADSGoogle Scholar
  73. R.T. Garrod, E. Herbst, Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 457, 927–936 (2006). doi:10.1051/0004-6361:20065560 ADSGoogle Scholar
  74. R.T. Garrod, V. Wakelam, E. Herbst, Non-thermal desorption from interstellar dust grains via exothermic surface reactions. Astron. Astrophys. 467, 1103–1115 (2007). doi:10.1051/0004-6361:20066704 ADSGoogle Scholar
  75. R.T. Garrod, S.L.W. Weaver, E. Herbst, Complex chemistry in star-forming regions: An expanded gas-grain warm-up chemical model. Astrophys. J. 682, 283–302 (2008). doi:10.1086/588035 ADSGoogle Scholar
  76. E. Gavardi, H.M. Cuppen, L. Hornekær, A kinetic Monte Carlo study of desorption of H2 from graphite (0 0 0 1). Chem. Phys. Lett. 477, 285–289 (2009) ADSGoogle Scholar
  77. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (1971) MATHGoogle Scholar
  78. W.D. Geppert, M. Hamberg, R.D. Thomas, F. Österdahl, F. Hellberg, V. Zhaunerchyk, A. Ehlerding, T.J. Millar, H. Roberts, J. Semaniak, M.A. Ugglas, A. Källberg, A. Simonsson, M. Kaminska, M. Larsson, Dissociative recombination of protonated methanol. Chem. Evol. Universe, Faraday Discuss. 133, 177–190 (2006). doi:10.1039/b516010c ADSGoogle Scholar
  79. D. Gerlich, The study of cold collisions using ion guides and traps, in Low Temperatures and Cold Molecules, ed. by I.W.M. Smith (Imperial College Press, London, 2008), pp. 295–343 Google Scholar
  80. D. Gerlich, S. Horning, Experimental investigations of radiative association processes as related to interstellar chemistry. Chem. Rev. 92, 1509–1539 (1992) ADSGoogle Scholar
  81. E.L. Gibb, D.C.B. Whittet, W.A. Schutte, A.C.A. Boogert, J.E. Chiar, P. Ehrenfreund, P.A. Gerakines, J.V. Keane, A.G.G.M. Tielens, E.F. van Dishoeck, O. Kerkhof, An inventory of interstellar ices toward the embedded protostar W33A. Astrophys. J. 536, 347–356 (2000). doi:10.1086/308940 ADSGoogle Scholar
  82. J. Glosík, R. Plašil, I. Korolov, T. Kotrík, O. Novotný, P. Hlavenka, P. Dohnal, J. Varju, V. Kokoouline, C.H. Greene, Temperature dependence of binary and ternary recombination of H3+ ions with electrons. Phys. Rev. A 79, 052707 (2009). doi:10.1103/PhysRevA.79.052707 ADSGoogle Scholar
  83. N.J.B. Green, T. Toniazzo, M.J. Pilling, D.P. Ruffle, N. Bell, T.W. Hartquist, A stochastic approach to grain surface chemical kinetics. Astron. Astrophys. 375, 1111–1119 (2001). doi:10.1051/0004-6361:20010961 ADSGoogle Scholar
  84. S.D. Green, A.S. Bolina, R. Chen, M.P. Collings, W.A. Brown, M.R.S. McCoustra, Applying laboratory thermal desorption data in an interstellar context: sublimation of methanol thin films. Mon. Not. R. Astron. Soc. Lett. 398, 357–367 (2009). doi:10.1111/j.1365-2966.2009.15144.x ADSGoogle Scholar
  85. W. Hagen, L.J. Allamandola, J.M. Greenberg, Interstellar molecule formation in grain mantles—The laboratory analog experiments, results and implications. Astrophys. Space. Sci. 65, 215–240 (1979). doi:10.1007/BF00643502 ADSGoogle Scholar
  86. J.B. Halpern, G.E. Miller, H. Okabe, The reaction of CN radicals with cyanoacetylene. Chem. Phys. Lett. 155, 347–350 (1989). doi:10.1016/0009-2614(89)87167-2 ADSGoogle Scholar
  87. N. Harada, E. Herbst, Modeling carbon chain anions in L1527. Astrophys. J. 685, 272–280 (2008). doi:10.1086/590468 ADSGoogle Scholar
  88. T.I. Hasegawa, E. Herbst, New gas-grain chemical models of quiescent dense interstellar clouds—The effects of H2 tunnelling reactions and cosmic ray induced desorption. Mon. Not. R. Astron. Soc. Lett. 261, 83–102 (1993) Google Scholar
