Space Science Reviews

, Volume 155, Issue 1–4, pp 387–410 | Cite as

Magnetic Polarity Transitions and Biospheric Effects

Historical Perspective and Current Developments
  • Karl-Heinz Glassmeier
  • Joachim Vogt


This review addresses possible biospheric effects of geomagnetic polarity transitions. During a transition the magnetic field at the surface of the Earth decreases to about 10% of its current value. If the geomagnetic field is a shield against energetic particles of solar or cosmic origin then biospheric effects can be expected. We review the early speculations on the problem and discuss in more detail its current status. We conclude that no clear picture of a geomagnetic link, a causal relation between secular magnetic field variations and the evolution of life on our planet can be drawn.


Geomagnetic field Life Biosphere Magnetosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Baumgartner, J. Beer, J. Masarik, G. Wagner, L. Meynadier, H.A. Synal, Geomagnetic modulation of the 36Cl flux in the GRIP Ice Core Greenland. Science 279, 1330–1334 (1998). doi: 10.1126/science.279.5355.1330 ADSCrossRefGoogle Scholar
  2. D.I. Black, Cosmic ray effects and faunal extinctions at geomagnetic field reversals. Earth Planet. Sci. Lett. 3, 225–236 (1967). doi: 10.1016/0012-821X(67)90042-8 ADSCrossRefGoogle Scholar
  3. M. Blanc, R. Kallenbach, N.V. Erkaev, Solar system magnetospheres. Space Sci. Rev. 116, 227–298 (2005). doi: 10.1007/s11214-005-1958-y ADSCrossRefGoogle Scholar
  4. A. Brack, G. Horneck, C.S. Cockell, A. Bérces, N.K. Belisheva, C. Eiroa, T. Henning, T. Herbst, L. Kaltenegger, A. Léger, R. Liseau, H. Lammer, F. Selsis, C. Beichman, W. Danchi, M. Fridlund, J. Lunine, F. Paresce, A. Penny, A. Quirrenbach, H. Röttgering, J. Schneider, D. Stam, G. Tinetti, G.J. White, Origin and evolution of life on terrestrial planets. Astrobiology 10, 69–76 (2010). doi: 10.1089/ast.2009.0374 ADSCrossRefGoogle Scholar
  5. A.B. Britt, Repair of DNA damage induced by ultraviolet radiation. Plant Physiol. 108, 891–896 (1995) CrossRefGoogle Scholar
  6. C.S. Cockell, A.R.E. Blaustein, Ecosystems, Evolution, and Ultraviolet Radiation (Springer, Berlin, 2001) Google Scholar
  7. T.S. Collett, J. Baron, Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 368, 137–140 (1994). doi: 10.1038/368137a0 ADSCrossRefGoogle Scholar
  8. C. Constable, On rates of occurrence of geomagnetic reversals. Phys. Earth Planet. Int. 118, 181–193 (2000) ADSCrossRefGoogle Scholar
  9. C.G. Constable, R.L. Parker, Statistics of the geomagnetic secular variation for the past 5 m.y. J. Geophys. Res. 93, 11569–11578 (1988). doi: 10.1029/JB093iB10p11569 ADSCrossRefGoogle Scholar
  10. I.K. Crain, Possible direct causal relation between geomagnetic reversals and biological extinctions. Geol. Soc. Am. Bull. 82, 2603–2606 (1971) CrossRefGoogle Scholar
  11. P.J. Crutzen, ISA Isaksen, G.C. Reid, Solar proton events: Stratospheric sources of nitric oxide. Science 189, 457–459 (1975). doi: 10.1126/science.189.4201.457 ADSCrossRefGoogle Scholar
