Space Science Reviews

, Volume 155, Issue 1–4, pp 147–175 | Cite as

Geomagnetic Jerks: Rapid Core Field Variations and Core Dynamics

  • Mioara MandeaEmail author
  • Richard Holme
  • Alexandra Pais
  • Katia Pinheiro
  • Andrew Jackson
  • Giuliana Verbanac


The secular variation of the core field is generally characterized by smooth variations, sometimes interrupted by abrupt changes, named geomagnetic jerks. The origin of these events, observed and investigated for over three decades, is still not fully understood. Many fundamental features of geomagnetic jerks have been the subject of debate, including their origin internal or external to the Earth, their occurrence dates, their duration and their global or regional character. Specific tools have been developed to detect them in geomagnetic field or secular variation time series. Recently, their investigation has been advanced by the availability of a decade of high-quality satellite measurements. Moreover, advances in the modelling of the core field and its variations have brought new perspectives on the fluid motion at the top of the core, and opened new avenues in our search for the origin of geomagnetic jerks. Correlations have been proposed between geomagnetic jerks and some other geophysical observables, indicating the substantial interest in this topic in our scientific community. This paper summarizes the recent advances in our understanding and interpretation of geomagnetic jerks.


Core field Secular variation Geomagnetic jerks Core flows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Alexandrescu, D. Gibert, G. Hulot, J.L.L. Mouël, G. Saracco, Detection of geomagnetic jerks using wavelet analysis. J. Geophys. Res. 100, 12557–12572 (1995) CrossRefADSGoogle Scholar
  2. M. Alexandrescu, D. Gibert, G. Hulot, J.L.L. Mouël, G. Saracco, Worldwide wavelet analysis of geomagnetic jerks. J. Geophys. Res. 101, 21975–21994 (1996) CrossRefADSGoogle Scholar
  3. M. Alexandrescu, V. Courtillot, J.L. Le Mouël, High-resolution secular variation of the geomagnetic field in western Europe over the last 4 centuries: Comparison and integration of historical data from Paris and London. J. Geophys. Res. 102, 20245–20258 (1997) CrossRefADSGoogle Scholar
  4. L.R. Alldredge, A discussion of impulses and jerks in the geomagnetic field. J. Geophys. Res. 89, 4403–4412 (1984) CrossRefADSGoogle Scholar
  5. G.E. Backus, Application of mantle filter theory to the magnetic jerk of 1969. Geophys. J. R. Astron. Soc. 74, 713–746 (1983) Google Scholar
  6. R.J. Banks, Geomagnetic variations and the conductivity of the upper mantle. Geophys. J. R. Astron. Soc. 17, 457–487 (1969) Google Scholar
  7. D. Barraclough, Observations of the Earth’s magnetic field in Edinburgh, from 1670 to the present day. Trans. R. Soc. Edinb. Earth Sci. 85, 239–252 (1995) Google Scholar
  8. C. Beggan, K. Whaler, Core flow modelling assumptions. Earth Planet. Inter. 167, 217–222 (2008) CrossRefADSGoogle Scholar
  9. E. Bellanger, J.L.L. Mouël, M. Mandea, S. Labrosse, Chandler wobble and geomagnetic jerks. Phys. Earth Planet. Int. 124, 95–103 (2001) CrossRefADSGoogle Scholar
  10. E. Bellanger, E.M. Blanter, J.L. Le Mouël, M. Mandea, M.G. Shnirman, On the geometry of the external geomagnetic irregular variations. J. Geophys. Res. (Space Phys.) 107, 20–21 (2002). doi: 10.1029/2001JA900112 Google Scholar
  11. E.R. Benton, K.A. Whaler, Rapid diffusion of the poloidal geomagnetic field through the weakly conducting mantle: A perturbation solution. Geophys. J. R. Astron. Soc. 75, 77–100 (1983) zbMATHGoogle Scholar
  12. J. Bloxham, A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary. J. Geophys. Res. 97, 19537–19563 (1992) CrossRefADSGoogle Scholar