  89. T.I. Hasegawa, E. Herbst, C.M. Leung, Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys. J. Suppl. 82, 167–195 (1992). doi:10.1086/191713 ADSGoogle Scholar
  90. E. Hébrard, M. Dobrijevic, Y. Bénilan, F. Raulin, Photochemical kinetics uncertainties in modeling Titan’s atmosphere: A review. J. Photochem. Photobiol. C, Photochem. Rev. 7, 211–230 (2006) Google Scholar
  91. E. Hébrard, M. Dobrijevic, Y. Bénilan, F. Raulin, Photochemical kinetics uncertainties in modeling Titan’s atmosphere: First consequences. Planet. Space Sci. 55, 1470–1489 (2007). doi:10.1016/j.pss.2007.04.006 ADSGoogle Scholar
  92. E. Hébrard, P. Pernot, M. Dobrijevic, N. Carrasco, A. Bergeat, K.M. Hickson, A. Canosa, S.D. Le Picard, I.R. Sims, How measurements of rate coefficients at low temperature increase the predictivity of photochemical models of Titan’s atmosphere. J. Phys. Chem. A 113, 11227–11237 (2009) Google Scholar
  93. J.C. Helton, J.D. Johnson, C.J. Sallaberry, C.B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Saf. 91, 1175–1209 (2006) Google Scholar
  94. E. Herbst, What are the products of polyatomic ion-electron dissociative recombination reactions. Astrophys. J. 222, 508–516 (1978). doi:10.1086/156163 ADSGoogle Scholar
  95. E. Herbst, Can negative molecular ions be detected in dense interstellar clouds. Nature 289, 656 (1981). doi:10.1038/289656a0 ADSGoogle Scholar
  96. E. Herbst, An approach to the estimation of polyatomic vibrational radiative relaxation rates. Chem. Phys. 65, 185–195 (1982). doi:10.1016/0301-0104(82)85067-2 ADSGoogle Scholar
  97. E. Herbst, Gas phase reactions, in Atomic, Molecular & Optical Physics Handbook, ed. by G.W.F. Drake (1996), p. 429 Google Scholar
  98. E. Herbst, H.M. Cuppen, Interstellar chemistry special feature: Monte Carlo studies of surface chemistry and nonthermal desorption involving interstellar grains. Proc. Natl. Acad. Sci. USA 103, 12257–12262 (2006). doi:10.1073/pnas.0601556103 ADSGoogle Scholar
  99. E. Herbst, W. Klemperer, The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185, 505–534 (1973). doi:10.1086/152436 ADSGoogle Scholar
  100. E. Herbst, W. Klemperer, Is X-Ogen HCO+? Astrophys. J. 188, 255–256 (1974). doi:10.1086/152712 ADSGoogle Scholar
  101. E. Herbst, C.M. Leung, Effects of large rate coefficients for ion-polar neutral reactions on chemical models of dense interstellar clouds. Astrophys. J. 310, 378–382 (1986). doi:10.1086/164691 ADSGoogle Scholar
  102. E. Herbst, T.J. Millar, The chemistry of cold interstellar cloud cores, in Low Temperatures and Cold Molecules, ed. by I.W.M. Smith (Imperial College Press, London, 2008), pp. 1–54 Google Scholar
  103. E. Herbst, Y. Osamura, Calculations on the formation rates and mechanisms for CnH anions in interstellar and circumstellar media. Astrophys. J. 679, 1670–1679 (2008). doi:10.1086/587803 ADSGoogle Scholar
  104. E. Herbst, E.F. van Dishoeck, Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427–480 (2009). doi:10.1146/annurev-astro-082708-101654 ADSGoogle Scholar
  105. E. Herbst, J.G. Schubert, P.R. Certain, The radiative association of \(\mathrm{CH}_{2}^{+}\). Astrophys. J. 213, 696–704 (1977). doi:10.1086/155199 ADSGoogle Scholar
  106. F. Hersant, V. Wakelam, A. Dutrey, S. Guilloteau, E. Herbst, Cold CO in circumstellar disks. On the effects of photodesorption and vertical mixing. Astron. Astrophys. 493, 49–52 (2009). doi:10.1051/0004-6361:200811082 ADSGoogle Scholar
  107. D.J. Hollenbach, A.G.G.M. Tielens, Dense Photodissociation Regions (PDRs). Annu. Rev. Astron. Astrophys. 35, 179–216 (1997). doi:10.1146/annurev.astro.35.1.179 ADSGoogle Scholar
