Advertisement

Space Science Reviews

, Volume 154, Issue 1–4, pp 219–251 | Cite as

Lunar Magnetic Field Observation and Initial Global Mapping of Lunar Magnetic Anomalies by MAP-LMAG Onboard SELENE (Kaguya)

  • Hideo Tsunakawa
  • Hidetoshi Shibuya
  • Futoshi Takahashi
  • Hisayoshi Shimizu
  • Masaki Matsushima
  • Ayako Matsuoka
  • Satoru Nakazawa
  • Hisashi Otake
  • Yuichi Iijima
Article

Abstract

The magnetic field around the Moon has been successfully observed at a nominal altitude of ∼100 km by the lunar magnetometer (LMAG) on the SELENE (Kaguya) spacecraft in a polar orbit since October 29, 2007. The LMAG mission has three main objectives: (1) mapping the magnetic anomaly of the Moon, (2) measuring the electromagnetic and plasma environment around the Moon and (3) estimating the electrical conductivity structure of the Moon. Here we review the instrumentation and calibration of LMAG and report the initial global mapping of the lunar magnetic anomaly at the nominal altitude. We have applied a new de-trending technique of the Bayesian procedure to multiple-orbit datasets observed in the tail lobe and in the lunar wake. Based on the nominal observation of 14 months, global maps of lunar magnetic anomalies are obtained with 95% coverage of the lunar surface. After altitude normalization and interpolation of the magnetic anomaly field by an inverse boundary value problem, we obtained full-coverage maps of the vector magnetic field at 100 km altitude and the radial component distribution on the surface. Relatively strong anomalies are identified in several basin-antipode regions and several near-basin and near-crater regions, while the youngest basin on the Moon, the Orientale basin, has no magnetic anomaly. These features well agree with characteristics of previous maps based on the Lunar Prospector observation. Relatively weak anomalies are distributed over most of the lunar surface. The surface radial-component distribution estimated from the inverse boundary value problem in the present study shows a good correlation with the radial component distribution at 30 km altitude by Lunar Prospector. Thus these weak anomalies over the lunar surface are not artifacts but likely to be originated from the lunar crustal magnetism, suggesting possible existence of an ancient global magnetic field such as a dynamo field of the early Moon. The possibility of the early lunar dynamo and the mechanism of magnetization acquisition will be investigated by a further study using the low-altitude data of the magnetic field by Kaguya.

