Space Science Reviews

, Volume 153, Issue 1–4, pp 185–218 | Cite as

Phase Behaviour of Ices and Hydrates

Article

Abstract

The primary volatile ‘rock-forming’ minerals in the icy satellites of the outer solar system include water-ice and various hydrated crystals of methane and ammonia. The rich polymorphism of these substances as a function of pressure and temperature are described in this chapter. This polymorphism has a fundamental influence on the exchange of mass and energy between the core and the surface of icy satellites. We describe the current state-of-the-art in our understanding of the high pressure phase behaviour and the measurements of thermoelastic and transport properties of these substances. In addition we describe the structures and properties of hydrated phases of methanol, sulfuric acid, and various sulfate salts.

Keywords

Water ice Methane clathrate Ammonia Methanol Sulfuric acid Sulfates Polymorphism Phase relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Alibert, O. Mousis, Astron. Astrophys. 465, 1051–1060 (2007) ADSGoogle Scholar
  2. L.J. Allamandola, M.P. Bernstein, S.A. Sandford, R.L. Walker, Space Sci. Rev. 90, 219–232 (1999) ADSGoogle Scholar
  3. P. Andersson, R.G. Ross, G. Backstrom, J. Phys. C 13(4), L73–L76 (1980) ADSGoogle Scholar
  4. O. Andersson, A. Inaba, Phys. Chem. Chem. Phys. 7(7), 1441–1449 (2005) Google Scholar
  5. G.P. Arnold, E.D. Finch, S.W. Rabideau, R.G. Wenzel, J. Chem. Phys. 49(10), 4365–4369 (1968) ADSGoogle Scholar
  6. G. Baume, W. Borovsky, J. Chim. Phys. 12, 276–281 (1914) Google Scholar
  7. R. Benjamin, Recherches sur le coefficient d’activité thermodynamique dans les solutions aqueuses de composés organiques. Thèse. Bruxelles (1932) Google Scholar
  8. M.P. Bernstein, S.A. Sandford, L.J. Allamandola, S. Chang, M.A. Scharberg, Astrophys. J. 454, 327–344 (1995) ADSGoogle Scholar
  9. J.E. Bertie, M.R. Shehata, J. Chem. Phys. 81(1), 27–30 (1984) ADSGoogle Scholar
  10. A.K. Bertram, D.D. Patterson, J.J. Sloan, J. Phys. Chem. 100(6), 2376–2383 (1996) Google Scholar
  11. K.D. Beyer, A.R. Hansen, M. Poston, J. Phys. Chem. A 107(12), 2025–2032 (2003) Google Scholar
  12. D. Blake, L. Allamandola, S. Sandford, D. Hudgins, F. Freund, Science 254, 548–551 (1991) ADSGoogle Scholar
  13. E.A. Block, Z. Phys. Chem. Stoich. Verwandtschaftslehre 82, 403–438 (1913) Google Scholar
  14. S. Bobev, K.T. Tait, Am. Mineral. 89, 1208–1214 (2004) Google Scholar
  15. S.C. Boone, Mixtures of ammonia and water and of methane and water at high pressures. Ph.D Thesis. University of California, Los Angeles (1989) Google Scholar
  16. S. Boone, M.F. Nicol, Proc. Lunar Planet. Sci. Conf. 21, 603–612 (1991) ADSGoogle Scholar
  17. H.E.A. Brand, A.D. Fortes, I.G. Wood, K.S. Knight, L. Vočadlo, Phys. Chem. Miner. 36(1), 29–46 (2009) ADSGoogle Scholar
  18. H.E.A. Brand, A.D. Fortes, I.G. Wood, L. Vočadlo, Phys. Chem. Miner. 41 (2010). doi:10.1007/s00269-009-0331-1
  19. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 47, 441–558 (1912) Google Scholar