  12. J. Duplissy, M.B. Enghoff, K.L. Aplin, F. Arnold, H. Aufmhoff, M. Avngaard, U. Baltensperger, T. Bondo, R. Bingham, K. Carslaw, J. Curtius, A. David, B. Fastrup, S. Gagné, F. Hahn, R.G. Harrison, B. Kellett, J. Kirkby, M. Kulmala, L. Laakso, A. Laaksonen, E. Lillestol, M. Lockwood, J. Mäkelä, V. Makhmutov, N.D. Marsh, T. Nieminen, A. Onnela, E. Pedersen, J.O.P. Pedersen, J. Polny, U. Reichl, J.H. Seinfeld, M. Sipilä, Y. Stozhkov, F. Stratmann, H. Svensmark, J. Svensmark, R. Veenhof, Y. Viisanen, P.E. Wagner, G. Wehrle, E. Weingartner, H. Wex, M. Wilhelmsson, P.M. Winkler, Results from the CERN pilot CLOUD experiment. Atmos. Chem. Phys. Discuss. 9, 18235–18270 (2009) ADSCrossRefGoogle Scholar
  13. K. Fabian, R. Leonhardt, Records of paleomagnetic field variations, in Geomagnetic Variations, ed. by K.H. Glassmeier, H. Soffel, J.W. Negendank (Springer, Berlin, 2009), pp. 65–106 CrossRefGoogle Scholar
  14. J. Firor, Cosmic radiation intensity-time variations and their origin. IV. Increases associated with solar flares. Phys. Rev. 94(4), 1017–1028 (1954). doi: 10.1103/PhysRev.94.1017 ADSCrossRefGoogle Scholar
  15. M. Fuller, Geomagnetic field intensity, excursions, reversals and the 41000-yr obliquity signal. Earth Planet. Sci. Lett. 245, 605–615 (2006) ADSCrossRefGoogle Scholar
  16. Y. Gallet, A. Genevey, F. Fluteau, Does Earth’s magnetic field secular variation control centennial climate change? Earth Planet. Sci. Lett. 236, 339–347 (2005). doi: 10.1016/j.epsl.2005.04.045 ADSCrossRefGoogle Scholar
  17. F. Garcia-Pichel, R.W. Castenholz, Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Physiol. 27, 395–409 (1991) Google Scholar
  18. K.H. Glassmeier, J. Vogt, A. Stadelmann, S. Buchert, Concerning long-term geomagnetic variations and space climatology. Ann. Geophys. 22, 3669–3677 (2004) ADSCrossRefGoogle Scholar
  19. K.H. Glassmeier, O. Richter, J. Vogt, P. Möbus, A. Schwalb, The Sun, geomagnetic polarity transitions, and possible biospheric effects: review and illustrating model. Int. J. Astrobiol. 8, 147–159 (2009a). doi: 10.1017/S1473550409990073 CrossRefGoogle Scholar
  20. K.H. Glassmeier, H. Soffel, J.W.E. Negendank, Geomagnetic Variations (Springer, Berlin, 2009b) Google Scholar
  21. G.A. Glatzmaier, P.H. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–207 (1995). doi: 10.1038/377203a0 ADSCrossRefGoogle Scholar
  22. J. Gröbner, A. Albold, M. Blumthaler, T. Cabot, A. De la Casiniere, J. Lenoble, T. Martin, D. Masserot, M. Müller, R. Philipona, T. Pichler, E. Pougatch, G. Rengarajan, D. Schmucki, G. Seckmeyer, C. Sergent, M.L. Touré, P. Weihs, Variability of spectral solar ultraviolet irradiance in an alpine environment. J. Geophys. Res. 105, 26991–27004 (2000). doi: 10.1029/2000JD900395 ADSCrossRefGoogle Scholar
  23. Y. Guyodo, J.P. Valet, Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature 399, 249–252 (1999). doi: 10.1038/20420 ADSCrossRefGoogle Scholar
  24. D.P. Häder, Effects of solar UV-B radiation on aquatic ecosystems. Adv. Space Res. 26, 2029–2040 (2000) CrossRefGoogle Scholar
  25. D.P. Häder, Ultraviolet radiation and aquatic microbial ecosystems, in Ecosystems, Evolution, and Ultraviolet Radiation, ed. by C.C. Cockell, A.R. Blaustein (Springer, Berlin, 2001), pp. 150–169 Google Scholar