Keywords

Moon Kaguya Magnetic field Magnetic anomaly Crustal magnetization Dynamo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akaike, Likelihood and the Bayes procedure, in Bayesian Statistics, ed. by J.M. Bernardo et al. (1980), pp. 143–166 Google Scholar
  2. H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, C. Shum, Lunar global shape and polar topography derived from KAGUYA-LALT laser altimetry. Science 323, 897–900 (2009). doi: 10.1126/science.1164146 CrossRefADSGoogle Scholar
  3. S. Cisowski, M. Fuller, The effect of shock on the magnetism of terrestrial rocks. J. Geophys. Res. 83, 3,441–3,458 (1978) CrossRefADSGoogle Scholar
  4. P.J. Coleman, C.T. Russell, L.R. Sharp, G. Schubert, Preliminary mapping of the lunar magnetic field. Phys. Earth Planet. Inter. 6, 167–174 (1972) CrossRefADSGoogle Scholar
  5. P. Dyal, C.W. Parkin, W.D. Daily, Magnetism and the interior of the Moon. Rev. Geophys. Space Phys. 12, 568–591 (1974) CrossRefADSGoogle Scholar
  6. M. Fuller, Lunar Magnetism. Rev. Geophys. 12, 23–70 (1974) CrossRefADSGoogle Scholar
  7. I. Garric-Bethell, P.W. Benjamin, L.S. David, B. Jennifer, Early lunar magnetism. Science 323, 356–359 (2009) CrossRefADSGoogle Scholar
  8. J. Gattacceca, A. Lamalib, P. Rochettea, M. Boustiec, L. Berthed, The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Inter. 162, 85–98 (2007). doi: 10.1016/j.pepi.2007.03.006 CrossRefADSGoogle Scholar
  9. J. Gattacceca, L. Berthe, M. Boustie, F. Vadeboin, P. Rochette, T. De Resseguier, On the efficiency of shock remanent processes. Phys. Earth Planet. Inter. 166, 1–10 (2008). doi: 10.1016/j.pepi.2007.09.005 CrossRefADSGoogle Scholar
  10. J.S. Halekas, D.L. Mitchell, R.P. Lin, S. Frey, L.L. Hood, M.H. Acuña, A.B. Binder, Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer. J. Geophys. Res. 106, 27,841–27,852 (2001) CrossRefADSGoogle Scholar
  11. J.S. Halekas, S.D. Bale, D.L. Mitchell, R.P. Lin, Electrons and magnetic fields in the lunar plasma wake. J. Geophys. Res. 110, A07222 (2005) CrossRefGoogle Scholar
  12. J.S. Halekas, D.A. Brain, D.L. Mitchell, R.P. Lin, L. Harrison, On the occurrence of magnetic enhancements caused by solar wind interaction with lunar crustal fields. Geophys. Res. Lett. 33, L08106 (2006) CrossRefGoogle Scholar
  13. J.S. Halekas, G.T. Delory, D.A. Brain, R.P. Lin, D.L. Mitchell, Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind: a mini-magnetosphere? Planet. Space Sci. 56, 941–946 (2008) CrossRefADSGoogle Scholar
  14. W.K. Hartmann, D.R. Davis, Satellite-sized planetesimals and lunar origin. Icarus 24, 505 (1975) ADSGoogle Scholar
  15. J. Haruyama, M. Ohtake, T. Matsunaga, T. Morota, C. Honda, Y. Yokota, M. Abe, Y. Ogawa, H. Miyamoto, A. Iwasaki, C.M. Pieters, N. Asada, H. Demura, N. Hirata, J. Terazono, S. Sasaki, K. Saiki, A. Yamaji, M. Torii, J.-L. Josset, Long-lived volcanism on the lunar farside revealed by SELENE Terrain Camera. Science 323, 905–908 (2009). doi: 10.1126/science.1163382 CrossRefADSGoogle Scholar
  16. L.L. Hood, N.A. Artemieva, Antipodal effects of lunar basin forming impacts: initial 3D simulations and comparisons with observations. Icarus 193, 485–502 (2008) CrossRefADSGoogle Scholar
  17. L.L. Hood, A. Vickery, Magnetic field amplification and generation in hypervelocity meteoroid impacts with application to lunar paleomagnetism. J. Geophys. Res. 89, C211–C223 (1984) (suppl.) CrossRefADSGoogle Scholar
  18. L.L. Hood, C.T. Russell, P.J. Coleman Jr., Contour maps of the lunar remanent magnetic fields. J. Geophys. Res. 86, 1055–1069 (1981) CrossRefADSGoogle Scholar
  19. L.L. Hood, D.L. Mitchell, R.P. Lin, M.H. Acuna, A.B. Binder, Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data. Geophys. Res. Lett. 26, 2327–2330 (1999) CrossRefADSGoogle Scholar
  20. L.L. Hood, A. Zakharian, J. Halekas, D.L. Mitchell, R.P. Lin, M.H. Acuña, A.B. Binder, Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data. J. Geophys. Res. 106, 27,825–27,839 (2001) ADSGoogle Scholar
  21. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998), p. 808 Google Scholar
  22. H. Kinoshita, Studies on piezo-magnetization (III)-PRM and relating phenoma. J. Geomagn. Geoelectr. 20, 155–167 (1968) Google Scholar
  23. S. Kokubun, T. Yamamoto, M.H. Acuña, K. Hayashi, K. Shiokawa, H. Kawano, The Geotail magnetic field experiment. J. Geomagn. Geoelectr. 46, 7–21 (1994) Google Scholar