  13. J. Bloxham, S. Zatman, M. Dumberry, The origin of geomagnetic jerks. Nature 420(6911), 65–68 (2002) CrossRefADSGoogle Scholar
  14. L. Cafarella, A. DeSantis, A. Meloni, Secular variation in Italy from historical geomagnetic field measurements. Phys. Earth Planet. Inter. 73, 206–221 (1992) CrossRefADSGoogle Scholar
  15. V. Cannelli, D. Melini, P.D. Michelis, A. Piersanti, F. Florindo, Core-mantle boundary deformations and J2 variations resulting from the 2004 Sumatra earthquake. Geophys. J. Int. (2007). doi: 10.1111/j.1365-246X.2007.03443.x Google Scholar
  16. A. Cazenave, R.S. Nerem, Redistributing Earth’s mass. Science 297 (2002). doi: 10.1126/science.1074593
  17. A. Chambodut, M. Mandea, Evidence for geomagnetic jerks in comprehensive models. Earth Planets Space 57, 139–149 (2005) ADSGoogle Scholar
  18. A. Chambodut, I. Panet, M. Mandea, M. Diament, M. Holschneider, O. Jamet, Wavelet frames: An alternative to spherical harmonic representation of potential fields. Geophys. J. Int. 163, 875–899 (2005). doi: 10.1111/j.1365-246X.2005.02754.x CrossRefADSGoogle Scholar
  19. A. Chambodut, C. Eymin, M. Mandea, Geomagnetic jerks from the Earth’s surface to the top of the core. Earth Planets Space 59, 675–684 (2007) ADSGoogle Scholar
  20. B.F. Chao, A.Y. Au, J.P. Boy, C.M. Cox, Time-variable gravity signal of an anomalous redistribution of water mass in the extratropic pacific during 1998–2002. Geochem. Geophys. Geosyst. 4, 1096 (2003). doi: 10.1029/2003GC000589 CrossRefADSGoogle Scholar
  21. C.G. Constable, R.L. Parker, Smoothing, splines and smoothing splines: Their application in geomagnetism. J. Comput. Phys. 78, 493–508 (1988) zbMATHCrossRefADSGoogle Scholar
  22. V. Courtillot, J. Ducruix, J.L. Le Mouël, Sur une accélération récente de la variationséculaire du champ magnétique terrestre. C. R. Acad. Sci. Paris, Ser. D 287, 1095–1098 (1978) Google Scholar
  23. C.M. Cox, B.F. Chao, Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297, 437–450 (2002). doi: 10.1126/science.1074593 CrossRefGoogle Scholar
  24. F.A. Dahlen, A correction to the excitation of the Chandler wobble by earthquakes. Geophys. J. R. Astron. Soc. 32, 203–217 (1973) ADSGoogle Scholar
  25. P. De Michelis, R. Tozzi, A local intermittency measure (lim) approach to the detection of geomagnetic jerks. Earth Planet. Sci. Lett. 235, 261–272 (2005) CrossRefADSGoogle Scholar
  26. P. De Michelis, L. Cafarella, A. Meloni, Worldwide character of the 1991 geomagnetic jerk. Geophys. Res. Lett. 25, 377 (1998) CrossRefADSGoogle Scholar
  27. M. Dumberry, Comment on “Could the Mw=9.3 Sumatra earthquake trigger a geomagnetic jerk?”. Eos Trans. AGU 86 (2005) Google Scholar
  28. D. Enescu, B.D. Enescu, Possible cause-effect relationships between Vrancea (Romania) earthquakes and some global geophysical phenomena. Nat. Hazards 19, 233–245 (1999). doi: 10.1023/A:1008095708316 CrossRefGoogle Scholar
  29. F. Florindo, P. De Michelis, A. Piersanti, E. Boschi, Could the mw=9.3 Sumatra earthquake trigger a geomagnetic jerk? EOS Trans. AGU 86, 123 (2005) ADSGoogle Scholar
  30. A. Fournier, C. Eymin, T. Alboussière, Towards variational geomagnetic data assimilation: Insights from a one-dimensional, nonlinear and sparsely observed MHD system. Nonlinear Process. Geophys. 14, 1–18 (2007) CrossRefGoogle Scholar
  31. E. Friis-Christensen, H. Lühr, G. Hulot, R. Haagmans, M. Purucker, Geomagnetic research from space. EOS Trans. AGU 90(25), 213–214 (2009) CrossRefADSGoogle Scholar
  32. F. Fürst, J. Wilms, R.E. Rothschild, K. Pottschmidt, D.M. Smith, R. Lingenfelter, Temporal variations of strength and location of the South Atlantic anomaly as measured by RXTE. Earth Planet. Sci. Lett. 281, 125–133 (2009). doi: 10.1016/j.epsl.2009.02.004 CrossRefADSGoogle Scholar