  26. S.G.A. Harrison, B.M. Funnell, Relationship of paleomagnetic reversals and micropaleoontology in two late Caenozoic cores from the Pacific ocean. Nature 204, 566–567 (1964) ADSCrossRefGoogle Scholar
  27. C.G.A. Harrison, J.M. Prospero, Reversals of the Earth’s magnetic field and climatic changes. Nature 250, 563–565 (1974). doi: 10.1038/250563a0 ADSCrossRefGoogle Scholar
  28. D. Hauglustaine, J. Gerard, Possible composition and climatic changes due to past intense energetic particle precipitation. Ann. Geophys. 8, 87–96 (1990) ADSGoogle Scholar
  29. J.D. Hays, Faunal extinctions and reversals of the Earth’s magnetic field. Geol. Soc. Am. Bull. 82, 2433–2447 (1971) CrossRefGoogle Scholar
  30. D.J. Hofmann, J.M. Rosen, Stratospheric condensation nuclei variations may relate to solar activity. Nature 297, 120–124 (1982). doi: 10.1038/297120a0 ADSCrossRefGoogle Scholar
  31. C.H. Jackman, R.D. McPeters, G.J. Labow, E.L. Fleming, C.J. Praderas, J.M. Russell, Northern hemisphere atmospheric effects due to the July 2000 solar proton event. Geophys. Res. Lett. 28, 2883–2886 (2001). doi: 10.1029/2001GL013221 ADSCrossRefGoogle Scholar
  32. D.V. Kent, Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments. Nature 299, 538–539 (1982). doi: 10.1038/299538a0 ADSCrossRefGoogle Scholar
  33. J.W. King, Weather and the Earth’s magnetic field. Nature 247, 131–134 (1974). doi: 10.1038/247131a0 ADSCrossRefGoogle Scholar
  34. J. Kirkby, Cosmic rays and climate. Surv. Geophys. 28, 333–375 (2007). doi: 10.1007/s10712-008-9030-6 ADSCrossRefGoogle Scholar
  35. M. Korte, C.G. Constable, Centennial to millennial geomagnetic secular variation. Geophys. J. Int. 167, 43–52 (2006). doi: 10.1111/j.1365-246X.2006.03088.x ADSCrossRefGoogle Scholar
  36. H. Lammer, J. Kasting, E. Chassefiere, R. Johnson, Y. Kulikov, F. Tian, Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008). doi: 10.1007/s11214-008-9413-5 ADSCrossRefGoogle Scholar
  37. P.R. Leavitt, B.F. Cumming, J.P. Smol, M. Reasoner, R. Pienitz, D. Hodgson, Climatic control of UV radiation effects on lakes. Limnol. Oceanogr. 48, 2062–2069 (2003) CrossRefGoogle Scholar
  38. R. Leonhardt, K. Fabian, Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253, 172–195 (2007). doi: 10.1016/j.epsl.2006.10.025 ADSCrossRefGoogle Scholar
  39. R. Lundin, H. Lammer, I. Ribas, Planetary magnetic fields and solar forcing: Implications for atmospheric evolution. Space Sci. Rev. 129, 245–278 (2007). doi: 10.1007/s11214-007-9176-4 ADSCrossRefGoogle Scholar
  40. T.M. Lutz, The magnetic reversal record is not periodic. Nature 317, 404–407 (1985). doi: 10.1038/317404a0 ADSCrossRefGoogle Scholar
  41. S. Madronich, R. McKenzie, L. Björn, M. Caldwell, Changes in biologically active ultraviolet radiation reaching the earth’s surface. UNEP Environmental Effects Panel Report, United Nations, New York, pp. 5–19 (1998) Google Scholar
  42. N. Marsh, H. Svensmark, Cosmic rays, clouds, and climate. Space Sci. Rev. 94, 215–230 (2000) ADSCrossRefGoogle Scholar
  43. H. Marshall, Ultra-violet and extinction. Am. Nat. 62, 165–187 (1928) CrossRefGoogle Scholar
  44. W. Marzocchi, F. Mulargia, The periodicity of geomagnetic reversals. Phys. Earth Planet. Int. 73, 222–228 (1992). doi: 10.1016/0031-9201(92)90092-A ADSCrossRefGoogle Scholar