  108. L. Hornekær, A. Baurichter, V.V. Petrunin, D. Field, A.C. Luntz, Importance of surface morphology in interstellar H2 formation. Science 302, 1943–1946 (2003). doi:10.1126/science.1090820 ADSGoogle Scholar
  109. L. Hornekær, A. Baurichter, V.V. Petrunin, A.C. Luntz, B.D. Kay, A. Al-Halabi, Influence of surface morphology on D2 desorption kinetics from amorphous solid water. J. Chem. Phys. 122, 124701–124711 (2005). doi:10.1063/1.1874934 ADSGoogle Scholar
  110. L. Hornekær, E. Rauls, W. Xu, Ž. Šljivančanin, R. Otero, I. Stensgaard, E. Lægsgaard, B. Hammer, F. Besenbacher, Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys. Rev. Lett. 97, 186102-4 (2006b). doi:10.1103/PhysRevLett.97.186102 ADSGoogle Scholar
  111. L. Hornekær, Ž. Šljivančanin, W. Xu, R. Otero, E. Rauls, I. Stensgaard, E. Lægsgaard, B. Hammer, F. Besenbacher, Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett. 96, 156104-4 (2006a). doi:10.1103/PhysRevLett.96.156104 ADSGoogle Scholar
  112. S. Ioppolo, H.M. Cuppen, C. Romanzin, E.F. van Dishoeck, H. Linnartz, Laboratory evidence for efficient water formation in interstellar ices. Astrophys. J. 686, 1474–1479 (2008). doi:10.1086/591506 ADSGoogle Scholar
  113. L. Jeloaica, DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface. Chem. Phys. Lett. 300, 157–162 (1999). doi:10.1016/S0009-2614(98)01337-2 ADSGoogle Scholar
  114. M.J. Jensen, R.C. Bilodeau, C.P. Safvan, K. Seiersen, L.H. Andersen, H.B. Pedersen, O. Heber, Dissociative recombination of H3O+, HD2O+, and D3O+. Astrophys. J. 543, 764–774 (2000). doi:10.1086/317137 ADSGoogle Scholar
  115. M. Jofi, P. Honvault, State-to-state quantum reactive scattering calculations and rate constant for nitrogen atoms in collision with NO radicals at low temperatures. J. Phys. Chem. A 113, 10648–10651 (2009) Google Scholar
  116. M. Jura, Formation and destruction rates of interstellar H2. Astrophys. J. 191, 375–379 (1974). doi:10.1086/152975 ADSGoogle Scholar
  117. N. Katz, I. Furman, O. Biham, V. Pirronello, G. Vidali, Molecular hydrogen formation on astrophysically relevant surfaces. Astrophys. J. 522, 305–312 (1999). doi:10.1086/307642 ADSGoogle Scholar
  118. C.N. Keller, V.G. Anicich, T.E. Cravens, Model of Titans ionosphere with detailed hydrocarbon ion chemistry. Planet. Space Sci. 46, 1157–1174 (1998) ADSGoogle Scholar
  119. M. Larsson, A.E. Orel, Dissociative Recombination of Molecular Ions (Cambridge University Press, Cambridge, 2008) Google Scholar
  120. J. Le Bourlot, G. Pineau des Forets, E. Roueff, P. Schilke, Bistability in dark cloud chemistry. Astrophys. J. Lett. 416, 87 (1993). doi:10.1086/187077 ADSGoogle Scholar
  121. C.M. Leung, E. Herbst, W.F. Huebner, Synthesis of complex molecules in dense interstellar clouds via gas-phase chemistry—A pseudo time-dependent calculation. Astrophys. J. Suppl. 56, 231–256 (1984). doi:10.1086/190982 ADSGoogle Scholar
  122. A. Lipshtat, O. Biham, Efficient simulations of gas-grain chemistry in interstellar clouds. Phys. Rev. Lett. 93, 170601-4 (2004). doi:10.1103/PhysRevLett.93.170601 ADSGoogle Scholar
  123. A. Lipshtat, O. Biham, E. Herbst, Enhanced production of HD and D2 molecules on small dust grains in diffuse clouds. Mon. Not. R. Astron. Soc. Lett. 348, 1055–1064 (2004). doi:10.1111/j.1365-2966.2004.07437.x ADSGoogle Scholar
  124. A.I. Maergoiz, E.E. Nikitin, J. Troe, Capture of asymmetric top dipolar molecules by ions. Int. J. Mass Spectrom. 280, 42–49 (2009). doi:10.1016/j.ijms.2008.08.019 ADSGoogle Scholar
