Space Science Reviews

, Volume 156, Issue 1–4, pp 89–134 | Cite as

Magnetic Turbulence in the Geospace Environment

  • G. ZimbardoEmail author
  • A. Greco
  • L. Sorriso-Valvo
  • S. Perri
  • Z. Vörös
  • G. Aburjania
  • K. Chargazia
  • O. Alexandrova


Magnetic turbulence is found in most space plasmas, including the Earth’s magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α≃2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations.


Magnetosphere Turbulence Wave-particle interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G.A. Abel, M.P. Freeman, A statistical analysis of ionospheric velocity and magnetic field power spectra at the time of pulsed ionospheric flows. J. Geophys. Res. 107(A12), 1470 (2002). doi: 10.1029/2002JA009402 CrossRefGoogle Scholar
  2. G.A. Abel, M.P. Freeman, G. Chisham, Spatial structure of ionospheric convection velocities in regions of open and closed magnetic field topology. Geophys. Res. Lett. 33, L24103 (2006). doi: 10.1029/2006GL027919 ADSCrossRefGoogle Scholar
  3. G.D. Aburjania et al., Generation and propagation of the ULF planetary-scale electromagnetic wavy structures in the ionosphere. Planet. Space Sci. 53, 881 (2005) ADSCrossRefGoogle Scholar
  4. G.D. Aburjania, Kh.Z. Chargazia, G. Zimbardo, Model of strong stationary vortical turbulence in the space plasma. Nonlinear Proc. Geophys. 16, 11–22 (2009) ADSCrossRefGoogle Scholar
  5. O. Alexandrova et al., Cluster observations of finite amplitude Alfvén waves and small-scale magnetic filaments downstream of a quasi-perpendicular shock. J. Geophys. Res. 109, A05207 (2004). doi:10.1029/2003JA010056 CrossRefGoogle Scholar
  6. O. Alexandrova, A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, J.-M. Bosqued, M. Andre, Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock. J. Geophys. Res. 111, A12208 (2006). doi: 10.1029/2006JA011934 ADSCrossRefGoogle Scholar
  7. O. Alexandrova, V. Carbone, P. Veltri, L. Sorriso-Valvo, Solar wind CLUSTER observations: turbulent spectra and the role of Hall effect. Planet. Space Sci. 55, 2224–2227 (2007) ADSCrossRefGoogle Scholar
  8. O. Alexandrova, Solar wind vs magnetosheath turbulence and Alfvén vortices. Nonlinear Process. Geophys. 15, 95–108 (2008) ADSCrossRefGoogle Scholar
  9. O. Alexandrova, C. Lacombe, A. Mangeney, Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations. Ann. Geophys. 26, 3585 (2008a) ADSCrossRefGoogle Scholar
  10. O. Alexandrova, V. Carbone, P. Veltri, L. Sorriso-Valvo, Small scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153–1157 (2008b) ADSCrossRefGoogle Scholar
  11. O. Alexandrova, J. Saur, Alfvén vortices in Saturn’s magnetosheath: Cassini observations. J. Geophys. Lett. 35, L15102 (2008) ADSCrossRefGoogle Scholar
  12. O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S.J. Schwartz, P. Robert, Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103, 165003 (2009) ADSCrossRefGoogle Scholar
  13. V. Angelopoulos et al., Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027 (1992) ADSCrossRefGoogle Scholar
  14. K. Arzner, M. Scholer, R.A. Treumann, Percolation of charged particle orbits in two-dimensional irregular magnetic fields and its effect in the magnetospheric tail. J. Geophys. Res. 107(A4), 5-1 (2002) CrossRefGoogle Scholar
  15. Y. Asano, R. Nakamura, W. Baumjohann, A. Runov, Z. Voros, M. Volwerk et al., How typical are atypical current sheets? Geophys. Res. Lett. 32, L03108 (2005) CrossRefGoogle Scholar
  16. T.M. Bauer, W. Baumjohann, R.A. Treumann, N. Sckopke, H. Luhr, Low-frequency waves in the near-Earth’s plasma sheet. J. Geophys. Res. 100, 9605 (1995) ADSCrossRefGoogle Scholar
  17. J.W. Belcher, L. Davis Jr., Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534 (1971) ADSCrossRefGoogle Scholar
  18. R.J. Bickerton, Magnetic turbulence and the transport of energy and particles in tokamaks. Plasma Phys. Control. Fusion 39, 339 (1997) ADSCrossRefGoogle Scholar
  19. D. Biskamp, in Turbulence and Magnetic Fields in Astrophysics Series, ed. by E. Falgarone, T. Passot. Lecture Notes in Physics, vol. 614 (Springer, Berlin, 2003) Google Scholar