  45. A. Mazaud, C. Laj, The 15 m.y. geomagnetic reversal periodicity—A quantitative test. Earth Planet. Sci. Lett. 107, 689–696 (1991). doi: 10.1016/0012-821X(91)90111-T ADSCrossRefGoogle Scholar
  46. B.M. McCormac, J.E. Evans, Consequences of very small planetary magnetic moments. Nature 223, 1255 (1969). doi: 10.1038/2231255a0 ADSCrossRefGoogle Scholar
  47. M.W. McElhinny, Geomagnetic reversals during the Phanerozoic. Science 172, 157–159 (1971). doi: 10.1126/science.172.3979.157 ADSCrossRefGoogle Scholar
  48. L.R. McHargue, D. Donahue, P.E. Damon, C.P. Sonett, D. Biddulph, G. Burr, Geomagnetic modulation of the late Pleistocene cosmic-ray flux as determined by 10 Be from Blake Outer Ridge marine sediments. Nucl. Instrum. Methods Phys. Res. B 172, 555–561 (2000). doi: 10.1016/S0168-583X(00)00092-6 ADSCrossRefGoogle Scholar
  49. S.L. Miller, H.C. Urey, Organic compound synthesis on the primitive Earth. Science 130, 245–251 (1959). doi: 10.1126/science.130.3370.245 ADSCrossRefGoogle Scholar
  50. R. Mittler, E. Tel-Or, Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC7942. Free Radic. Res. Commun. 12, 845–850 (1991) CrossRefGoogle Scholar
  51. T.E. Moore, J.L. Horwitz, Stellar ablation of planetary atmospheres. Rev. Geophys. 45, 3002 (2007). doi: 10.1029/2005RG000194 ADSCrossRefGoogle Scholar
  52. E.P. Ney, Cosmic radiation and the weather. Nature 183, 451–452 (1959). doi: 10.1038/183451a0 ADSCrossRefGoogle Scholar
  53. P. Olson, H. Amit, Changes in Earth’s dipole. Naturwissenschaften 93, 519–542 (2006) ADSCrossRefGoogle Scholar
  54. N.D. Opdyke, B. Glass, J.D. Hays, J. Foster, Paleomagnetic study of Antarctic deep-sea cores. Science 154, 349–351 (1966) ADSCrossRefGoogle Scholar
  55. J.R. Pierce, P.J. Adams, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Lett. 36, 9820 (2009). doi: 10.1029/2009GL037946 CrossRefGoogle Scholar
  56. R.E. Plotnick, Relationship between biological extinctions and geomagnetic reversals. Geology 8, 578–581 (1980) ADSCrossRefGoogle Scholar
  57. G.M. Raisbeck, F. Yiou, D. Bourles, D.V. Kent, Evidence for an increase in cosmogenic Be-10 during a geomagnetic reversal. Nature 315, 315–317 (1985). doi: 10.1038/315315a0 ADSCrossRefGoogle Scholar
  58. G.M. Raisbeck, F. Yiou, O. Cattani, J. Jouzel, 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature 444, 82–84 (2006). doi: 10.1038/nature05266 ADSCrossRefGoogle Scholar
  59. M.R. Rampino, Possible relationships between changes in global ice volume, geomagnetic excursions, and the eccentricity of the Earth’s orbit. Geology 7, 584–589 (1979). doi: 10.1130/0091-7613(1979)7<584:PRBCIG>2.0.CO;2 ADSCrossRefGoogle Scholar
  60. M.R. Rampino, R.B. Stothers, Geological rhythms and cometary impacts. Science 226, 1427–1431 (1984). doi: 10.1126/science.226.4681.1427 ADSCrossRefGoogle Scholar
  61. D.M. Raup, Magnetic reversals and mass extinctions. Nature 314, 341–343 (1985). doi: 10.1038/314341a0 ADSCrossRefGoogle Scholar
  62. D.M. Raup, J.J. Sepkoski, Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. 81, 801–805 (1984) ADSCrossRefGoogle Scholar
  63. G.C. Reid, I.S.A. Isaksen, T.E. Holzer, P.J. Crutzen, Influence of ancient solar-proton events on the evolution of life. Nature 259, 177–179 (1976) ADSCrossRefGoogle Scholar