  20. P.W. Bridgman, J. Chem. Phys. 3(10), 597–605 (1935) ADSGoogle Scholar
  21. P.W. Bridgman, J. Chem. Phys. 5(12), 964–966 (1937) ADSGoogle Scholar
  22. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 71–87 (1948a) Google Scholar
  23. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 89–99 (1948b) Google Scholar
  24. B. Buffet, Ann. Rev. Earth Planet. Sci. 28, 477–507 (2000) ADSGoogle Scholar
  25. G.M. Cardoso, Los modernos métodos roentgenográficos aplicados en la determinación de la estuctura cristalina de la epsomita. Trabajos del Museo Nacional de Ciencias naturales., Serie Geológica 37, 5–133. Madrid (1930) Google Scholar
  26. R.W. Carlson, M.S. Anderson, R. Mehlman, R.E. Johnson, Icarus 177(2), 461–471 (2005) ADSGoogle Scholar
  27. J.P. Chan, W.F. Giauque, J. Phys. Chem. 68(10), 3053–3057 (1964) Google Scholar
  28. B. Chazallon, W.F. Kuhs, J. Chem. Phys. 117(1), 308–320 (2002) ADSGoogle Scholar
  29. V.E. Chizhov, J. Appl. Mech. Tech. Phys. 34(2), 253–262 (1993) ADSGoogle Scholar
  30. M. Choukroun, O. Grasset, J. Chem. Phys. 127(12), 124506 (2007) ADSGoogle Scholar
  31. M. Choukroun, Y. Morizet, O. Grasset, J. Raman Spectrosc. 38, 440–451 (2007) ADSGoogle Scholar
  32. M. Choukroun, O. Grasset, G. Tobie, C. Sotin, Lunar Planet. Sci. Conf. (2008) 39, Abstract 1837 Google Scholar
  33. M. Choukroun, O. Grasset, G. Tobie, C. Sotin, Icarus 205(2), 581–593 (2010). doi:10.1016/j.icarus.2009.08.011 ADSGoogle Scholar
  34. I.L. Clifford, E. Hunter, J. Phys. Chem. 37(1), 101–118 (1933) Google Scholar
  35. F.H. Conrad, E.F. Hill, E.A. Ballman, Ind. Eng. Chem. 32(4), 542–543 (1940) Google Scholar
  36. S.K. Croft, J.I. Lunine, J.S. Kargel, Icarus 73(2), 279–293 (1988) ADSGoogle Scholar
  37. D.P. Cruickshank, Space Sci. Rev. 116, 421–439 (2005) ADSGoogle Scholar
  38. H.C. Cynn, S. Boone, A. Koumvakalis, M. Nicol, D.J. Stevenson, Proc. Lunar Planet. Sci. 19, 433–441 (1989) ADSGoogle Scholar
  39. J.B. Dalton III, Astrobiology 3(4), 771–784 (2003) ADSGoogle Scholar
  40. J.B. Dalton III, O. Prieto-Ballesteros, J.S. Kargel, C.S. Jamieson, J. Jolivet, R. Quinn &, Icarus 177(2), 472–490 (2005) ADSGoogle Scholar
  41. S. Day, E. Asphaug, L. Bruesch, EOS, Transactions of the American Geophysical Union, vol. 84, no 46, Fall Meeting Supplement, Abstract P72B-0507 (2002) Google Scholar
  42. R. De Forcrand, Ann. Chim. Phys. 6(27), 525–540 (1892) Google Scholar
  43. T. Dong, L. Wang, A. Liu, X. Guo, Q. Ma, G. Li, Q. Sun, Petroleum Sci. 6(2), 188–193 (2009). doi:10.1007/s12182-009-0030-2 Google Scholar
  44. A.J. Dougherty, D.L. Hogenboom, J.S. Kargel, Y.F. Zheng, Lunar Planet. Sci. Conf. XXXVII, abstract 1732 (2006) Google Scholar
  45. W.B. Durham, S.H. Kirby, L.A. Stern, J. Geophys. Res. 98(B10), 17667–17682 (1993) ADSGoogle Scholar
  46. W.B. Durham, S.H. Kirby, L.A. Stern, W. Zhang, J. Geophys. Res. 108(B4), 2182 (2003) ADSGoogle Scholar
  47. W.B. Durham, O. Prieto-Ballesteros, D.L. Goldsby, J.S. Kargel, Sp. Sci. Rev. (2010, this issue) Google Scholar
