Space Science Reviews

, Volume 165, Issue 1–4, pp 3–25 | Cite as

The ARTEMIS Mission

  • V. Angelopoulos


The Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) mission is a spin-off from NASA’s Medium-class Explorer (MIDEX) mission THEMIS, a five identical micro-satellite (hereafter termed “probe”) constellation in high altitude Earth-orbit since 17 February 2007. By repositioning two of the five THEMIS probes (P1 and P2) in coordinated, lunar equatorial orbits, at distances of ∼55–65 R E geocentric (∼1.1–12 R L selenocentric), ARTEMIS will perform the first systematic, two-point observations of the distant magnetotail, the solar wind, and the lunar space and planetary environment. The primary heliophysics science objectives of the mission are to study from such unprecedented vantage points and inter-probe separations how particles are accelerated at reconnection sites and shocks, and how turbulence develops and evolves in Earth’s magnetotail and in the solar wind. Additionally, the mission will determine the structure, formation, refilling, and downstream evolution of the lunar wake and explore particle acceleration processes within it. ARTEMIS’s orbits and instrumentation will also address key lunar planetary science objectives: the evolution of lunar exospheric and sputtered ions, the origin of electric fields contributing to dust charging and circulation, the structure of the lunar interior as inferred by electromagnetic sounding, and the lunar surface properties as revealed by studies of crustal magnetism. ARTEMIS is synergistic with concurrent NASA missions LRO and LADEE and the anticipated deployment of the International Lunar Network. It is expected to be a key element in the NASA Heliophysics Great Observatory and to play an important role in international plans for lunar exploration.