  20. D. Biskamp, E. Schwarz, J.F. Drake, Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 76, 1264 (1996) ADSCrossRefGoogle Scholar
  21. D. Biskamp, E. Schwarz, A. Zeiler, A. Celani, J.F. Drake, Electron magnetohydrodynamic turbulence. Phys. Plasmas 6, 751–758 (1999) MathSciNetADSCrossRefGoogle Scholar
  22. J. Blecki, R. Wronovski, S. Savin et al., Low-frequency plasma waves in the outer polar cusp: a review of observations from PROGNOZ 8, INTERBALL 1, MAGION 4, and CLUSTER. Surv. Geophys. 26, 177 (2005) ADSCrossRefGoogle Scholar
  23. J.E. Borovsky, H.O. Funsten, MHD turbulence in the Earth’s plasma sheet: dynamics, dissipation and driving. J. Geophys. Res. 108, 1284 (2003a). doi: 10.1029/2002JA009625 CrossRefGoogle Scholar
  24. J.E. Borovsky, H.O. Funsten, Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. 108, 1246 (2003b). doi: 10.1029/2002JA009601 CrossRefGoogle Scholar
  25. J.E. Borovsky, R.C. Elphic, H.O. Funsten, M.F. Thomsen, The Earth’s plasma sheet as a laboratory for flow turbulence in high-B MHD. J. Plasma Phys. 57, 1 (1997) ADSCrossRefGoogle Scholar
  26. D.L. Brower, W.A. Peebles, N.C. Luhmann, The spectrum, spatial distribution and scaling of microturbulence in the Text Tokamak. Nucl. Fusion 27, 2055–2073 (1987) CrossRefGoogle Scholar
  27. T. Browley, E. Mazzuccato, Scaling of density fluctuations in PDX. Nucl. Fusion 25, 507–524 (1985) CrossRefGoogle Scholar
  28. R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 2(4), 186 (2005) Google Scholar
  29. J. Büchner, Theory and simulation of reconnection. In memoriam Harry Petschek. Space Sci. Rev. 124, 345–360 (2006) ADSCrossRefGoogle Scholar
  30. J. Büchner, Astrophysical reconnection and collisionless dissipation. Plasma Phys. Control. Fusion 49, B325–B339 (2007) ADSCrossRefGoogle Scholar
  31. J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals. I—Basic theory of trapped motion. J. Geophys. Res. 94, 11,821 (1989) ADSCrossRefGoogle Scholar
  32. V. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, R. Bruno, Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations. Phys. Rev. Lett. 103, 061102 (2009) ADSCrossRefGoogle Scholar
  33. P.J. Cargill et al., Cluster at the magnetospheric cusps. Space Sci. Rev. 118, 321–366 (2005). doi: 10.1007/s11214-005-3835-0 ADSCrossRefGoogle Scholar
  34. C.C. Chaston, C.W. Carlson, R.E. Ergun, J.P. McFadden, FAST observations of inertial Alfvén waves in the dayside aurora. Geophys. Res. Lett. 26, 647–650 (1999) ADSCrossRefGoogle Scholar
  35. C.C. Chaston, M. Wilber, F.S. Mozer, M. Fujimoto, M.L. Goldstein, M. Acuna, H. Reme, A. Fazakerley, Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfvén waves at the Earth’s magnetopause. Phys. Rev. Lett. 99, 175004 (2007) ADSCrossRefGoogle Scholar
  36. J. Chen, T.A. Fritz, Correlation of cusp MeV helium with turbulent ULF power spectra and its implications. Geophys. Res. Lett. 25, 4113 (1998) ADSCrossRefGoogle Scholar
  37. J. Chen, T.A. Fritz, R.B. Sheldon et al., Cusp energetic particle events: implications for a major acceleration region of the magnetosphere. J. Geophys. Res. 103, 69–78 (1998) ADSCrossRefGoogle Scholar
  38. C.H.K. Chen, T.S. Horbury, A.A. Schekochihin, R.T. Wicks, O. Alexandrova, J. Mitchell, Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 104, 255002 (2010) ADSCrossRefGoogle Scholar
  39. L. Chevilard, B. Castaing, E. Lévêque, On rapid decrease of intermittency in the near-dissipation range of fully developed turbulence. Eur. Phys. J. B 45, 561–567 (2005) ADSCrossRefGoogle Scholar
  40. F. Chiaravalloti, A.V. Milovanov, G. Zimbardo, Self-similar transport processes in a two-dimensional realization of multiscale magnetic field turbulence. Phys. Scripta 73, 1 (2006) CrossRefGoogle Scholar
  41. V. Chmyrev, S.V. Bilichenko, O.A. Pokhotelov et al., Alfvén vortices and related phenomena in the ionosphere and the magnetosphere. Phys. Scripta 38, 841 (1988) ADSCrossRefGoogle Scholar