  48. Y.A. Dyadin, Ya.E. Aladko, E.G. Larionov, Mendeleev Commun. 1, 34–35 (1997) Google Scholar
  49. L.D. Elliot, J. Phys. Chem. 28(8), 887–888 (1924) Google Scholar
  50. H. Engelhardt, B. Kamb, J. Chem. Phys. 75(12), 5887–5899 (1981) ADSGoogle Scholar
  51. L.F. Evans, J. Appl. Phys. 38(12), 4930–4932 (1967) ADSGoogle Scholar
  52. M. Ewert, Bull. Soc. Chim. Belge 46(1), 90–103 (1937) Google Scholar
  53. B.J. Falabella, A study of natural gas hydrates. Dissertation, University of Massachusetts, 1975 Google Scholar
  54. R. Feistel, W. Wagner, J. Chem. Ref. Data 35(2), 1021–1047 (2006) ADSGoogle Scholar
  55. A.D. Fortes, Icarus 146(2), 444–452 (2000) ADSGoogle Scholar
  56. A. Fortes, Computational and experimental studies of solids in the ammonia-water system. Ph.D Thesis, University of London (2004) Google Scholar
  57. A.D. Fortes, Chem. Phys. Lett. 431(4–6), 283–288 (2006) ADSGoogle Scholar
  58. A.D. Fortes, Icarus 191(2), 743–748 (2007) ADSGoogle Scholar
  59. A.D. Fortes, I.G. Wood, K.S. Knight, J.P. Brodholt, M. Alfredsson, G.S. McGrady, L. Vočadlo, J. Chem. Phys. 119(20), 10806–10813 (2003a) ADSGoogle Scholar
  60. A.D. Fortes, I.G. Wood, J.P. Brodholt, L. Vočadlo, Icarus 162(1), 59–73 (2003b) ADSGoogle Scholar
  61. A.D. Fortes, I.G. Wood, M. Alfredsson, L. Vočadlo, K.S. Knight, J. Appl. Cryst. 38(4), 612–618 (2005) Google Scholar
  62. A.D. Fortes, I.G. Wood, K.S. Knight, J. Chem. Phys. 125(14), 144510 (2006a) ADSGoogle Scholar
  63. A.D. Fortes, I.G. Wood, M. Alfredsson, L. Vočadlo, K.S. Knight, Eur. J. Mineral. 18(4), 449–462 (2006b) Google Scholar
  64. A.D. Fortes, I.G. Wood, L. Vočadlo, H.E.A. Brand, P.M. Grindrod, K.H. Joy, M.G. Tucker, Lunar Planet. Sci. Conf. 37, abstract #1029 (2006c) Google Scholar
  65. A.D. Fortes, I.G. Wood, M. Alfredsson, L. Vočadlo, K.S. Knight, W.G. Marshall, M.G. Tucker, F. Fernandez-Alonso, High Press. Res. 27(2), 201–212 (2007a) ADSGoogle Scholar
  66. A.D. Fortes, P.M. Grindrod, S.K. Trickett, L. Vočadlo, Icarus 188(1), 139–153 (2007b) ADSGoogle Scholar
  67. A.D. Fortes, I.G. Wood, K.S. Knight, Phys. Chem. Miner. 35, 207–221 (2008a) ADSGoogle Scholar
  68. A.D. Fortes, I.G. Wood, L. Vočadlo, L. Chapon, K.S. Knight, R.I. Smith, J. Chem. Phys. 128(5), 054506 (2008b) ADSGoogle Scholar
  69. A.D. Fortes, I.G. Wood, L. Vočadlo, K.S. Knight, W.G. Marshall, M.G. Tucker, F. Fernandez-Alonso, J. Appl. Cryst. 42(5), 846–866 (2009a) Google Scholar
  70. A.D. Fortes, E. Suard, M.-H. Lemée-Cailleau, C.J. Pickard, R.J. Needs, J. Am. Chem. Soc. 131(37), 13508–13515 (2009b) Google Scholar
  71. A.D. Fortes, E. Suard, M.-H. Lemée-Cailleau, C.J. Pickard, R.J. Needs, J. Chem. Phys. 131(15), 154503 (2009c) ADSGoogle Scholar
  72. A.D. Fortes, I.G. Wood, K.S. Knight, J. Appl. Cryst. 42(6), 1054–1061 (2009d) Google Scholar
  73. A.D. Fortes, I.G. Wood, K.S. Knight, J. Appl. Cryst. 43 (2010, in press). doi:10.1107/S0021889810005595
  74. F. Franks, D.J.G. Ives, Q. Rev. 20, 1–44 (1966) Google Scholar