THEMIS ARTEMIS Magnetosphere Reconnection Solar wind Turbulence Lunar exosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.H. Acuña et al., The Global Geospace Science program and its investigations. Space Sci. Rev. 71, 5 (1995) ADSCrossRefGoogle Scholar
  2. V. Angelopoulos, The THEMIS Mission. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9336-1 Google Scholar
  3. H.U. Auster et al., The THEMIS fluxgate magnetometer. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9365-9 Google Scholar
  4. M. Bester et al., THEMIS operations. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9456-7 Google Scholar
  5. A.B. Binder, Lunar Prospector, overview. Science 281, 1475 (1998) ADSCrossRefGoogle Scholar
  6. J.W. Bonnell et al., The Electric Field Instrument (EFI) for THEMIS. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9469-2 Google Scholar
  7. S.B. Broschart et al., Preliminary trajectory design for the ARTEMIS lunar mission. AAS 09-382, 2009 Google Scholar
  8. C.M. Cully et al., The THEMIS digital fields board. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9417-1 Google Scholar
  9. P. Dyal et al., Magnetism and the interior of the Moon. Rev. Geophys. Space Phys. 12, 568 (1974) ADSCrossRefGoogle Scholar
  10. J.S. Halekas et al., Extreme lunar surface charging during solar energetic particle events. Geophys. Res. Lett. 34, L02111 (2007). doi: 10.1029/2006GL028517 CrossRefGoogle Scholar
  11. J.S. Halekas et al., Lunar Prospector observations of the electrostatic potential of the lunar surface and its response to incident currents. J. Geophys. Res. 113, A09102 (2008a). doi: 10.1029/2008JA013194 ADSCrossRefGoogle Scholar
  12. J.S. Halekas et al., Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind: A mini-magnetosphere? Planet. Space Sci. 56, 941 (2008b). doi: 10.1016/j.pss.208.01.008 ADSCrossRefGoogle Scholar
  13. J.S. Halekas et al., Solar wind interaction with lunar crustal magnetic anomalies. Adv. Space. Res. 41, 1319 (2008c). doi: 10.1016/j.asr.2007.04.003 ADSCrossRefGoogle Scholar
  14. J.S. Halekas et al., Lunar surface charging during solar energetic particle events: Measurement and prediction. Planet. Space Sci. 57, 78 (2009) ADSCrossRefGoogle Scholar
  15. R.E. Hartle, R. Killen, Measuring pickup ions to characterize the surfaces and exospheres of planetary bodies: Applications to the Moon. Geophys. Res. Lett. 33, L05201 (2006). doi: 10.1029/2005GL024520 CrossRefGoogle Scholar
  16. P. Harvey, E. Taylor, R. Sterling, M. Cully, The THEMIS constellation. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9416-2 Google Scholar
  17. L.L. Hood, C.P. Sonnett, Limits on the lunar temperature profile. Geophys. Res. Lett. 9(1), 37 (1982) ADSCrossRefGoogle Scholar
  18. L.L. Hood et al., The deep lunar electrical conductivity profile—structural and thermal inferences. J. Geophys. Res. 87, 5311 (1982) ADSCrossRefGoogle Scholar
  19. L.L. Hood et al., Initial measurements of the lunar induced magnetic dipole moment using lunar prospector magnetometer data. Geophys. Res. Lett. 26(15), 2327 (1999) ADSCrossRefGoogle Scholar
  20. G.S. Hubbard et al., The Lunar Prospector discovery mission: mission and measurement description. IEEE Trans. Nucl. Sci. 3, 880 (1998) ADSCrossRefGoogle Scholar
  21. K.K. Khurana et al., Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998) ADSCrossRefGoogle Scholar
  22. M.G. Kivelson et al., Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment. J. Geophys. Res. 104, 4609 (1999) ADSCrossRefGoogle Scholar
  23. M.G. Kivelson et al., The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507 (2002). doi: 10.1006/icar.2002.6834 ADSCrossRefGoogle Scholar
  24. O. Le Contel et al., First results of the THEMIS searchcoil magnetometers. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9371-y Google Scholar
  25. H.K. Leinweber et al., An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. Meas. Sci. Technol. 19(5), 055104 (2008) ADSCrossRefGoogle Scholar
  26. J.P. McFadden et al., The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev. (2008a). doi: 10.1107/s11214-008-9440-2 Google Scholar
  27. J.P. McFadden et al., THEMIS ESA first science results and performance issues. Space Sci. Rev. (2008b). doi: 10.1007/s11214-008-9433-1 Google Scholar
  28. J.B. Nicholas, Age spot or youthful marking: Origin of Reiner Gamma. Geophys. Res. Lett. 34, L02205 (2007). doi: 10.1029/2006GL027794 CrossRefGoogle Scholar
  29. A. Nishida, The GEOTAIL mission. Geophys. Res. Lett. 21, 2871 (1994) ADSCrossRefGoogle Scholar
  30. M.N. Nishino et al., Solar-wind proton access deep into the near-Moon wake. Geophys. Res. Lett. 36 (2009). doi: 10.1029/2009GL039444
  31. W.D. Parkinson, Introduction to Geomagnetism (Scottish Academic, Edinburgh, 1983) Google Scholar
  32. T.D. Phan et al., A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439, 175 (2006) ADSCrossRefGoogle Scholar
  33. N.C. Richmond et al., Correlation of a strong lunar magnetic anomaly with a high-albedo region of the Descartes mountains. Geophys. Res. Lett. 30(7), 1395 (2003). doi: 10.1029/2003GL016938 ADSCrossRefGoogle Scholar
  34. A. Roux et al., The search coil magnetometer for THEMIS. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9455-8 Google Scholar
  35. C.T. Russell et al., Magnetic evidence for a lunar core. Proc. LSC 12, 831 (1974) Google Scholar
  36. Y. Saito et al., In-flight performance and initial results of Plasma energy Angle and Composition Experiment (PACE). Space Sci. Rev. (2010). doi: 10.1007/s11214-010-9647-x Google Scholar
  37. D.G. Sibeck, V. Angelopoulos, THEMIS science objectives and mission phases. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9393-5 Google Scholar
  38. Sweetser et al., ARTEMIS mission design. Space Sci. Rev. (2010, this issue) Google Scholar
  39. B.T. Tsurutani, T.T. von Rosenvinge, ISEE-3 distant geotail results. Geophys. Res. Lett. 11, 1027 (1984) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.IGPP/ESS UCLALos AngelesUSA

Personalised recommendations