  42. P.J. Coleman, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371 (1968) ADSCrossRefGoogle Scholar
  43. G. Consolini, P. De Michelis, A. Meloni, L. Cafarella, M. Candidi, Levy-stable probability distribution of magnetic field fluctuations at Terra Nova Bay (Antartica), in Conf. Proceed. “Italian Research on Antarctic Atmosphere”, ed. by M. Colacino, G. Giovanelli, L. Stefanutti (SIF, Bologna, 1998), pp. 367–376 Google Scholar
  44. G. Consolini, M. Kretzschmar, A.T.Y. Lui, G. Zimbardo, W.M. Macek, On the magnetic field fluctuations during magnetospheric tail current disruption: a statistical approach. J. Geophys. Res. 110, A07202 (2005) CrossRefGoogle Scholar
  45. A. Czaykowska, T.M. Bauer, R.A. Treumann, W. Baumjohann, Magnetic field fluctuations across the Earth’s bow shock. Ann. Geophys. 19, 275–287 (2001) ADSCrossRefGoogle Scholar
  46. S. Dalena, A. Greco, G. Zimbardo, P. Veltri, Role of oxygen ions in the formation of a bifurcated current sheet in the magnetotail. J. Geophys. Res. 115, A03213 (2010) CrossRefGoogle Scholar
  47. P.H. Diamond, B.A. Carreras, On mixing length theory and saturated turbulence. Plasma Phys. Control Fusion 10, 271–278 (1987) Google Scholar
  48. M. Dobrowolny, A. Mangeney, P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144 (1980) MathSciNetADSCrossRefGoogle Scholar
  49. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961) ADSCrossRefGoogle Scholar
  50. T.H. Dupree, Theory of phase space density granulation on plasma. Phys. Fluids 15, 334–344 (1972) ADSCrossRefGoogle Scholar
  51. J.P. Eastwood, A. Balogh, M.W. Dunlop, T.S. Horbury, I. Dandouras, Cluster observations of fast magnetosonic waves in the terrestrial foreshock. Geophys. Res. Lett. 29, 220,000-1 (2002) CrossRefGoogle Scholar
  52. J.P. Eastwood, A. Balogh, E.A. Lucek, C. Mazelle, I. Dandouras, On the existence of Alfvén waves in the terrestrial foreshock. Ann. Geophys. 21, 1457–1465 (2003) ADSCrossRefGoogle Scholar
  53. J.P. Eastwood, E.A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, R.A. Treumann, The Foreshock. Space Sci. Rev. 118, 41–94 (2005) ADSCrossRefGoogle Scholar
  54. M. Faganello, F. Califano, F. Pegoraro, Numerical evidence of undriven fast reconnection in the solar-wind interaction with Earth’s magnetosphere: formation of electromagnetic coherent structures. Phys. Rev. Lett. 101, 105001 (2008) ADSCrossRefGoogle Scholar
  55. U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995) zbMATHGoogle Scholar
  56. T.A. Fritz, Q.G. Zong, The Magnetospheric cusps: a summary. Surv. Geophys. 26, 409 (2005) ADSCrossRefGoogle Scholar
  57. A.A. Galeev, M.M. Kuznetsova, L.M. Zelenyi, Magnetopause stability threshold for patchy reconnection. Space Sci. Rev. 44, 1–41 (1986) ADSCrossRefGoogle Scholar
  58. S. Galtier, E. Buchlin, Multiscale Hall-magnetohydrodynamic turbulence in the solar wind. Astrophys. J. 656, 560–566 (2007) ADSCrossRefGoogle Scholar
  59. W. Gekelman, Review of laboratory experiments on Alfvén waves and their relationship to space observations. J. Geophys. Res. 104, 14,417–14,435 (1999) ADSGoogle Scholar
  60. A. Greco, A.L. Taktakishvili, G. Zimbardo, P. Veltri, L.M. Zelenyi, Ion dynamics in the near Earth magnetotail: magnetic turbulence versus normal component of the average magnetic field. J. Geophys. Res. 107, 115 (2002) CrossRefGoogle Scholar
  61. A. Greco, A.L. Taktakishvili, G. Zimbardo, P. Veltri, G. Cimino, L.M. Zelenyi, R.E. Lopez, Ion transport and Lévy random walk across the magnetopause in the presence of magnetic turbulence. J. Geophys. Res. 108, 1395 (2003) CrossRefGoogle Scholar
  62. A. Greco, S. Perri, G. Zimbardo, L.M. Zelenyi, Particle acceleration by stochastic fluctuations and dawn-dusk electric field in the Earth’s magnetotail. Adv. Space Res. 44, 528–533 (2009) ADSCrossRefGoogle Scholar
  63. A. Greco, S. Perri, G. Zimbardo, Stochastic Fermi acceleration in the magnetotail current sheet: a numerical study. J. Geophys. Res. 115, A02203 (2010) CrossRefGoogle Scholar