  125. G.A. Mamon, A.E. Glassgold, P.J. Huggins, The photodissociation of CO in circumstellar envelopes. Astrophys. J. 328, 797–808 (1988). doi:10.1086/166338 ADSGoogle Scholar
  126. J.B. Marquette, B.R. Rowe, G. Dupeyrat, G. Poissant, C. Rebrion, Ionpolar-molecule reactions: A CRESU study of He+, C+, N+ + H2O, NH3 at 27, 68 and 163 K. Chem. Phys. Lett. 122, 431–435 (1985) ADSGoogle Scholar
  127. R. Martinazzo, G.F. Tantardini, Quantum study of Eley-Rideal reaction and collision induced desorption of hydrogen atoms on a graphite surface. I. H-chemisorbed case. J. Chem. Phys. 124, 124702 (2006). doi:10.1063/1.2177654 ADSGoogle Scholar
  128. E. Matar, E. Congiu, F. Dulieu, A. Momeni, J.L. Lemaire, Mobility of D atoms on porous amorphous water ice surfaces under interstellar conditions. Astron. Astrophys. 492, 17–20 (2008). doi:10.1051/0004-6361:200810434 ADSGoogle Scholar
  129. B.J. McCall, A.J. Huneycutt, R.J. Saykally, T.R. Geballe, N. Djuric, G.H. Dunn, J. Semaniak, O. Novotny, A. Al-Khalili, A. Ehlerding, F. Hellberg, S. Kalhori, A. Neau, R. Thomas, F. Österdahl, M. Larsson, An enhanced cosmic-ray flux towards ζ Persei inferred from a laboratory study of the \(\mathrm{H}_{3}^{+}\)–e recombination rate. Nature 422, 500–502 (2003). doi:10.1038/nature01498 ADSGoogle Scholar
  130. W.H. McCrea, D. McNally, The formation of Population I stars, II. The formation of molecular hydrogen in interstellar matter. Mon. Not. R. Astron. Soc. Lett. 121, 238 (1960) ADSGoogle Scholar
  131. A.J.H.M. Meijer, A.J. Farebrother, D.C. Clary, A.J. Fisher, Time-dependent quantum mechanical calculations on the formation of molecular hydrogen on a graphite surface via an eley-rideal mechanism. J. Phys. Chem. A 105, 2173–2182 (2001) Google Scholar
  132. I.A. Mikhailov, V. Kokoouline, Å. Larson, S. Tonzani, C.H. Greene, Renner-Teller effects in HCO+ dissociative recombination. Phys. Rev. A 74, 032707 (2006). doi:10.1103/PhysRevA.74.032707 ADSGoogle Scholar
  133. T.J. Millar, E. Herbst, A new chemical model of the circumstellar envelope surrounding IRC+10216. Astron. Astrophys. 288, 561–571 (1994) ADSGoogle Scholar
  134. T.J. Millar, A. Bennett, J.M.C. Rawlings, P.D. Brown, S.B. Charnley, Gas phase reactions and rate coefficients for use in astrochemistry—The UMIST ratefile. Astron. Astrophys. 87, 585–619 (1991) ADSGoogle Scholar
  135. T.J. Millar, E. Herbst, R.P.A. Bettens, Large molecules in the envelope surrounding IRC+10216. Mon. Not. R. Astron. Soc. Lett. 316, 195–203 (2000). doi:10.1046/j.1365-8711.2000.03560.x Google Scholar
  136. Y. Miura, H. Kasai, W. Diño, H. Nakanishi, T. Sugimoto, First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 93, 3395–3400 (2003). doi:10.1063/1.1555701 ADSGoogle Scholar
  137. N. Miyauchi, H. Hidaka, T. Chigai, A. Nagaoka, N. Watanabe, A. Kouchi, Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10 K. Chem. Phys. Lett. 456, 27–30 (2008). doi:10.1016/j.cplett.2008.02.095 ADSGoogle Scholar
  138. H. Mokrane, H. Chaabouni, M. Accolla, E. Congiu, F. Dulieu, M. Chehrouri, J.L. Lemaire, Experimental evidence for water formation via ozone hydrogenation on dust grains at 10 K. Astrophys. J. Lett. 705, 195–198 (2009). doi:10.1088/0004-637X/705/2/L195 ADSGoogle Scholar
  139. S. Morisset, M. Aguillon, M. Sizun, V. Sidis, Role of surface relaxation in the Eley-Rideal formation of H2 on a graphite surface. J. Phys. Chem. A 108, 8571–8579 (2004) Google Scholar
  140. M. Nuevo, Y. Chen, T. Yih, W. Ip, H. Fung, C. Cheng, H. Tsai, C. Wu, Amino acids formed from the UV/EUV irradiation of inorganic ices of astrophysical interest. Adv. Space Res. 40, 1628–1633 (2007). doi:10.1016/j.asr.2007.04.056 ADSGoogle Scholar