  33. D. Gibert, J.L. Le Mouël, Inversion of polar motion data: Chandler wobble, phase jumps, and geomagnetic jerks. J. Geophys. Res. 113 (2008). doi: 10.1029/2008JB005700
  34. D. Gibert, M. Holschneider, J.L. Le Mouël, Wavelet analysis of the Chandler wobble. J. Geophys. Res. 103, 27069–27089 (1998) CrossRefADSGoogle Scholar
  35. N. Gillet, M.A. Pais, D. Jault, Ensemble inversion of time-dependent core flow models. Geophys. J. Int. 10 (2009) Google Scholar
  36. V.P. Golovkov, T.I. Svereva, A.O. Simourian, Common features and differences between jerks of 1947, 1958 and 1969. Geophys. Astrophys. Fluid Dyn. 49, 81–96 (1989) CrossRefADSGoogle Scholar
  37. R.S. Gross, The influence of earthquakes on the Chandler wobble during 1977–1983. J. Geophys. Res. 85, 161–177 (1986) Google Scholar
  38. R.S. Gross, The excitation of the Chandler wobble. Geophys. Res. Lett. 27, 2329–2332 (2000) CrossRefADSGoogle Scholar
  39. D. Gubbins, P.H. Roberts, Magnetohydrodynamics of the Earth’s core, in Geomagnetism, vol. 2, ed. by J.A. Jacobs (Academic Press, San Diego, 1987), p. 1 Google Scholar
  40. E. Halley, On the cause of the change in the variation of the magnetic needle; with an hypothesis of the structure of the internal parts of the Earth. Philos. Trans. R. Soc. Lond. 17, 470–478 (1692) Google Scholar
  41. J. Hinderer, C. Gire, H. Legros, J.L. Le Mouël, Geomagnetic secular variation, core motions and implications for the Earth’s wobble. Phys. Earth Planet. Inter. 49, 121–132 (1987) CrossRefADSGoogle Scholar
  42. R. Holme, Large-scale flow in the core, in Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007) Google Scholar
  43. R. Holme, O. de Viron, Geomagnetic jerks and a high-resolution length-of-day profile for core studies. Geophys J. Int. 160, 435–439 (2005). doi: 10.1111/j.1365-246X.2004.02510.x CrossRefADSGoogle Scholar
  44. R. Holme, O. de Viron, Evidence for a geomagnetic jerk after 2003 in LOD, in Proceedings of the First International Swarm Science Meeting, vol. WPP-261 (ESA/ESTEC, Noordwijk, 2006) Google Scholar
  45. R. Holme, K.A. Whaler, Steady core flow in an azimuthally drifting reference frame. Geophys. J. Int. 145, 560–569 (2001) CrossRefADSGoogle Scholar
  46. A. Jackson, J. Bloxham, D. Gubbins, Time-dependent flow at the core surface and conservation of angular momentum in the coupled core-mantle system, in Dynamics of the Earth’s Deep Interior and Earth Rotation, ed. by J.L. Le Mouël, D.E. Smylie, T. Herring (IUGG, AGU, 1993), pp. 97–107 Google Scholar
  47. D. Jault, J.L. Le Mouël, Does secular variation involve motions in the deep core? Phys. Earth Planet. Inter. 82, 185–193 (1994) CrossRefADSGoogle Scholar
  48. D. Jault, C. Gire, J.L. Le Mouël, Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature 333(6171), 353–356 (1988) CrossRefADSGoogle Scholar
  49. M. Korte, M. Mandea, Magnetic poles and dipole tilt variation over the past decades to millennia. Earth Planets Space 60, 937–948 (2008) ADSGoogle Scholar
  50. M. Korte, M. Mandea, J. Matzka, A historical declination curve for Munich from different data sources. Phys. Earth Planet. Inter. 174, 161–172 (2009) CrossRefADSGoogle Scholar
  51. A.V. Kuvshinov, N. Olsen, A global model of mantle conductivity derived from 5 years of Champ, Ørsted, and SAC-C magnetic data. Geophys. Res. Lett. 33, 18301 (2006). doi: 10.1029/2006GL027083 CrossRefADSGoogle Scholar
  52. A.V. Kuvshinov, H. Utada, D. Avdeev, T. Koyama, 3-D modelling and analysis of Dst C-responses in the North Pacific ocean region, revisited. Geophys. J. Int. 60(2), 505–526 (2005) CrossRefADSGoogle Scholar