  75. C.J. Fritzsche, Bulletin Sci. Publ. Acad. Imp. Sci. St.-Pétersb. 2(13), 193–196 (1837) Google Scholar
  76. H. Fukazawa, S. Ikeda, S. Oguro, T. Fukumura, S. Mae, J. Phys. Chem. B 106(23), 6021–6024 (2002) Google Scholar
  77. H. Fukazawa, A. Hishikawa, Y. Ishii, B.C. Chakamoukos, J.A. Fernandez-Baca, Astrophys. J. 652(1), L57–L60 (2006) ADSGoogle Scholar
  78. C.M. Gable, H.F. Betz, S.H. Maron, J. Am. Chem. Soc. 72(4), 1445–1448 (1950) Google Scholar
  79. R.E. Gagnon, H. Kiefte, M.J. Clouter, E. Whalley, J. Chem. Phys. 92(3), 1909–1914 (1990) ADSGoogle Scholar
  80. D.E. Garrett, Sodium Sulphate: Handbook of Deposits, Processing, Properties, and Use (Academic Press, San Diego, 2001) Google Scholar
  81. R.S. Gärtner, F.E. Genceli, D.O. Trambitas, G.J. Witkamp, J. Cryst. Growth 275(12), 1773–1778 (2005) ADSGoogle Scholar
  82. D. Gautier, F. Hersant, Space Sci. Rev. 116, 25–52 (2005) ADSGoogle Scholar
  83. A. Geller, Z. Krist. 60, 415–472 (1924) Google Scholar
  84. W.F. Giauque, J.W. Stout, J. Am. Chem. Soc. 58(7), 1144–1150 (1936) ADSGoogle Scholar
  85. W.F. Giauque, E.W. Hornung, J.E. Kunzler, T.R. Rubin, J. Am. Chem. Soc. 82(1), 62–70 (1960) ADSGoogle Scholar
  86. H. Giran, C. R. Hebd. Séances Acad. Sci. 157, 221–223 (1913) Google Scholar
  87. L. Godefroy, E. Varenne, C. R. Hebd. Séances Acad. Sci. 138, 990–992 (1904) Google Scholar
  88. O. Grasset, J. Pargamin, Planet. Space. Sci. 53, 371–384 (2005) ADSGoogle Scholar
  89. O. Grasset, C. Sotin, Icarus 123(1), 101–112 (1996) ADSGoogle Scholar
  90. O. Grasset, C. Sotin, F. Dechamps, Planet. Space Sci. 48(7–8), 617–636 (2000) ADSGoogle Scholar
  91. O. Grasset, C. Sotin, O. Mousis, L. Mevel, Proc. Lunar Planet. Sci. 31 abstract 1386 (2001a) Google Scholar
  92. O. Grasset, L. Mevel, O. Mousis, C. Sotin, Proc. Lunar Planet. Sci. 31, abstract 1524 (2001b) Google Scholar
  93. P.M. Grindrod, A.D. Fortes, F. Nimmo, D.L. Feltham, J.P. Brodholt, L. Vočadlo, Icarus 197(1), 137–151 (2008) ADSGoogle Scholar
  94. E.L. Gromnitskaya, O.V. Stal’gorova, V.V. Brazhkin, A.G. Lyapin, Phys. Rev. B 64, 094205 (2001) ADSGoogle Scholar
  95. E.L. Gromnitskaya, O.F. Yagafarov, A.G. Lyapin, V.V. Brazhkin, A.D. Fortes, High Press. Res. (2010). doi:10.1080/08957951003588860 Google Scholar
  96. C. Gutt, B. Asmussen, W. Press, M.R. Johnson, Y.P. Handa, J.S. Tse, J. Chem. Phys. 113(11), 4713–4721 (2000) ADSGoogle Scholar
  97. A. Hamilton, C. Hall, J. Anal. At. Spectrom. 23, 840–844 (2008) Google Scholar
  98. K. Hasebe, J. Phys. Soc. Jpn. 50(4), 1266–1274 (1981) ADSGoogle Scholar
  99. A. Hazra, S. Paul, U.K. De, S. Bhar, K. Goswami, Progr. Cryst. Growth Charact. Mater. 2003, 45–61 (2003) Google Scholar
  100. C. Himawan, in Chemical Engineering Transactions, volume 1, Proceedings of the 15th International Symposium on Industrial Crystallisation (2002), pp 951–956 Google Scholar
  101. H. Hirai, T. Kondo, M. Hasegawa, T. Yagi, Y. Yamamoto, T. Komai, K. Nagashima, M. Sakashita, H. Fujihisa, K. Aoki, J. Phys. Chem. B 104(7), 1429–1433 (2000) Google Scholar