  24. M. Kurata, H. Tsunakawa, Y. Saito, H. Shibuya, M. Matsushima, H. Shimizu, Mini-magnetosphere over the Reiner Gamma magnetic anomaly region on the Moon. Geophys. Res. Lett. 32, L24205 (2005). doi: 10.1029/2005GL024097 CrossRefADSGoogle Scholar
  25. R.A. Langel, An investigation of a correlation/covariance method of signal extraction. J. Geophys. Res. 100, 20137–20157 (1995) CrossRefADSGoogle Scholar
  26. R.P. Lin, K.A. Anderson, L.L. Hood, Lunar surface magnetic field concentrations antipodal to young large impact basins. Icarus 74, 529–541 (1988) CrossRefADSGoogle Scholar
  27. R.P. Lin, D.L. Mitchell, D.W. Curtis, K.A. Anderson, C.W. Carlson, J. McFadden, M.H. Acuña, L.L. Hood, A.B. Binder, Lunar surface magnetic fields and their interaction with the solar wind: results from Lunar Prospector. Science 281, 1480–1484 (1998) CrossRefADSGoogle Scholar
  28. E.F. Lyon, H.S. Bridge, J.H. Binsack, Explorer 35 plasma measurements in the vicinity of the Moon. J. Geophys. Res. 72, 6113–6117 (1967) CrossRefADSGoogle Scholar
  29. M. Matsushima, H. Tsunakawa, Y. Iijima, S. Nakazawa, A. Matsuoka, S. Ikegami, T. Ishikawa, H. Shibuya, H. Shimizu, F. Takahashi, Magnetic cleanliness program under control of electromagnetic compatibility for the SELENE (Kaguya) spacecraft. Space Sci. Rev. (2010, this issue) Google Scholar
  30. D.L. Mitchell, J.S. Halekas, R.P. Lin, S. Frey, L.L. Hood, M.H. Acuña, A.B. Binder, Global mapping of lunar crustal magnetic fields by Lunar Prospector. Icarus 194, 401–409 (2008) CrossRefADSGoogle Scholar
  31. T. Nagai, H. Tsunakawa, H. Shibuya, F. Takahashi, H. Shimizu, M. Matsushima, M.N. Nishino, Y. Saito, O. Amm, Plasmoid formation for multiple onset substorms: observations of the Japanese lunar mission “Kaguya”. Ann. Geophys. 27, 59–64 (2009) CrossRefADSGoogle Scholar
  32. T. Nagata, Introductory notes on shock remanent magnetization and shock demagnetization of igneous rocks. Pure Appl. Geophys. 89, 159–177 (1971) CrossRefADSGoogle Scholar
  33. T. Nakagawa, F. Takahashi, H. Tsunakawa, H. Shibuya, H. Shimizu, M. Matsushima, Non-monochoromatic whistler waves detected by Kaguya on the dayside surface of the Moon. Earth Planets Space (2010, in press) Google Scholar
  34. N. Namiki, T. Iwata, K. Matsumoto, H. Hanada, H. Noda, S. Goossens, M. Ogawa, N. Kawano, K. Asari, S. Tsuruta, Y. Ishihara, Q. Liu, F. Kikuchi, T. Ishikawa, S. Sasaki, C. Aoshima, K. Kurosawa, S. Sugita, T. Takano, Farside gravity field of the Moon from four-way doppler measurements of SELENE (KAGUYA). Science 323, 900–905 (2009). doi: 10.1126/science.1168029 CrossRefADSGoogle Scholar
  35. M.N. Nishino, K. Maezawa, M. Fujimoto, Y. Saito, S. Yokota, K. Asamura, T. Tanaka, H. Tsunakawa, M. Matsushima, F. Takahashi, T. Terasawa, S. Shibuya, H. Shimizu, Pairwise energy gain-loss feature of solar wind protons in the near-Moon wake. Geophys. Res. Lett. 36, L12108 (2009a). doi: 10.1029/2009GL039049 CrossRefADSGoogle Scholar
  36. M.N. Nishino, M. Fujimoto, K. Maezawa, Y. Saito, S. Yokota, K. Asamura, T. Tanaka, H. Tsunakawa, M. Matsushima, F. Takahashi, T. Terasawa, H. Shibuya, H. Shimizu, Solar-wind proton access deep into the near-Moon wake. Geophys. Res. Lett. 36, L16103 (2009b). doi: 10.1029/2009GL039444 CrossRefADSGoogle Scholar
  37. M.E. Purucker, A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations. Icarus 197, 19–23 (2008). doi: 10.1016/j.icarus.2008.03.16 CrossRefADSGoogle Scholar
  38. N.C. Richmond, L.L. Hood, A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data. J. Geophys. Res. 113, E02010 (2008). doi: 10.1029/2007JE002933 CrossRefGoogle Scholar
  39. G.F. Roach, Green’s Functions, 2nd edn. (Cambridge University Press, Cambridge, 1982), p. 325 zbMATHGoogle Scholar
  40. S.K. Runcorn, Lunar magnetism, polar displacements and primeval satellites in the Earth–Moon system. Nature 304, 589–596 (1983) CrossRefADSGoogle Scholar
  41. Y. Saito, S. Yokota, K. Asamura, T. Tanaka, R. Akiba, M. Fujimoto, H. Hasegawa, H. Hayakawa, M. Hirahara, M. Hoshino, S. Machida, T. Mukai, T. Nagai, T. Nagatsuma, M. Nakamura, K. Oyama, E. Sagaw, S. Sasaki, K. Seki, T. Terasawa, Low energy charged particle measurement by MAP-PACE onboard SELENE. Earth Planets Space 60, 375–386 (2008a) ADSGoogle Scholar