  53. B.N. Lahiri, A.T. Price, Electromagnetic induction in non-uniform conductors, and the determination of the conductivity of the Earth from terrestrial magnetic variations. Philos. Trans. R. Soc. A 237, 509–540 (1939) CrossRefADSGoogle Scholar
  54. M. Le Huy, M. Alexandrescu, G. Hulot, J.L. Le Mouël, On the characteristics of successive geomagnetic jerks. Earth Planets Space 50, 723–732 (1998) ADSGoogle Scholar
  55. J.L. Le Mouël, T.R. Madden, J. Ducruix, V. Courtillot, Decade fluctuations in geomagnetic westward drift and Earth’s geomagnetic field. Nature 290, 763–765 (1981) CrossRefADSGoogle Scholar
  56. V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM—The GFZ Reference Internal Magnetic Model based on vector satellite and observatory data. Geophys. J. Int. 173 (2008). doi: 10.1111/j.1365-246X.2008.03724.x
  57. V. Lesur, I. Wardinski, S. Asari, B. Minchev, M. Mandea, Modelling the Earth’s core magnetic field under flow constraints. Earth Planets Space 62(6), 503–516 (2010) CrossRefADSGoogle Scholar
  58. S. Macmillan, A geomagnetic jerk for the early 1990s. Earth Planet. Sci. Lett. 137, 189–192 (1996) CrossRefADSGoogle Scholar
  59. S.R.C. Malin, E. Bullard, The direction of the Earth’s magnetic field at London, 1570–1975. Philos. Trans. R. Soc. Lond. 299, 357–423 (1981) CrossRefADSGoogle Scholar
  60. S.R.C. Malin, B.M. Hodder, Was the 1970 geomagnetic jerk of internal or external origin? Nature 726–728 (1982) Google Scholar
  61. S.R.C. Malin, B.M. Hodder, D.R. Barraclough, Geomagnetic secular variation: a jerk in 1970, in 75th Anniversary Volume of Ebro Observatory, ed. by J.R. Cardus (Ebro Observatory, Tarragona, 1983), pp. 239–256 Google Scholar
  62. M. Mandea, E. Dormy, Asymmetric behaviour of magnetic dip poles. Earth Planets Space 55, 153–157 (2003) ADSGoogle Scholar
  63. M. Mandea, S. Macmillan, International Geomagnetic Reference Field—the eighth generation. Earth Planets Space 52, 1119–1124 (2000) ADSGoogle Scholar
  64. M. Mandea, N. Olsen, A new approach to directly determine the secular variation from magnetic satellite observations. Geophys. Res. Lett. 33, L15306 (2006). doi: 10.1029/2006GL026616 CrossRefADSGoogle Scholar
  65. M. Mandea, N. Olsen, Geomagnetic and archeomagnetic jerks: Where do we stand? EOS Trans. AGU 90 (2009) Google Scholar
  66. M. Mandea Alexandrescu, D. Gibert, J.L. Le Mouël, G. Hulot, G. Saracco, An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks. J. Geophys. Res. 104, 17735–17745 (1999) CrossRefADSGoogle Scholar
  67. M. Mandea, E. Bellanger, J.L.L. Mouël, A geomagnetic jerk for the end of the 20th century? Earth Planet. Sci. Lett. 183, 369–373 (2000) CrossRefADSGoogle Scholar
  68. K.L. McDonald, Penetration of the geomagnetic secular field through a mantle with variable conductivity. J. Geophys. Res. 62, 117–141 (1957) CrossRefADSGoogle Scholar
  69. H. Nagao, T. Higuchi, T. Iyemori, T. Araki, Automatic detection of geomagnetic jerks by applying a statistical time series model to geomagnetic monthly means, in Progress in Discovery Science, Final Report of the Japanese Discovery Science Project, ed. by S. Arikawa, A.S. Springer. Lecture Notes in Artificial Intelligence, vol. 2281 (2001), pp. 360–371 Google Scholar
  70. H. Nagao, T. Iyemori, T. Higuchi, T. Araki, Lower mantle conductivity anomalies estimated from geomagnetic jerks. J. Geophys. Res. 108 (2003) Google Scholar
  71. L. Newitt, M. Mandea, L. McKee, J.J. Orgeval, Recent acceleration of the North Magnetic Pole linked to magnetic jerks. Eos Trans. AGU 83(35), 381–389 (2002) CrossRefADSGoogle Scholar
  72. L. Newitt, A. Chulliat, J.J. Orgeval, Location of the north magnetic pole in April 2007. Earth Planets Space 61, 703–710 (2009) ADSGoogle Scholar
  73. N. Olsen, The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 h. Geophys. J. Int. 133, 298–308 (1998) CrossRefADSGoogle Scholar