  102. H. Hirai, Y. Uchihara, H. Fujihisa, M. Sakashita, E. Katoh, K. Aoki, K. Nagashima, Y. Yamamoto, T. Yagi, J. Chem. Phys. 115(15), 7066–7070 (2001) ADSGoogle Scholar
  103. H. Hirai, T. Tanaka, T. Kawamura, Y. Yamamoto, T. Yagi, Phys. Rev. B 68, 172102 (2003) ADSGoogle Scholar
  104. H. Hirai, T. Tanaka, T. Kawamura, Y. Yamamoto, T. Yagi, J. Phys. Chem. Solids 65, 1555–1559 (2004) ADSGoogle Scholar
  105. T.K. Hirsch, L. Ojamäe, Acta Crystallogr., B Struct. Sci. 60, 179–183 (2004) Google Scholar
  106. P.V. Hobbs, Ice Physics (Clarendon Press, Oxford, 1974) Google Scholar
  107. D.L. Hogenboom, J. Winebrake, G.J. Consolmagno, W. Dalrymple III, Proc. Lunar Planet. Sci. 20, 420 (1989) ADSGoogle Scholar
  108. D.L. Hogenboom, J.S. Kargel, T.C. Holden, J. Ganasan, Proc. Lunar Planet. Sci. 25, 555–556 (1994) ADSGoogle Scholar
  109. D.L. Hogenboom, J.S. Kargel, J.P. Ganasan, L. Lee, Icarus 115(2), 258–277 (1995) ADSGoogle Scholar
  110. D.L. Hogenboom, J.S. Kargel, G.J. Consolmagno, T.C. Holden, L. Lee, M. Buyyounouski, Icarus 128(1), 171–180 (1997) ADSGoogle Scholar
  111. D.L. Hogenboom, J.S. Kargel, P.V. Pahalawatta, Lunar Planet. Sci. Conf. XXX, abstract 1793 (1999) Google Scholar
  112. D.L. Hogenboom, J.S. Kargel, M.E. Daly, Lunar Planet. Sci. Conf. 32, abstract 1739 (2001) Google Scholar
  113. D.L. Hogenboom, J.S. Kargel, M.L. Reiter, Y.N. Khor, Lunar Planet. Sci. Conf. XXXIII, abstract 1638 (2002) Google Scholar
  114. E.W. Hornung, W.F. Giauque, J. Am. Chem. Soc. 77(11), 2983–2987 (1955) Google Scholar
  115. E.W. Hornung, T.E. Bracket, W.F. Giauque, J. Am. Chem. Soc. 78(22), 5747–5751 (1956) Google Scholar
  116. R. Howe, R.W. Whitworth, J. Chem. Phys. 90(8), 4450–4453 (1989) ADSGoogle Scholar
  117. O. Hulsmann, W. Biltz, Z. Anorg. Allg. Chem. 218(4), 369–378 (1934) Google Scholar
  118. H. Hussmann, G. Choblet, D.L. Matson, C. Sotin, G. Tobie, T. Van Hoolst, Space Sci. Rev. (2010, this issue) Google Scholar
  119. G.A. Jeffrey, Cryst. Rev. 9(2–3), 135–176 (2003) Google Scholar
  120. S. Jerzak, Ferroelectrics 275, 19–27 (2002) Google Scholar
  121. G.P. Johari, J. Chem. Phys. 118(1), 242–248 (2003) ADSGoogle Scholar
  122. M.L. Johnson, M. Nicol, J. Geophys. Res. 92, 6339–6349 (1987) ADSGoogle Scholar
  123. M.L. Johnson, A. Schwake, M. Nicol, Proc. Lunar Planet. Sci. 15, 405–406 (1984) ADSGoogle Scholar
  124. M.L. Johnson, A. Schwake, M. Nicol, in Ices in the Solar System, ed. by J. Klinger et al. (ed.) (Reidel, Dordrecht, 1985), pp. 39–47 Google Scholar
  125. H.C. Jones, F.H. Getman, Am. Chem. J. 32, 308–338 (1905) Google Scholar
  126. B. Kamb, Science 150, 205–207 (1965) ADSGoogle Scholar
  127. J.S. Kargel, Cryomagmatism in the outer solar system. PhD Thesis, University of Arizona (1990) Google Scholar
  128. J.S. Kargel, Icarus 94(2), 369–390 (1991) ADSGoogle Scholar
  129. J.S. Kargel, Icarus 100(2), 556–574 (1992) ADSGoogle Scholar
  130. J.S. Kargel, D.L. Hogenboom, Proc. Lunar Planet. Sci. 26, 725–726 (1995) ADSGoogle Scholar