  141. Y. Oba, N. Miyauchi, H. Hidaka, T. Chigai, N. Watanabe, A. Kouchi, Formation of compact amorphous H2O ice by codeposition of hydrogen atoms with oxygen molecules on grain surfaces. Astrophys. J. 701, 464–470 (2009). doi:10.1088/0004-637X/701/1/464 ADSGoogle Scholar
  142. K.I. Öberg, Complex processes in simple ices: laboratory and observational studies of gas-grain interactions during star formation. PhD thesis, Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands, 2009 Google Scholar
  143. K.I. Öberg, F. van Broekhuizen, H.J. Fraser, S.E. Bisschop, E.F. van Dishoeck, S. Schlemmer, Competition between CO and N2 desorption from interstellar ices. Astrophys. J. Lett. 621, 33–36 (2005). doi:10.1086/428901 ADSGoogle Scholar
  144. K.I. Öberg, G.W. Fuchs, Z. Awad, H.J. Fraser, S. Schlemmer, E.F. van Dishoeck, H. Linnartz, Photodesorption of CO Ice. Astrophys. J. Lett. 662, 23–26 (2007). doi:10.1086/519281 ADSGoogle Scholar
  145. K.I. Öberg, S. Bottinelli, E.F. van Dishoeck, Cold gas as an ice diagnostic toward low mass protostars. Astron. Astrophys. 494, 13–16 (2009a). doi:10.1051/0004-6361:200811228 Google Scholar
  146. K.I. Öberg, E.C. Fayolle, H.M. Cuppen, E.F. van Dishoeck, H. Linnartz, Quantification of segregation dynamics in ice mixtures. Astron. Astrophys. 505, 183–194 (2009e). doi:10.1051/0004-6361/200912464 ADSGoogle Scholar
  147. K.I. Öberg, R.T. Garrod, E.F. van Dishoeck, H. Linnartz, Formation rates of complex organics in UV irradiated CH3OH-rich ices. I. Experiments. Astron. Astrophys. 504, 891–913 (2009d). doi:10.1051/0004-6361/200912559 ADSGoogle Scholar
  148. K.I. Öberg, H. Linnartz, R. Visser, E.F. van Dishoeck, Photodesorption of ices. II. H2O and D2O. Astrophys. J. 693, 1209–1218 (2009c). doi:10.1088/0004-637X/693/2/1209 ADSGoogle Scholar
  149. K.I. Öberg, E.F. van Dishoeck, H. Linnartz, Photodesorption of ices I: CO, N2, and CO2. Astron. Astrophys. 496, 281–293 (2009b). doi:10.1051/0004-6361/200810207 ADSGoogle Scholar
  150. M. Ohishi, W.M. Irvine, N. Kaifu, Molecular abundance variations among and within cold, dark molecular clouds(rp), in Astrochemistry of Cosmic Phenomena, ed. by P.D. Singh. IAU Symposium, vol. 150 (1992), p. 171 Google Scholar
  151. H.B. Perets, O. Biham, Molecular hydrogen formation on porous dust grains. Mon. Not. R. Astron. Soc. Lett. 365, 801–806 (2006). doi:10.1111/j.1365-2966.2005.09803.x ADSGoogle Scholar
  152. H.B. Perets, O. Biham, G. Manicó, V. Pirronello, J. Roser, S. Swords, G. Vidali, Molecular hydrogen formation on ice under interstellar conditions. Astrophys. J. 627, 850–860 (2005). doi:10.1086/430435 ADSGoogle Scholar
  153. J.S.A. Perry, S.D. Price, Detection of rovibrationally excited H2 formed through the heterogeneous recombination of H atoms on a cold HOPG surface. Astrophys. Space. Sci. 285, 769–776 (2003). doi:10.1023/A:1026181815008 ADSGoogle Scholar
  154. S. Petrie, Y. Osamura, NCCN and NCCCCN formation in Titan’s atmosphere: 2. HNC as a viable precursor. J. Phys. Chem. A 108, 3623–3631 (2004) Google Scholar
  155. V. Pirronello, O. Biham, C. Liu, L. Shen, G. Vidali, Efficiency of molecular hydrogen formation on silicates. Astrophys. J. Lett. 483, 131–134 (1997b). doi:10.1086/310746 ADSGoogle Scholar
  156. V. Pirronello, C. Liu, L. Shen, G. Vidali, Laboratory synthesis of molecular hydrogen on surfaces of astrophysical interest. Astrophys. J. Lett. 475, 69–72 (1997a). doi:10.1086/310464 ADSGoogle Scholar