  64. E.E. Grigorenko, J.-A. Sauvaud, L.M. Zelenyi, Spatial-temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail. J. Geophys. Res. 112, A05218 (2007). doi: 10.1029/2006JA011986 CrossRefGoogle Scholar
  65. E.E. Grigorenko, M. Hoshino, M. Hirai, T. Mukai, L.M. Zelenyi, “Geography” of ion acceleration in the magnetotail: X-line versus current sheet effects. J. Geophys. Res. 114, A03203 (2009) CrossRefGoogle Scholar
  66. G. Haerendel, G. Paschmann, N. Sckopke, H. Rosenbauer, The frontside boundary layer of the magnetosphere and the problem of reconnection. J. Geophys. Res. 83, 3195–3216 (1978) ADSCrossRefGoogle Scholar
  67. H. Hasegawa, M. Fujimoto, T.-D. Phan, H. Reme, A. Balogh, M.W. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430, 755 (2004) ADSCrossRefGoogle Scholar
  68. T. S. Horbury, M. Forman, S. Oughton, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101, 175005 (2008) ADSCrossRefGoogle Scholar
  69. W. Horton, Drift turbulence and anomalous transport, in Basic Plasma Physics, vol. 2, ed. by A.A. Galeev, R.N. Sudan (North-Holland, Amsterdam, 1985) Google Scholar
  70. M. Hoshino, A. Nishida, T. Yamamoto, S. Kokubun, Turbulent magnetic field in the distant magnetotail: bottom-up process of plasmoid formation? Geophys. Res. Lett. 21, 2935 (1994) ADSCrossRefGoogle Scholar
  71. M. Hoshino, A. Nishida, T. Mukai, Y. Saito, T. Yamamoto, S. Kokubun, Structure of plasma sheet in magnetotail: duoble-peaked electric current sheet. J. Geophys. Res. 101, 24,775 (1996) ADSCrossRefGoogle Scholar
  72. W.J. Hughes, The magnetopause, magnetotail, and magnetic reconnection, in Introduction to Space Physics, ed. by M.G. Kivelson, C.T. Russell (Cambridge University Press, Cambridge, 1995), p. 227 Google Scholar
  73. P.S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566 (1964) MathSciNetADSGoogle Scholar
  74. A. Keiling, V. Angelopoulos, A. Runov et al., Substorm current wedge driven by plasma flow vortices: THEMIS observations. J. Geophys. Res. 114, A00C22 (2009) CrossRefGoogle Scholar
  75. A. Klimas, V. Uritsky, E. Donovan, Multiscale auroral emission statistics as evidence of turbulent reconnection in Earth’s midtail plasma sheet. J. Geophys. Res. 115, A06202 (2010) CrossRefGoogle Scholar
  76. A.N. Kolmogorov, The local structure of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR, 301–305 (1941) Google Scholar
  77. R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids, 1385–1387 (1965) Google Scholar
  78. J. Labelle, R.A. Treumann, Plasma waves at the dayside magnetopause. Space Sci. Rev. 47, 175–202 (1988) ADSCrossRefGoogle Scholar
  79. C. Lacombe, A.A. Samsonov, A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, C.C. Harvey, J.-M. Bosqued, P. Trávníček, Cluster observations in the magnetosheath—Part 2: Intensity of the turbulence at electron scales. Ann. Geophys. 24, 3523 (2006) ADSCrossRefGoogle Scholar
  80. R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus, H.K. Wong, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775–4787 (1998) ADSCrossRefGoogle Scholar
  81. R.L. Lysak, Electromagnetic coupling of the magnetosphere and ionosphere. Space Sci. Rev. 52, 33–87 (1990) ADSCrossRefGoogle Scholar
  82. B.T. MacBride, M.A. Forman, C.W. Smith, Turbulence and the third moment of fluctuations: Kolmogorov’s 4/5 law and its MHD analogues in the solar wind, in Solar Wind 11, ed. by B. Fleck and T. H. Zurbuchen, ESA Spec. Publ., ESA SP-592, 613 (2005) Google Scholar
  83. B.T. MacBride, C.W. Smith, M.A. Forman, The turbulent cascade at 1 AU: energy transfer and the third-order scaling for MHD. Astrophys J. 679, 1644–1660 (2008) ADSCrossRefGoogle Scholar
  84. A. Mangeney, C. Lacombe, M. Maksimovic, A.A. Samsonov, N. Cornilleau-Wehrlin, C.C. Harvey, J.-M. Bosqued, P. Travnicek, Cluster observations in the magnetosheath—Part 1: Anisotropies of the wave vector distribution of the turbulence at electron scales. Ann. Geophys. 24, 3507–3521 (2006). ADSCrossRefGoogle Scholar
  85. R. Marino, L. Sorriso-Valvo, V. Carbone, A. Noullez, R. Bruno, B. Bavassano, Astrophys J. 677, L71 (2008) ADSCrossRefGoogle Scholar