  64. G.C. Reid, S. Solomon, R.R. Garcia, Response of the middle atmosphere to the solar proton events of August–December 1989. Geophys. Res. Lett. 18, 1019–1022 (1991). doi: 10.1029/91GL01049 ADSCrossRefGoogle Scholar
  65. W.O. Roberts, R.H. Olson, Geomagnetic storms and wintertime 300-mb trough development in the North Pacific-North America area. J. Atmos. Sci. 30, 135–140 (1973). doi: 10.1175/1520-0469(1973)030<0135:GSAWMT>2.0.CO;2 ADSCrossRefGoogle Scholar
  66. C.J. Rodger, M.A. Clilverd, T. Ulich, P.T. Verronen, E. Turunen, N.R. Thomson, The atmospheric implications of radiation belt remediation. Ann. Geophys. 24, 2025–2041 (2006) ADSCrossRefGoogle Scholar
  67. E.C. Roelof, D.G. Sibeck, Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. J. Geophys. Res. 98, 21421 (1993). doi: 10.1029/93JA02362 ADSCrossRefGoogle Scholar
  68. J. Rozema, Y. Maneta, L.O.B. Björn, Response of Plants to UV-B Radiation (Kluwer Academic, Dordrecht, 2002) Google Scholar
  69. C. Sagan, Is the early evolution of life related to the development of the Earth’s core? Nature 206, 448 (1965) ADSCrossRefGoogle Scholar
  70. T. Sato, K. Niita, Analytical functions to predict cosmic-ray neutron spectra in the atmosphere. Radiat. Res. 166, 544–555 (2006) CrossRefGoogle Scholar
  71. T. Sato, H. Yasudab, K. Niita, A. Endoa, L. Sihverd, Development of PARMA: PHITS-based analytical radiation model in the atmosphere. Radiat. Res. 170, 244–259 (2008) CrossRefGoogle Scholar
  72. D.E. Schmitt, H.E. Esch, Magnetic orientation of honeybees in the laboratory. Naturwissenschaften 80, 41–43 (1993). doi: 10.1007/BF01139759 ADSCrossRefGoogle Scholar
  73. M. Schulz, Geomagnetically trapped radiation. Space Sci. Rev. 17, 481–536 (1975). doi: 10.1007/BF00718583 ADSCrossRefGoogle Scholar
  74. R.S. Selesnick, M.D. Looper, R.A. Mewaldt, A theoretical model of the inner proton radiation belt. Space Weather 5, 4003 (2007). doi: 10.1029/2006SW000275 CrossRefGoogle Scholar
  75. P. Selkin, L. Tauxe, Long term variations in geomagnetic field intensity. Philos. Trans. R. Soc. 358, 869–1223 (2000) Google Scholar
  76. M. Siebert, Auswirkungen der säkularen Änderung des Erdmagnetischen Hauptfeldes auf Form und Lage der Magnetosphäre und die Stärke der erdmagnetischen Aktivität. Abh. Braunschw. Wiss. Ges. 37, 281–309 (1977) Google Scholar
  77. J.F. Simpson, Evolutionary pulsations and geomagnetic polarity. Geol. Soc. Am. Bull. 77, 197–204 (1966). doi: 10.1130/0016-7606 CrossRefGoogle Scholar
  78. R.P. Sinha, D.P. Häder, Life under solar UV radiation in aquatic organisms. Adv. Space Res. 30, 1547–1556 (2002) ADSCrossRefGoogle Scholar
  79. M. Sinnhuber, J.P. Burrows, M.P. Chipperfield, C.H. Jackman, M.B. Kallenrode, K.F. Künzi, M. Quack, A model study of the impact of magnetic field structure on atmospheric composition during solar proton events. Geophys. Res. Lett. 30(15), 150000–1 (2003) CrossRefGoogle Scholar
  80. G.L. Siscoe, C.K. Chen, The paleomagnetosphere. J. Geophys. Res. 80, 4675–4680 (1975). doi: 10.1029/JA080i034p04675 ADSCrossRefGoogle Scholar