  157. V. Pirronello, C. Liu, J.E. Roser, G. Vidali, Measurements of molecular hydrogen formation on carbonaceous grains. Astron. Astrophys. 344, 681–686 (1999) ADSGoogle Scholar
  158. S.S. Prasad, W.T. Huntress Jr., A model for gas phase chemistry in interstellar clouds. I—The basic model, library of chemical reactions, and chemistry among C, N, and O compounds. Astrophys. J. Suppl. 43, 1–35 (1980a). doi:10.1086/190665 ADSGoogle Scholar
  159. S.S. Prasad, W.T. Huntress Jr., A model for gas phase chemistry in interstellar clouds. II—Nonequilibrium effects and effects of temperature and activation energies. Astrophys. J. 239, 151–165 (1980b). doi:10.1086/158097 ADSGoogle Scholar
  160. C. Rebrion, J.B. Marquette, B.R. Rowe, D.C. Clary, Low-temperature reactions of He+ and C+ with HCl, SO2 and H2S. Chem. Phys. Lett. 143, 130–134 (1988). doi:10.1016/0009-2614(88)87026-X ADSGoogle Scholar
  161. B.J. Robinson, F.F. Gardner, K.J. van Damme, J.G. Bolton, An intense concentration of Oh near the Galactic Centre. Nature 202, 989–991 (1964). doi:10.1038/202989a0 ADSGoogle Scholar
  162. M. Röllig, N.P. Abel, T. Bell, F. Bensch, J. Black, G.J. Ferland, B. Jonkheid, I. Kamp, M.J. Kaufman, J. Le Bourlot, F. Le Petit, R. Meijerink, O. Morata, V. Ossenkopf, E. Roueff, G. Shaw, M. Spaans, A. Sternberg, J. Stutzki, W. Thi, E.F. van Dishoeck, P.A.M. van Hoof, S. Viti, M.G. Wolfire, A photon dominated region code comparison study. Astron. Astrophys. 467, 187–206 (2007). doi:10.1051/0004-6361:20065918 ADSGoogle Scholar
  163. N. Rougeau, D. Teillet-Billy, V. Sidis, Double H atom adsorption on a cluster model of a graphite surface. Chem. Phys. Lett. 431, 135–138 (2006). doi:10.1016/j.cplett.2006.09.069 ADSGoogle Scholar
  164. B.R. Rowe, Studies of ion/molecule reactions at T∼80 K, in Rate Coefficients in Astrochemistry. Proceedings of a Conference. UMIST, Manchester, United Kingdom, 21–24 September 1987, ed. by T.J. Millar, D.A. Williams (Kluwer Academic, Dordrecht, 1988), p. 135. ISBN 90-277-2752-X. LC # QB450 .R38 Google Scholar
  165. H. Sabbah, L. Biennier, I.R. Sims, Y. Georgievskii, S.J. Klippenstein, I.W.M. Smith, Understanding reactivity at very low temperatures: The reactions of oxygen atoms with alkenes. Science 317, 102–105 (2007). doi:10.1126/science.1142373 ADSGoogle Scholar
  166. K. Sakimoto, K. Takayanagi, Influence of the dipole interaction on the low-energy ion-molecule reactions. J. Phys. Soc. Jpn. 48, 2076 (1980) ADSGoogle Scholar
  167. A. Saltelli, K. Chan, E.M. Scott, Sensitivity Analysis (Wiley, Chichester, 2000) MATHGoogle Scholar
  168. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice. A Guide to Assessing Scientific Models (Wiley, Chichester, 2004) MATHGoogle Scholar
  169. S.P. Sander, A.R. Ravishankara, D.M. Golden, C.E. Kolb, M.J. Kurylo, M.J. Molina, G.K. Moortgat, B.J. Finlayson-Pitts, P.H. Wine, R.E. Huie, Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number 15, JPL publication 06-2, 2006 Google Scholar
  170. X. Sha, First-principles study of the structural and energetic properties of H atoms on a graphite (0 0 0 1) surface. Surf. Sci. 496, 318–330 (2002). doi:10.1016/S0039-6028(01)01602-8 ADSGoogle Scholar
  171. X. Sha, B. Jackson, D. Lemoine, Quantum studies of Eley-Rideal reactions between H atoms on a graphite surface. J. Chem. Phys. 116, 7158–7169 (2002). doi:10.1063/1.1463399 ADSGoogle Scholar
  172. I.R. Sims, J. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B.R. Rowe, I.W.M. Smith, Ultralow temperature kinetics of neutral-neutral reactions. The technique and results for the reactions CN + O2 down to 13 K and CN + NH3 down to 25 K. J. Chem. Phys. 100, 4229–4241 (1994). doi:10.1063/1.467227 ADSGoogle Scholar