  42. Y. Saito, S. Yokota, T. Tanaka, K. Asamura, M. Nishino, M. Fujimoto, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, F. Takahashi, T. Mukai, T. Terasawa, Solar wind proton reflection at the lunar surface: low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA). Geophys. Res. Lett. 35, L24205 (2008b). doi: 10.1029/2008GL036077 CrossRefADSGoogle Scholar
  43. Y. Saito, S. Yokota, T. Tanaka, K. Asamura, M.N. Nishino, T. Yamamoto, H. Tsunakawa, H. Shibuya, H. Shimizu, F. Takahashi, M. Matsushima, Lunar plasma measurement by MAP-PACE onboard KAGUYA (SELENE). Eos Trans. Am. Geophys. Union, Fall Meet. Suppl. 89(53), P51D-02 (2008c) Google Scholar
  44. Y. Saito, S. Yokota, K. Asamura, T. Tanaka, M.N. Nishino, T. Yamamoto, Y. Terakawa, M. Fujimoto, H. Hasegawa, H. Hayakawa, M. Hirahara, M. Hoshino, S. Machida, T. Mukai, T. Nagai, T. Nagatsuma, T. Nakagawa, M. Nakamura, K. Oyama, E. Sagawa, S. Sasaki, K. Seki, I. Shinohara, T. Terasawa, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, F. Takahashi, In-flight performance and initial results of Plasma energy Angle and Composition Experiment (PACE) on SELENE (Kaguya). Space Sci. Rev. (2010, this issue) Google Scholar
  45. P.H. Schultz, L.J. Srnka, Cometary collisions with the Moon and Mercury. Nature 284, 22–26 (1980) CrossRefADSGoogle Scholar
  46. H. Shimizu, F. Takahashi, N. Horii, A. Matsuoka, M. Matsushima, H. Shibuya, H. Tsunakawa, Ground calibration of the high-sensitivity SELENE lunar magnetometer LMAG. Earth Planets Space 60, 353–363 (2008) ADSGoogle Scholar
  47. D.R. Stegman, A.M. Jellinek, S.A. Zatman, J.R. Baumgardner, M.A. Richards, An early lunar core dynamo driven by thermochemical mantle convection. Nature 421, 143–146 (2003) CrossRefADSGoogle Scholar
  48. F. Takahashi, H. Shimizu, M. Matsushima, H. Shibuya, A. Matsuoka, S. Nakazawa, Y. Iijima, H. Otake, H. Tsunakawa, In-orbit calibration of the lunar magnetometer onboard SELENE (KAGUYA). Earth Planets Space 61, 1269–1274 (2009) ADSGoogle Scholar
  49. F. Takahashi, H. Tsunakawa, Thermal core-mantle coupling in an early lunar dynamo: implications for a global magnetic field and magnetosphere of the early Moon. Geophys. Res. Lett. 36, L24202 (2009). doi: 10.1029/2009GL041221 CrossRefADSGoogle Scholar
  50. T. Tanaka, Y. Saito, S. Yokota, K. Asamura, M.N. Nishino, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, F. Takahashi, M. Fujimoto, T. Mukai, T. Terasawa, First in-situ observation of the Moon-originating ions in the Earth’s magnetosphere by MAP-PACE on SELENE (KAGUYA). Geophys. Res. Lett. 36, L22106 (2009). doi: 10.1029/2009GL040682 CrossRefADSGoogle Scholar
  51. M. Toyoshima, H. Shibuya, M. Matsushima, H. Shimizu, H. Tsunakawa, Equivalent source mapping of the lunar crustal magnetic field using ABIC. Earth Planets Space 60, 365–373 (2008) ADSGoogle Scholar
  52. H. Tsunakawa, Bayesian approach to smoothing palaeomagnetic data using ABIC. Geophys. J. Int. 108, 801–811 (1992) CrossRefADSGoogle Scholar
  53. D.E. Wilhelms, The Moon, in The Geology of the Terrestial Planets, ed. by M. Carr et al. (1984) pp. 107–205 Google Scholar
  54. T. Yamamoto, A. Matsuoka, PLANET-B magnetic fields investigation. Earth Planets Space 50, 189–194 (1998) ADSGoogle Scholar
  55. S. Yokota, Y. Saito, K. Asamura, T. Tanaka, M.N. Nishino, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, F. Takahashi, M. Fujimoto, T. Mukai, T. Terasawa, First direct detection of ions originating from the Moon by MAP-PACE IMA onboard SELENE (KAGUYA). Geophys. Res. Lett. 36, L11201 (2009). doi: 10.1029/2009GL038185 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hideo Tsunakawa
    • 1
  • Hidetoshi Shibuya
    • 2
  • Futoshi Takahashi
    • 1
  • Hisayoshi Shimizu
    • 3
  • Masaki Matsushima
    • 1
  • Ayako Matsuoka
    • 4
  • Satoru Nakazawa
    • 5
  • Hisashi Otake
    • 5
  • Yuichi Iijima
    • 4
  1. 1.Department of Earth and Planetary SciencesTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Earth and Environmental SciencesKumamoto UniversityKumamotoJapan
  3. 3.Earthquake Research InstituteUniversity of TokyoTokyoJapan
  4. 4.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
  5. 5.Lunar and Planetary Exploration Program GroupJapan Aerospace Exploration AgencyTsukubaJapan

Personalised recommendations