  81. D.F. Smart, M.A. Shea, Fifty years of progress in geomagnetic cutoff rigidity determinations. Adv. Space Res. 44, 1107–1123 (2009). doi: 10.1016/j.asr.2009.07.005 ADSCrossRefGoogle Scholar
  82. D.F. Smart, M.A. Shea, E.O. Flückiger, Magnetospheric models and trajectory computations. Space Sci. Rev. 93, 305–333 (2000) ADSCrossRefGoogle Scholar
  83. L. Sorriso-Valvo, F. Stefani, V. Carbone, G. Nigro, F. Lepreti, A. Vecchio, P. Veltri, A statistical analysis of polarity reversals of the geomagnetic field. Phys. Earth Planet. Int. 164, 197–207 (2007). doi: 10.1016/j.pepi.2007.07.001 ADSCrossRefGoogle Scholar
  84. A. Stadelmann, Globale Effekte einer Magnetfeldumkehr: Magnetosphärenstruktur und kosmische Teilchen. Dissertation, Technische Universität Braunschweig (2004) Google Scholar
  85. A. Stadelmann, J. Vogt, K.H. Glassmeier, M.B. Kallenrode, G.H. Voigt, Cosmic ray and solar energetic particle flux in paleomagnetospheres. Earth Planets Space 62, 333–345 (2010) ADSCrossRefGoogle Scholar
  86. D. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003) ADSCrossRefGoogle Scholar
  87. H. Svensmark, Cosmoclimatology: a new theory emerges. Astron. Geophys. 48(1), 18–24 (2007) ADSCrossRefGoogle Scholar
  88. H. Svensmark, E. Friis-Christensen, Variation of cosmic ray flux and global cloud coverage—A missing link in solar-climate relationships. J. Atmos. Terr. Phys. 59, 1225–1232 (1997) ADSCrossRefGoogle Scholar
  89. J.A. Tarduno, R.D. Cottrell, M.K. Watkeys, D. Bauch, Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446, 657–660 (2007) ADSCrossRefGoogle Scholar
  90. N. Thouveny, D.L. Bourlès, G. Saracco, J.T. Carcaillet, F. Bassinot, Paleoclimatic context of geomagnetic dipole lows and excursions in the Brunhes, clue for an orbital influence on the geodynamo? Earth Planet. Sci. Lett. 275, 269–284 (2008). doi: 10.1016/j.epsl.2008.08.020 ADSCrossRefGoogle Scholar
  91. F. Tian, J. Kasting, H. Liu, R. Roble, Hydrodynamic planetary thermosphere model: 1. The response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113 (2008). doi: 10.1029/2007JE002946
  92. A. Tilgner, Kinematic dynamos with precession driven flow in a sphere. Geophys. Astrophys. Fluid Dyn. 101, 1–9 (2007). doi: 10.1080/03091920601045324 MathSciNetADSCrossRefGoogle Scholar
  93. A. Toyomaki, T. Yamamoto, Observation of changes in neural activity due to the static magnetic field of an MRI scanner. J. Magn. Res. Imaging 26, 1216–1221 (2007) CrossRefGoogle Scholar
  94. N.A. Tsyganenko, M.I. Sitnov, Magnetospheric configurations from a high-resolution data-based magnetic field model. J. Geophys. Res. 112, 6225 (2007). doi: 10.1029/2007JA012260 CrossRefGoogle Scholar
  95. R.J. Uffen, Influence of the Earth’s core on the origin and evolution of life. Nature 198, 143–144 (1963). doi: 10.1038/198143b0 ADSCrossRefGoogle Scholar
  96. J. Van Allen, L. Frank, Radiation around the Earth to a radial distance of 107,400 km. Nature 183, 430–434 (1959) ADSCrossRefGoogle Scholar
  97. J. Vogt, K.H. Glassmeier, On the location of trapped particle populations in quadrupole magnetospheres. J. Geophys. Res. 105, 13063–13072 (2000). doi: 10.1029/2000JA900006 ADSCrossRefGoogle Scholar
  98. J. Vogt, K. Glassmeier, Modelling the paleomagnetosphere: strategy and first results. Adv. Space Res. 28, 863–868 (2001). doi: 10.1016/S0273-1177(01)00504-X ADSCrossRefGoogle Scholar