  173. I.W.M. Smith, Kinetics and Dynamics of Elementary Gas Reactions (Butterworth, London, 1980) Google Scholar
  174. I.W.M. Smith, A.M. Sage, N.M. Donahue, E. Herbst, D. Quan, The temperature-dependence of rapid low temperature reactions: experiment, understanding and prediction. Chem. Evol. Universe, Faraday Discuss. 133, 137 (2006). doi:10.1039/b600721j ADSGoogle Scholar
  175. T.P. Snow, V.M. Bierbaum, Ion chemistry in the interstellar medium. Annu. Rev. Anal. Chem. 1, 229–259 (2008). doi:10.1146/annurev.anchem.1.031207.112907 Google Scholar
  176. T. Stantcheva, V.I. Shematovich, E. Herbst, On the master equation approach to diffusive grain-surface chemistry: The H, O, CO system. Astron. Astrophys. 391, 1069–1080 (2002). doi:10.1051/0004-6361:20020838 ADSGoogle Scholar
  177. T. Su, W.J. Chesnavich, Parametrization of the ion-polar molecule collision rate constant by trajectory calculations. J. Chem. Phys. 76, 5183–5185 (1982). doi:10.1063/1.442828 ADSGoogle Scholar
  178. D. Talbi, I.W.M. Smith, A theoretical analysis of the reaction between CN radicals and NH3. Phys. Chem. Chem. Phys. 11, 8477 (2009). doi:10.1039/b908416a Google Scholar
  179. A.G.G.M. Tielens, W. Hagen, Model calculations of the molecular composition of interstellar grain mantles. Astron. Astrophys. 114, 245–260 (1982) ADSGoogle Scholar
  180. J. Troe, Statistical adiabatic channel model for ion-molecule capture processes. J. Chem. Phys. 87, 2773–2780 (1987). doi:10.1063/1.453701 ADSGoogle Scholar
  181. J. Troe, Statistical adiabatic channel model for ion-molecule capture processes. II. Analytical treatment of ion-dipole capture. J. Chem. Phys. 105, 6249–6262 (1996). doi:10.1063/1.472479 ADSGoogle Scholar
  182. J. Troe, T.M. Miller, A.A. Viggiano, Low-energy electron attachment to SF6. I. Kinetic modeling of nondissociative attachment. J. Chem. Phys. 127, 244303-12 (2007a). doi:10.1063/1.2804761 ADSGoogle Scholar
  183. J. Troe, T.M. Miller, A.A. Viggiano, Low-energy electron attachment to SF6. II. Temperature and pressure dependences of dissociative attachment. J. Chem. Phys. 127, 244304-13 (2007b). doi:10.1063/1.2804762 ADSGoogle Scholar
  184. H.C. van de Hulst, The Solid Particles in Interstellar Space (1949), p. 2 Google Scholar
  185. A.I. Vasyunin, D. Semenov, T. Henning, V. Wakelam, E. Herbst, A.M. Sobolev, Chemistry in protoplanetary disks: A sensitivity analysis. Astrophys. J. 672, 629–641 (2008). doi:10.1086/523887 ADSGoogle Scholar
  186. A.I. Vasyunin, D.A. Semenov, D.S. Wiebe, T. Henning, A unified Monte Carlo treatment of gas-grain chemistry for large reaction networks. I. Testing validity of rate equations in molecular clouds. Astrophys. J. 691, 1459–1469 (2009). doi:10.1088/0004-637X/691/2/1459 ADSGoogle Scholar
  187. A.A. Viggiano, S. Williams, Advances in Gas-Phase Ion Chemistry, vol. 4 (Elsevier, Amsterdam, 2001) Google Scholar
  188. V. Wakelam, E. Herbst, Polycyclic Aromatic Hydrocarbons in Dense Cloud Chemistry. Astrophys. J. 680, 371–383 (2008). doi:10.1086/587734 ADSGoogle Scholar
  189. V. Wakelam, F. Selsis, E. Herbst, P. Caselli, Estimation and reduction of the uncertainties in chemical models: application to hot core chemistry. Astron. Astrophys. 444, 883–891 (2005). doi:10.1051/0004-6361:20053673 ADSGoogle Scholar
  190. V. Wakelam, E. Herbst, F. Selsis, The effect of uncertainties on chemical models of dark clouds. Astron. Astrophys. 451, 551–562 (2006). doi:10.1051/0004-6361:20054682 ADSGoogle Scholar