  86. W. Masood, S.J. Schwartz, M. Maksimovic, A.N. Fazakerley, Electron velocity distribution and lion roars in the magnetosheath. Ann. Geophys. 24, 1725 (2006) ADSCrossRefGoogle Scholar
  87. Y. Matsumoto, M. Hoshino, Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer. J. Geophys. Res. 111, A05213 (2006) CrossRefGoogle Scholar
  88. W.H. Matthaeus, M.L. Goldstein, Low-frequency 1/f noise in the interplanetary magnetic field. Phys. Rev. Lett. 57, 495–498 (1986) ADSCrossRefGoogle Scholar
  89. A.V. Milovanov, G. Zimbardo, Percolation in sign-symmetric random fields: topological aspects and numerical modeling. Phys. Rev. E 62, 250–260 (2000) ADSCrossRefGoogle Scholar
  90. A.V. Milovanov, L.M. Zelenyi, G. Zimbardo, Fractal structures and power law spectra in the distant Earth’s magnetotail. J. Geophys. Res. 101, 19,903 (1996) ADSCrossRefGoogle Scholar
  91. Y. Narita, K.-H. Glassmeier, R.A. Treumann, Wave-number spectra and intermittency in the terrestrial foreshock region. Phys. Rev. Lett. (2006). doi: 10.1103/PhysRevLett.97.191101 Google Scholar
  92. Y. Narita, K.-H. Glassmeier, M. Franz, Y. Nariyuki, T. Hada, Observation of linear and nonlinear processes in the foreshok wave evolution. Nonlinear Process. Geophys. 14, 361–371 (2007) CrossRefGoogle Scholar
  93. K. Nykyri, P.J. Cargill, E.A. Lucek, T.S. Horbury, A. Balogh, B. Lavraud, I. Dandouras, H. Reme, Ion cyclotron waves in the high altitude cusp: CLUSTER observations at varying spacecraft separations. Geophys. Res. Lett. 30(24), 2263 (2003). doi: 10.1029/2003GL018594 CrossRefGoogle Scholar
  94. K. Nykyri, P.J. Cargill, E.A. Lucek, T.S. Horbury, B. Lavraud, A. Balogh, M.W. Dunlop, Y. Bogdanova, A. Fazarkerley, I. Dandouras, H. Reme, Cluster observations of magnetic field fluctuations in the high-altitude cusp. Ann. Geophys. 22, 2413–2429 (2004) ADSCrossRefGoogle Scholar
  95. K. Nykyri, B. Grison, P. Cargill, B. Lavraud, E. Lucek, I. Dandouras, A. Balogh, N. Cornilleau-Wehrlin, H. Reme, Origin of the turbulent spectra in the high-latitude cusp: Cluster spacecraft observations. Ann. Geophys. 24, 1–20 (2006) CrossRefGoogle Scholar
  96. M. Onofri, L. Primavera, F. Malara, P. Veltri, Three-dimensional simulations of magnetic reconnection in slab geometry. Phys. Plasmas 11, 4837 (2004) ADSCrossRefGoogle Scholar
  97. S. Oughton, W.H. Matthaeus, S. Ghosh, Scaling of spectral anisotropy with magnetic field strength in decaying magnetohydrodynamic turbulence. Phys. Plasmas 5, 4235–4242 (1998) MathSciNetADSCrossRefGoogle Scholar
  98. M.L. Parkinson, Dynamical critical scaling of electric field fluctuations in the greater cusp and magnetotail implied by HF radar observations of F-region Doppler velocity. Ann. Geophys. 24, 689–705 (2006) ADSCrossRefGoogle Scholar
  99. S. Perri, F. Lepreti, V. Carbone, A. Vulpiani, Position and velocity space diffusion of test particles in stochastic electromagnetic fields. Europhys. Lett. 78, 40003 (2007) ADSCrossRefGoogle Scholar
  100. S. Perri, G. Zimbardo, Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. Lett. 671, 177–180 (2007) ADSCrossRefGoogle Scholar
  101. S. Perri, G. Zimbardo, Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. 113, A03107 (2008). doi: 10.1029/2007JA012695 CrossRefGoogle Scholar
  102. S. Perri, G. Zimbardo, Ion superdiffusion at the solar wind termination shock. Astrophys. J. Lett. 693, L118–L121 (2009) ADSCrossRefGoogle Scholar
  103. S. Perri, E. Yordanova, V. Carbone, P. Veltri, L. Sorriso-Valvo, R. Bruno, M. André, Magnetic turbulence in space plasmas: scale-dependent effects of anisotropy. J. Geophys. Res. 114, A02102 (2009a) CrossRefGoogle Scholar
  104. S. Perri, A. Greco, G. Zimbardo, Stochastic and direct acceleration mechanisms in the Earth’s magnetotail. Geophys. Res. Lett. 36, L04103 (2009b) CrossRefGoogle Scholar
  105. J.L. Pincon, U. Motschmann, Multi-spacecraft filtering: general framework, in Analysis Methods for Multi-Spaacecraft Data, ed. by G. Paschmann and P. W. Daly. ISSI Scientific Report SR-001, 65–78, ISSI/ESA (1998) Google Scholar