  74. N. Olsen, Long-period (30 days–1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys. J. Int. 138, 179–187 (1999) CrossRefADSGoogle Scholar
  75. N. Olsen, M. Mandea, Will the magnetic north pole wind up in Siberia? (2007) Google Scholar
  76. N. Olsen, M. Mandea, Rapidly changing flows in the Earth’s core. Nat. Geosci. 1, 390–394 (2008). doi: 10.1038/ngeo203 CrossRefADSGoogle Scholar
  77. N. Olsen, H. Lühr, T. Sabaka, M. Mandea, M. Rother, L. Toffner-Clausen, S. Choi, CHAOS—A model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166(1), 67–75 (2006). doi: 10.1111/j.1365-246X.2006.02959.x CrossRefADSGoogle Scholar
  78. N. Olsen, M. Mandea, T.J. Sabak, L. Tøffner-Clausen, Chaos-2—A geomagnetic field model derived from one decade of continuous satellite data. Geophys. J. Int. 179, 1477–1487 (2009). doi: 10.1111/j.1365-246X.2009.04386.x CrossRefADSGoogle Scholar
  79. K. Pinheiro, A. Jackson, Can a 1-D mantle electrical conductivity model generate magnetic jerk differential time delays? Geophys. J. Int. 173, 781–792 (2008) CrossRefADSGoogle Scholar
  80. P.H. Roberts, S. Scott, On the analysis of secular variation. 1. A hydromagnetic constraint: Theory. J. Geomagn. Geoelectr. 17, 137–151 (1965) Google Scholar
  81. T.J. Sabaka, N. Olsen, M.E. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 159, 521–547 (2004). doi: 10.1111/j.1365-246X.2004.02421.x CrossRefADSGoogle Scholar
  82. T. Shirai, T. Fukushima, Z. Malkin, Detection of phase disturbances of free core nutation of the Earth and their concurrence with geomagnetic jerks. Earth Planets Space 57, 151–155 (2005) ADSGoogle Scholar
  83. L. Silva, Ecoulements a la surface du noyau, secousses geomagnetiques et predictions a court terme du champ magnetique terrestre. PhD IPGP, France, 2010 Google Scholar
  84. A. Soare, G. Cucu, M. Mandea-Alexandrescu, Historical geomagnetic measurements in Romania. Ann. Geofis. 41, 539–554 (1998) Google Scholar
  85. D.N. Stewart, K.A. Whaler, Geomagnetic disturbance fields: An analysis of observatory monthly means. Geophys. J. Int. 108, 215–223 (1992) CrossRefADSGoogle Scholar
  86. G. Verbanac, M. Korte, M. Mandea, Four decades of European geomagnetic secular variation and acceleration. Ann. Geophys. 52, 487–503 (2009) Google Scholar
  87. R. Waddington, D. Gubbins, N. Barber, Geomagnetic-field analysis 5. Determining steady core-surface flows directly from geomagnetic observations. Geophys. J. Int. 122, 326–350 (1995) CrossRefADSGoogle Scholar
  88. J.M. Wahr, The Earth’s rotation. Ann. Rev. Earth Planet. Sci. 16, 231–249 (1988) CrossRefADSGoogle Scholar
  89. I. Wardinski, R. Holme, A time-dependent model of the Earth’s magnetic field and its secular variation for the period 1980 to 2000. J. Geophys. Res. B 111, 12101 (2006). doi: 10-10292006004401 CrossRefADSGoogle Scholar
  90. I. Wardinski, R. Holme, S. Asari, M. Mandea, The 2003 geomagnetic jerk and its relation to the core surface flows. Earth Planet. Sci. Lett. 267, 468–481 (2008). doi: 10.1016/j.epsl2007.12.008 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mioara Mandea
    • 1
    • 2
    Email author
  • Richard Holme
    • 3
  • Alexandra Pais
    • 4
  • Katia Pinheiro
    • 5
  • Andrew Jackson
    • 6
  • Giuliana Verbanac
    • 7
  1. 1.Helmholtz-Zentrum PotsdamDeutsches GeoForschungsZentrumPotsdamGermany
  2. 2.Institut de Physique du Globe de ParisUniversité Paris DiderotParisFrance
  3. 3.University of LiverpoolLiverpoolUK
  4. 4.CFC, Department of PhysicsUniversity of CoimbraCoimbraPortugal
  5. 5.National ObservatoryRio de JaneiroBrazil
  6. 6.Institut für GeophysikZürichSwitzerland
  7. 7.Faculty of ScienceGeophysical Institute “Andrija Mohorovicic”ZagrebCroatia

Personalised recommendations