  191. V. Wakelam, J. Loison, E. Herbst, D. Talbi, D. Quan, F. Caralp, A sensitivity study of the neutral-neutral reactions C + C3 and C + C5 in cold dense interstellar clouds. Astron. Astrophys. 495, 513–521 (2009). doi:10.1051/0004-6361:200810967 ADSGoogle Scholar
  192. N. Watanabe, A. Kouchi, Efficient formation of formaldehyde and methanol by the addition of hydrogen atoms to CO in H2O-CO ice at 10 K. Astrophys. J. Lett. 571, 173–176 (2002). doi:10.1086/341412 ADSGoogle Scholar
  193. W.D. Watson, Interstellar molecule reactions. Rev. Mod. Phys. 48, 513–552 (1976). doi:10.1103/RevModPhys.48.513 ADSGoogle Scholar
  194. S. Weinreb, Radio observations of OH in the interstellar medium. Nature 200, 829–831 (1963). doi:10.1038/200829a0 ADSGoogle Scholar
  195. J. Woodall, M. Agúndez, A.J. Markwick-Kemper, T.J. Millar, The UMIST database for astrochemistry 2006. Astron. Astrophys. 466, 1197–1204 (2007). doi:10.1051/0004-6361:20064981 ADSGoogle Scholar
  196. D.E. Woon, E. Herbst, Quantum chemical predictions of the properties of known and postulated neutral interstellar molecules. Astrophys. J. Suppl. 185, 273–288 (2009). doi:10.1088/0067-0049/185/2/273 ADSGoogle Scholar
  197. T. Zecho, Abstraction of D chemisorbed on graphite (0001) with gaseous H atoms. Chem. Phys. Lett. 366, 188–195 (2002). doi:10.1016/S0009-2614(02)01573-7 ADSGoogle Scholar
  198. T. Zecho, A. Guttler, X. Sha, B. Jackson, J. Kuppers, Adsorption of hydrogen and deuterium atoms on the (0001) graphite surface. J. Chem. Phys. 117, 8486–8492 (2002). doi:10.1063/1.1511729 ADSGoogle Scholar
  199. V. Zhaunerchyk, M. Kamińska, E. Vigren, M. Hamberg, W.D. Geppert, M. Larsson, R.D. Thomas, J. Semaniak, Sequential formation of the CH3+H+H channel in the dissociative recombination of \(\mathrm{CH}_{5}^{+}\). Phys. Rev. A 79, 030701 (2009). doi:10.1103/PhysRevA.79.030701 ADSGoogle Scholar
  200. L.M. Ziurys, P. Friberg, W.M. Irvine, Interstellar SiO as a tracer of high-temperature chemistry. Astrophys. J. 343, 201–207 (1989). doi:10.1086/167696 ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • V. Wakelam
    • 1
    • 2
  • I. W. M. Smith
    • 3
  • E. Herbst
    • 4
  • J. Troe
    • 5
    • 6
  • W. Geppert
    • 7
  • H. Linnartz
    • 8
  • K. Öberg
    • 8
    • 9
  • E. Roueff
    • 10
  • M. Agúndez
    • 11
  • P. Pernot
    • 12
    • 13
  • H. M. Cuppen
    • 8
  • J. C. Loison
    • 14
  • D. Talbi
    • 15
  1. 1.Observatoire Aquitain des Sciences de l’UniversUniversité de BordeauxFloirac CedexFrance
  2. 2.Laboratoire d’Astrophysique de BordeauxCNRS, UMR 5804Floirac CedexFrance
  3. 3.University Chemical LaboratoriesCambridgeUK
  4. 4.Departments of Physics, Astronomy, and ChemistryThe Ohio State UniversityColumbusUSA
  5. 5.Institut für Physikalische ChemieUniversität GöttingenGöttingenGermany
  6. 6.Max-Planck-Institut für Biophysikalische ChemieGöttingenGermany
  7. 7.Department of PhysicsUniversity of StockholmStockholmSweden
  8. 8.Sackler Laboratory for Astrophysics, Leiden ObservatoryUniversity of LeidenLeidenThe Netherlands
  9. 9.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  10. 10.Universit Paris 7 and Observatoire de Paris, LUTH, UMR 8102 CNRSMeudonFrance
  11. 11.Observatoire de Paris-MeudonLUTHMeudonFrance
  12. 12.Univ Paris-Sud, Laboratoire de Chimie PhysiqueUMR 8000OrsayFrance
  13. 13.CNRSOrsayFrance
  14. 14.Institut des Sciences Moléculaires, CNRS UMR 5255Université Bordeaux ITalence cedexFrance
  15. 15.Université Montpellier II—GRAALCNRS-UMR 5024MontpellierFrance

Personalised recommendations