  106. H. Politano, A. Pouquet, Dynamical length scales for turbulent magnetized flows. Geophys. Res. Lett. 25, 273–276 (1998) ADSCrossRefGoogle Scholar
  107. P. Pommois, G. Zimbardo, P. Veltri, Anomalous, non-Gaussian transport of charged particles in anisotropic magnetic turbulence. Phys. Plasmas 14, 012311 (2007) ADSCrossRefGoogle Scholar
  108. L. Rezeau, A. Morane, S. Perraut, A. Roux, R. Schmidt, Characterization of Alfvénic fluctuations in the magnetopause boundary layer. J. Geophys. Res. 94, 101 (1989) ADSCrossRefGoogle Scholar
  109. C.T. Russell, Noise in the geomagnetic tail. Planet. Space Sci. 20, 1541 (1972) ADSCrossRefGoogle Scholar
  110. R.Z. Sagdeev, S.S. Mocseev, A.V. Tur, V.V. Yanovskii, Problems of the theory of strong turbulence and topological solitons, in Non-Linear Phenomena in Plasma Physics and Hydrodynamics, ed. by R.Z. Sagdeev (Mir, Moscow, 1986), pp. 131–182 Google Scholar
  111. F. Sahraoui, G. Belmont, J.L. Pincon et al., Magnetic turbulent spectra in the magnetosheath: the k-filtering technique applied to Cluster II data. J. Geophys. Res. 108, 1335 (2003). doi: 10.1029/2002JA009587 CrossRefGoogle Scholar
  112. F. Sahraoui, J.L. Pincon, G. Belmont et al., ULF wave identification in the magnetosheath: new insights. Ann. Geophys. 22, 2283–2288 (2004) ADSCrossRefGoogle Scholar
  113. F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin, J.L. Pincon, A. Balogh, Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the cluster spacecraft. Phys. Rev. Lett. 96, 075002 (2006) ADSCrossRefGoogle Scholar
  114. F. Sahraoui, M.L. Goldstein, P. Robert, Yu.V. Khotyaintsev, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102 (2009) ADSCrossRefGoogle Scholar
  115. A. Samsonov, Numerical modelling of the Earth’s magnetosheath for different IMF orientations. Adv. Space Res. 38, 1652 (2006) ADSCrossRefGoogle Scholar
  116. S. Savin, J. Büchner, G. Consolini et al., On the properties of turbulent boundary layer over polar cusps. Nonlinear Proc. Geophys. 9, 443 (2002a) ADSCrossRefGoogle Scholar
  117. S.P. Savin, L.M. Zelenyi, N.C. Maynard, I. Sandhal et al., Multi-spacecraft tracing of turbulent boundary layer. Adv. Space Res. 30, 2821 (2002b) ADSCrossRefGoogle Scholar
  118. S. Savin, A. Skalsky, L.M. Zelenyi et al., Magnetosheath interaction with the high latitude magnetopause. Surv. Geophys. 26, 95–133 (2005a) ADSCrossRefGoogle Scholar
  119. S. Savin, L. Zelenyi, E. Amata, J. Buechner, J. Blecki, A. Greco, S. Klimov, R.E. Lopez, B. Nikutowski, E. Panov, J. Pickett, J.L. Rauch, S. Romanov, P. Song, A. Skalsky, V. Smirnov, A. Taktakishvili, P. Veltri, G. Zimbardo, Magnetosheath interaction with high latitude magnetopause: dynamic flow chaotization. Planet. Space Sci. 53, 133–140 (2005b) ADSCrossRefGoogle Scholar
  120. S.J. Schwartz, D. Burgess, J.J. Moses, Low-frequency waves in the Earth’s magnetosheath: present status. Ann. Geophys. 14, 1134–1150 (1996) ADSGoogle Scholar
  121. V.A. Sergeev et al., Non-substorm transient injection events in the ionosphere and magnetosphere. Planet. Space Sci. 38, 231 (1990) ADSCrossRefGoogle Scholar
  122. V.A. Sergeev, D.G. Mitchell, C.T. Russel, D.J. Williams, Structure of the tail plasma/current sheet at 11 R E and its changes in the course of a substorm. J. Geophys. Res. 98, 17,345 (1993) ADSGoogle Scholar
  123. C.W. Smith, K. Hamilton, B.J. Vasquez, R.J. Leamon, Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. 645, L85 (2006) ADSCrossRefGoogle Scholar
  124. P. Song, R.C. Russell, R.J. Strangeway, J.R. Wygant, C.A. Cattell, R.J. Fitzenreiter, R.R. Anderson, Wave properties near the subsolar magnetopause—Pc 3–4 energy coupling for northward interplanetary magnetic field. J. Geophys. Res. 98, 187 (1993) ADSCrossRefGoogle Scholar
  125. L. Sorriso-Valvo, V. Carbone, G. Consolini, R. Bruno, P. Veltri, Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26, 1804 (1999) ADSCrossRefGoogle Scholar