  131. J.S. Kargel, J.I. Lunine, Clathrate hydrates in the solar system, in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (1998) Google Scholar
  132. J.S. Kargel, S.K. Croft, J.I. Lunine, J.S. Lewis, Icarus 89(1), 93–122 (1991) ADSGoogle Scholar
  133. J.S. Kargel, J.Z. Kaye, J.W. Head, G.M. Marion, R. Sassen, J.K. Crowley, O. Prieto-Ballesteros, S.A. Grant, D.L. Hogenboom, Icarus 148, 226–265 (2000) ADSGoogle Scholar
  134. J. Klinger et al. (ed.), Ices in the Solar System (Reidel, Dordrecht, 1985) Google Scholar
  135. H. König, Z. Krist. 105, 279–246 (1943) Google Scholar
  136. A. Koumvakalis, High pressure study of ammonia monohydrate. Ph.D Thesis, University of California, Los Angeles (1988) Google Scholar
  137. A.I. Krivchikov, B.Ya. Gorodilov, O.A. Korolyuk, V.G. Manzhelii, H. Conrad, W. Press, J. Low Temp. Phys. 139(5–6), 693–702 (2005) ADSGoogle Scholar
  138. P.A. Kryukov, V.I. Manikhin, Russ. Chem. Bull. 9(12), 2077–2078 (1960) Google Scholar
  139. W.F. Kuhs, M.S. Lehmann, J. Phys. Chem. 87(21), 4312–4313 (1983) Google Scholar
  140. W.F. Kuhs, J.L. Finney, C. Vettier, D.V. Bliss, J. Chem. Phys. 81(8), 3612–3623 (1984) ADSGoogle Scholar
  141. T. Kumazaki, Y. Kito, S. Sasaki, T. Kume, H. Shimizu, Chem. Phys. Lett. 388, 18–22 (2004) ADSGoogle Scholar
  142. J.E. Kunzler, W.F. Giauque, J. Am. Chem. Soc. 74(21), 5271–5274 (1952) Google Scholar
  143. A. Kurnosov, L. Dubrovinsky, A. Kuznetsov, V. Dmitriev, Z. Naturforsch. B 61(12), 1573–1576 (2006) Google Scholar
  144. S.J. La Placa, W.C. Hamilton, B. Kamb, A. Prakash, J. Chem. Phys. 58, 567–580 (1973) ADSGoogle Scholar
  145. A.J. Leadbetter, R.C. Ward, J.W. Clark, P.A. Tucker, T. Matsuo, H. Suga, J. Chem. Phys. 82(1), 424–428 (1985) ADSGoogle Scholar
  146. A. Léger, F. Selsis, C. Sotin, T. Guillot, D. Despois, D. Mawet, M. Ollivier, A. Labèque, C. Valette, F. Brachet, B. Chazelas, H. Lammer, Icarus 169(2), 499–504 (2004) ADSGoogle Scholar
  147. J. Leliwa-Kopystyński, M. Maruyama, T. Nakjima, Icarus 159(2), 518–528 (2002) ADSGoogle Scholar
  148. J.S. Lewis, Icarus 15(2), 174–185 (1971) ADSGoogle Scholar
  149. J.S. Lewis, Icarus 16(2), 241–252 (1972) ADSGoogle Scholar
  150. J.S. Lewis, R.G. Prinn, Astrophys. J. 238, 357–364 (1980) ADSGoogle Scholar
  151. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 86th edn. (Chemical Rubber Company Press, London, 2006) Google Scholar
  152. C.M.B. Line, R.W. Whitworth, J. Chem. Phys. 104(24), 10008–10013 (1996) ADSGoogle Scholar
  153. L.D. Livshits, Yu.S. Genshaft, Yu.N. Ryabin, Russ. J. Inorg. Chem. 8, 676–678 (1963) Google Scholar
  154. C. Lobban, J.L. Finney, W.F. Kuhs, Nature 391, 268–270 (1998) ADSGoogle Scholar
  155. C. Lobban, J.L. Finney, W.F. Kuhs, J. Chem. Phys. 112(16), 7169–7180 (2000) ADSGoogle Scholar
  156. C. Lobban, J.L. Finney, W.F. Kuhs, J. Chem. Phys. 117(8), 3928–3934 (2002) ADSGoogle Scholar
  157. T. Loerting, I. Kohl, C. Salzmann, E. Mayer, A. Hallbrucker, J. Chem. Phys. 116(8), 3171–3174 (2002) ADSGoogle Scholar