  99. J. Vogt, B. Zieger, A. Stadelmann, K.H. Glassmeier, T.I. Gombosi, K.C. Hansen, A.J. Ridley MHD simulations of quadrupolar paleomagnetospheres. J. Geophys. Res. 109, 12221 (2004). doi: 10.1029/2003JA010273 CrossRefGoogle Scholar
  100. J. Vogt, B. Zieger, K.H. Glassmeier, A. Stadelmann, M.B. Kallenrode, M. Sinnhuber, H. Winkler, Energetic particles in the paleomagnetosphere: Reduced dipole configurations and quadrupolar contributions. J. Geophys. Res. 112, 6216 (2007). doi: 10.1029/2006JA012224 CrossRefGoogle Scholar
  101. J. Vogt, M. Sinnhuber, M.B. Kallenrode, Effects of geomagnetic variations on system Earth, in Geomagnetic Variations, ed. by K.H. Glassmeier, H. Soffel, J.W. Negendank (Springer, Berlin, 2009), pp. 159–208 CrossRefGoogle Scholar
  102. G.H. Voigt, A mathematical magnetospheric field model with independent physical parameters. Planet. Space Sci. 29, 1–20 (1981). doi: 10.1016/0032-0633(81)90134-3 ADSCrossRefGoogle Scholar
  103. N.D. Watkins, H.G. Goodell, Geomagnetic polarity change and faunal extinction in the Southern ocean. Science 156, 1083–1085 (1967) ADSCrossRefGoogle Scholar
  104. J. Wicht, S. Stellmach, H. Harder, Numerical models of the geodynamo, in Geomagnetic Variations, ed. by K. Glassmeier, H. Soffel, J.W. Negendank (Springer, Berlin, 2009), pp. 107–158 CrossRefGoogle Scholar
  105. W. Wiltschko, R. Wiltschko, Magnetic compass of European robins. Science 176, 62–64 (1972) ADSCrossRefGoogle Scholar
  106. W. Wiltschko, R. Wiltschko, Magnetic orientation and magnetoreception in birds and other animals. J. Comput. Physiol. 191, 675 (2005) CrossRefGoogle Scholar
  107. H. Winkler, M. Sinnhuber, J. Notholt, M.B. Kallenrode, F. Steinhilber, J. Vogt, B. Zieger, K.H. Glassmeier, A. Stadelmann, Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long timescales. J. Geophys. Res. 113, 2302–2316 (2008). doi: 10.1029/2007JD008574 CrossRefGoogle Scholar
  108. M. Winklhofer, The physics of geomagnetic-field transduction in animals. IEEE Trans. Magnet. 45, 5259–5265 (2009). doi: 10.1109/TMAG.2009.2017940 ADSCrossRefGoogle Scholar
  109. H. Worm, A link between geomagnetic reversals and events and glaciations. Earth Planet. Sci. Lett. 147, 55–67 (1997). doi: 10.1016/S0012-821X(97)00008-3 ADSCrossRefGoogle Scholar
  110. C.C. Wu, P. Roberts, A precessionally-driven dynamo in a plane layer. Geophys. Astrophys. Fluid Dyn. 102, 1–19 (2008). doi: 10.1080/03091920701450333 MathSciNetADSCrossRefGoogle Scholar
  111. B. Zieger, J. Vogt, K.H. Glassmeier, T.I. Gombosi, Magnetohydrodynamic simulation of an equatorial dipolar paleomagnetosphere. J. Geophys. Res. 109, 7205 (2004). doi: 10.1029/2004JA010434 CrossRefGoogle Scholar
  112. B. Zieger, J. Vogt, K.H. Glassmeier, Scaling relations in the paleomagnetosphere derived from MHD simulations. J. Geophys. Res. 111, 6203 (2006). doi: 10.1029/2005JA011531 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institut für Geophysik und extraterrestrische PhysikTechnische Universität BraunschweigBraunschweigGermany
  2. 2.School of Engineering and ScienceJacobs University BremenBremenGermany

Personalised recommendations