  126. L. Sorriso-Valvo et al., Intermittency in plasma turbulence. Planet. Space Sci. 49, 1193 (2001) ADSCrossRefGoogle Scholar
  127. L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti, P. Veltri, R. Bruno, B. Bavassano, E. Pietropaolo, Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001 (2007) ADSCrossRefGoogle Scholar
  128. L. Sorriso-Valvo, V. Carbone, R. Marino, A. Noullez, R. Bruno, P. Veltri, Sorriso-Valvo et al. Reply. Phys. Rev. Lett. 104, 189002 (2010) ADSCrossRefGoogle Scholar
  129. K. Stasiewicz, P. Bellan, C. Chaston, C. Kletzing, R. Lysak, J. Maggs, O. Pokhotelov, C. Seyler, P. Shukla, L. Stenflo, A. Streltsov, J.-E. Wahlund, Small scale Alfvénic structure in the aurora. Space Sci. Rev. 92, 423–533 (2000) ADSCrossRefGoogle Scholar
  130. D. Sundkvist, V. Krasnoselskikh, P.K. Shukla et al., In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence. Nature 436, 825 (2005) ADSCrossRefGoogle Scholar
  131. A. Taktakishvili, G. Zimbardo, E. Amata, S. Savin, A. Greco, P. Veltri, R.E. Lopez, Ion escape from the high latitude magnetopause: analysis of oxygen and proton dynamics in magnetic turbulence. Ann. Geophys. 25, 1877–1885 (2007) ADSCrossRefGoogle Scholar
  132. A. Tjulin, J.-L. Pincon, F. Sahraoui, M. Andre, N. Cornilleau-Wehrlin, The k-filtering technique applied to wave electric and magnetic field measurements from the Cluster satellites. J. Geophys. Res. 110, A11224 (2005) ADSCrossRefGoogle Scholar
  133. R.A. Treumann, Theory of super-diffusion for the magnetopause. Geophys. Res. Lett. 24, 1727–1730 (1997) ADSCrossRefGoogle Scholar
  134. C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73, 1–210 (1995) ADSCrossRefGoogle Scholar
  135. P. Veltri, G. Zimbardo, Electron whistler interaction at the Earth’s bow shock. 1. Whistler instability. J. Geophys. Res. 98, 13325–13333 (1993a) ADSCrossRefGoogle Scholar
  136. P. Veltri, G. Zimbardo, Electron whistler interaction at the Earth’s bow shock. 2. Electron pitch-angle diffusion. J. Geophys. Res. 98, 13335–13346 (1993b) ADSCrossRefGoogle Scholar
  137. P. Veltri, G. Zimbardo, A.L. Taktakishvili, L.M. Zelenyi, Effect of magnetic turbulence on the ion dynamics in the distant magnetotail. J. Geophys. Res. 103, 14,897 (1998) ADSCrossRefGoogle Scholar
  138. O. Verkhoglyadova, A. Agapitov, A. Andrushchenko, V. Ivchenko, S. Romanov, Yu. Yermolaev, Compressional wave events in the dawn plasma sheet observed by Interball-1. Ann. Geophys. 17, 1145–1154 (1999) ADSCrossRefGoogle Scholar
  139. W.F. Vinen, R.J. Donnelly, Quantum turbulence. Phys. Today 60(4), 43–48 (2007) CrossRefGoogle Scholar
  140. Z. Vörös, W. Baumjohann, R. Nakamura, A. Runov et al., Multi-scale magnetic field intermittence in the plasma sheet. Ann. Geophys. 21, 1955 (2003) ADSCrossRefGoogle Scholar
  141. Z. Vörös, W. Baumjohann, R. Nakamura, A. Runov et al., Wavelet analysis of magnetic turbulence in the Earth’s plasma sheet. Phys. Plasmas 11, 1333 (2004) ADSCrossRefGoogle Scholar
  142. Z. Vörös, W. Baumjohann, R. Nakamura, R.A. Runov, M. Volwerk, Y. Asano, D. Jankovicova, E.A. Lucek, H. Reme, Spectral scaling in the turbulent Earth’s plasma sheet revisited. Nonlinear Proces. Geophys. 14, 535–541 (2007a) ADSCrossRefGoogle Scholar
  143. Z. Vörös, W. Baumjohann, R. Nakamura, R.A. Runov, M. Volwerk, T. Takada, E.A. Lucek, H. Reme, Spatial structure of plasma flow associated turbulence in the Earth’s plasma sheet. Ann. Geophys. 25, 13–17 (2007b) ADSCrossRefGoogle Scholar
  144. Z. Vörös, R. Nakamura, V. Sergeev, W. Baumjohann, A. Runov, T.L. Zhang, M. Volwerk, T. Takada, D. Jankovicova, E. Lucek, H. Reme, Study of reconnection associated multi-scale fluctuations with Cluster and Double Star. J. Geophys. Res. 113, A07S29 (2008). doi: 10.1029/2007JA012688 CrossRefGoogle Scholar
  145. R.E. Waltz, Subcritical magnetohydrodynamic turbulence. Phys. Rev. Lett. 55, 1098–1101 (1985) ADSCrossRefGoogle Scholar
  146. Zh. Wang, M. Ashour-Abdalla, Simulation of magnetic field line stochasticity at the magnetopause. J. Geophys. Res. 99, 2321 (1994) ADSCrossRefGoogle Scholar