  158. J.D. Londono, J.L. Finney, W.F. Kuhs, J. Chem. Phys. 97(1), 547–552 (1992) ADSGoogle Scholar
  159. R.M.C. Lopes et al., Icarus 186(2), 395–412 (2007) ADSGoogle Scholar
  160. P. Loubeyre, R. LeToullec, E. Wolanin, M. Hanfland, D. Hausermann, Nature 397, 503–506 (1999) ADSGoogle Scholar
  161. J.S. Loveday, R.J. Nelmes, Phys. Rev. Lett 83(21), 4329–4332 (1999) ADSGoogle Scholar
  162. J.S. Loveday, R.J. Nelmes, in Science and Technology of High Pressure: Proceedings of AIRAPT-17, ed. by M.H. Manghnani, W.J. Nellis, M.T. Nicol (Universities Press, Hyderabad, 2000), pp. 133–136 Google Scholar
  163. J.S. Loveday, R.J. Nelmes, High Press. Res. 24(1), 45–55 (2004) Google Scholar
  164. J.S. Loveday, R.J. Nelmes, Phys. Chem. Chem. Phys. 10(7), 937–950 (2008) Google Scholar
  165. J.S. Loveday, M. Guthrie, R.J. Nelmes, Structural changes under pressure in ammonia dihydrate and ammonia hemihydrate. ISIS Facility Experimental Report (POLARIS) RB 9859. Rutherford Appleton Laboratory, RAL-TR-1999-050 (1999) Google Scholar
  166. J.S. Loveday, R.J. Nelmes, M. Guthrie, S.A. Belmonte, D.R. Allan, D.D. Klug, J.S. Tse, Y.P. Handa, Nature 410, 661–663 (2001a) ADSGoogle Scholar
  167. J.S. Loveday, R.J. Nelmes, M. Guthrie, D.D. Klug, J.S. Tse, Phys. Rev. Lett. 87, 215501 (2001b) ADSGoogle Scholar
  168. J.S. Loveday, R.J. Nelmes, D.D. Klug, J.S. Tse, S. Desgreniers, Can. J. Phys. 81(1–2), 539–544 (2003) ADSGoogle Scholar
  169. J.S. Loveday, R.J. Nelmes, C.L. Bull, H.E. Maynard-Casely, M. Guthrie, High. Press. Res. 29(3), 396–404 (2009) ADSGoogle Scholar
  170. J.I. Lunine, D.J. Stevenson, Astrophys. J. Suppl. Ser. 58, 493–531 (1985) ADSGoogle Scholar
  171. J.I. Lunine, D.J. Stevenson, Icarus 70(1), 61–77 (1987) ADSGoogle Scholar
  172. J.I. Lunine, S.K. Atreya, J.B. Pollack, in Origin and Evolution of Planetary and Satellite Atmospheres (University of Arizona Press, Tucson, 1989) Google Scholar
  173. J.I. Lunine, M. Choukroun, D.J. Stevenson, G. Tobie, The origin and evolution of Titan, in Titan from Cassini-Huygens. Springer (accepted) Google Scholar
  174. S. Machida, H. Hirai, T. Kawamura, Y. Yamamoto, T. Yagi, Phys. Earth Planet. Int. 155, 170–176 (2006) ADSGoogle Scholar
  175. A.Yu. Manakov, V.I. Voronin, A.V. Kurnosov, A.E. Teplykh, V.Yu. Komarov, Yu.A. Dyadin, J. Incl. Phenom. Macrocycl. Chem. 48, 11–18 (2004) Google Scholar
  176. V.G. Manzhelii, Yu.A. Freiman, M.L. Klein, A.A. Maradudin, Physics of Cryocrystals (AIP, New York, 1996) Google Scholar
  177. C. McCarthy, R.F. Cooper, S.H. Kirby, K.D. Rieck, L.A. Stern, Am. Mineral. 92(10), 1550–1560 (2007) Google Scholar
  178. T.B. McCord, G.B. Hansen, D.L. Matson, T.V. Johnson, J.K. Crowley, F.P. Fanale, R.W. Carlson, W.D. Smythe, P.D. Martin, C.A. Hibbitts, J.C. Granahan, A. Ocampo, J. Geophys. Res. 104, 11827–11852 (1999) ADSGoogle Scholar
  179. T.B. McCord, G.B. Hansen, C.A. Hibbitts, Science 292, 1523–1525 (2001) ADSGoogle Scholar
  180. W.B. McKinnon, in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (Kluwer, Dordrecht, 1998), pp. 525–550 Google Scholar