  147. H. Weissen, Ch. Hollenstein, R. Benn, Turbulent density fluctuations in the Tokamak. Plasma Phys. Control Fusion 30, 293–309 (1988) ADSCrossRefGoogle Scholar
  148. R.A. Wolf, Magnetospheric configuration, in Introduction to Space Physics, ed. by M.G. Kivelson, C.T. Russell (Cambridge University Press, Cambridge, 1995), p. 288 Google Scholar
  149. E. Yordanova, J. Bergman, G. Consolini, M. Kretzschmar, M. Materassi, B. Popielawska, M. Roca-Sogorb, K. Stasiewicz, A.W. Wernik, Anisotropic scaling features and complexity in magnetospheric-cusp: a case study. Nonlinear Proc. Geophys. 12, 817–825 (2005) ADSCrossRefGoogle Scholar
  150. E. Yordanova, A. Vaivads, M. André, S.C. Buchert, Z. Vörös, Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft. Phys. Rev. Lett. 100, 205003 (2008) ADSCrossRefGoogle Scholar
  151. L.M. Zelenyi, E.E. Grigorenko, A.O. Fedorov, Spatial-temporal ion structures in the Earth’s magnetotail: beamlets as a result of nonadiabatic impulse acceleration of the plasma. JETP Lett. 80, 663–673 (2004) ADSCrossRefGoogle Scholar
  152. L.M. Zelenyi, E.E. Grigorenko, J.-A. Sauvaud, R. Maggiolo, Multiplet structure of acceleration processes in the distant magnetotail. Geophys. Res. Lett. 33, L06105 (2006) CrossRefGoogle Scholar
  153. G. Zimbardo, P. Veltri, Spreading and intermittent structure of the upstream boundary of planetary magnetic foreshocks. Geophys. Res. Lett. 23, 793–796 (1996) ADSCrossRefGoogle Scholar
  154. G. Zimbardo, A. Greco, P. Veltri, Superballistic transport in tearing driven magnetic turbulence. Phys. Plasmas 7, 1071 (2000a) ADSCrossRefGoogle Scholar
  155. G. Zimbardo, P. Veltri, P. Pommois, Anomalous, quasilinear, and percolative regimes for magnetic-field-line transport in axially symmetric turbulence. Phys. Rev. E 61, 1940 (2000b) ADSCrossRefGoogle Scholar
  156. G. Zimbardo, A. Greco, P. Veltri, A. Taktakishvili, L. Zelenyi, Double peak structure and diamagnetic wings of the magnetotail current sheet. Ann. Geophys. 22, 2541–2546 (2004a) ADSCrossRefGoogle Scholar
  157. G. Zimbardo, P. Pommois, P. Veltri, Magnetic flux tube evolution in solar wind anisotropic magnetic turbulence. J. Geophys. Res. 109, A02113 (2004b) CrossRefGoogle Scholar
  158. G. Zimbardo, Anomalous particle diffusion and Levy random walk of magnetic field lines in three-dimensional solar wind turbulence. Plasma Phys. Control. Fusion 47, B755–B767 (2005) CrossRefGoogle Scholar
  159. G. Zimbardo, Magnetic turbulence in space plasmas: in and around the Earth’s magnetosphere. Plasma Phys. Control Fusion 48, B295–B302 (2006). doi: 10.1088/0741-3335/48/12B/S28 CrossRefGoogle Scholar
  160. G. Zimbardo, Heavy ion reflection and heating by collisionless shocks in polar solar corona. Planet. Space Sci. (2010). doi: 10.1016/j.pss.2010.03.010 Google Scholar
  161. G. Zimbardo, P. Pommois, P. Veltri, Superdiffusive and subdiffusive transport of energetic particles in solar wind anisotropic magnetic turbulence. Astrophys. J. Lett. 639, L91 (2006) ADSCrossRefGoogle Scholar
  162. G. Zimbardo, P. Pommois, P. Veltri, Visualizing particle transport across magnetic flux tubes in anisotropic magnetic turbulence. IEEE Trans. Plasmas Sci. 36(4), 1114–1115 (2008). doi: 10.1109/TPS.2004.924572 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • G. Zimbardo
    • 1
    Email author
  • A. Greco
    • 1
  • L. Sorriso-Valvo
    • 2
  • S. Perri
    • 3
  • Z. Vörös
    • 4
    • 5
  • G. Aburjania
    • 6
  • K. Chargazia
    • 6
  • O. Alexandrova
    • 7
  1. 1.Department of PhysicsUniversity of CalabriaRendeItaly
  2. 2.LICRYL LaboratoryIPCF-CNRRendeItaly
  3. 3.International Space Science InstituteBernSwitzerland
  4. 4.Institute of Atmospheric ResearchPragueCzech Republic
  5. 5.Institute of Astro- and Particle PhysicsUniversity of InnsbruckInnsbruckAustria
  6. 6.I. Vekua Institute of Applied Mathematics, M. Nodia Institute of GeophysicsTbilisi State UniversityTbilisiGeorgia
  7. 7.LESIA, Observatoire de Paris, CNRS, UPMCUniversité Paris DiderotMeudonFrance

Personalised recommendations