  181. W.B. McKinnon, M.E. Zolensky, Astrobiology 3(4), 879–897 (2003) ADSGoogle Scholar
  182. G.A. Miller, D.K. Carpenter, J. Chem. Eng. Data 9, 371–373 (1964) Google Scholar
  183. K.E. Mironov, Zh. Obschei Khimii 25(6), 1081–1086 (1955) Google Scholar
  184. O. Mishima, Phys. Rev. Lett. 85(2), 334–336 (2000) MathSciNetADSGoogle Scholar
  185. D. Mootz, A. Merschenz-Quack, Z. Naturforsch., B 42(10), 1231–1236 (1987) Google Scholar
  186. O. Mousis, J. Pargamin, O. Grasset, C. Sotin, Geophys. Res. Lett. 29(24), 2192 (2002) ADSGoogle Scholar
  187. S.S.N. Murthy, J. Phys. Chem. A 103(4), 7927–7937 (1999) MathSciNetGoogle Scholar
  188. R.S. Nakamura, Eos Trans. AGU 84(46), Fall Meeting Suppl., abstract P51B-0449 (2003) Google Scholar
  189. H. Nakayama, D.H. Brouer, Y.P. Handa, D.D. Klug, J.S. Tse, C.I. Ratcliffe, J.A. Ripmeester, Am. Chem. Soc. Div. Fuel Chem. 42(1), 516–520 (1997) Google Scholar
  190. A.S. Negi, S.C. Anand, A Textbook of Physical Chemistry (Wiley, New York, 1985) Google Scholar
  191. R.J. Nelmes, J.S. Loveday, Diffraction studies of the low-pressure phases of ammonia hydrates. ISIS Experimental Report RB9411. CCLRC Rutherford Appleton Laboratory (1998) Google Scholar
  192. R.J. Nelmes, J.S. Loveday, M. Guthrie, Structural changes under pressure in ammonia dihydrate and ammonia hemihydrate. ISIS Experimental Report RB 9859, CCLRC Rutherford Appleton Laboratory (1999) Google Scholar
  193. K. Nishibata, Jpn. J. Appl. Phys. 11(11), 1701–1708 (1972) ADSGoogle Scholar
  194. P. Novotný, O. Söhnel, J. Chem. Eng. Data 33(1), 49–55 (1988) Google Scholar
  195. A.G. Ogienko, A.V. Kurnosov, A.Y. Manakov, E.G. Larionov, A.I. Anchorov, M.A. Sheremov, A.N. Nesterov, J. Phys. Chem. B 110, 2840–2846 (2006) Google Scholar
  196. I.D.H. Oswald, A. Hamilton, C. Hall, W.G. Marshall, T.J. Prior, C.R. Pulham, J. Am. Chem. Soc. 130, 17795–17800 (2008) Google Scholar
  197. J.B. Ott, J.R. Goates, B.A. Waite, J. Chem. Thermodyn. 11, 739–746 (1979) Google Scholar
  198. K. Pachler, M. von Stackelberg, Z. Kristalogr. 119, 15–29 (1963) Google Scholar
  199. R.T. Pappalardo, A.C. Barr, Bull. Am. Astron. Soc. 35, 919 (2003) ADSGoogle Scholar
  200. R.C. Peterson, R. Wang, Geology 34(11), 957–960 (2006) ADSGoogle Scholar
  201. R.C. Peterson, W. Nelson, B. Madu, H.F. Shurvell, Am. Mineral. 92(10), 1756–1759 (2007) Google Scholar
  202. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, Oxford, 1999) Google Scholar
  203. S.U. Pickering, J. Chem. Soc., Trans. 57, 331–369 (1890) Google Scholar
  204. S.U. Pickering, J. Chem. Soc., Trans. 63, 141–195 (1893a) Google Scholar
  205. S.U. Pickering, J. Chem. Soc., Trans. 63, 998–1027 (1893b) Google Scholar
  206. I.N. Polandov, V.P. Mylov, M.E. Levina, Russ. J. Phys. Chem. 46(2), 281 (1972) Google Scholar
  207. M. Polo, N. Gérard, M. Lallemont, C.R. Hebd. Séances Acad. Sci., Sér. C, Sci. Chim. 272, 642–645 (1971) Google Scholar
  208. S. Postma, Rec. Trav. Chim. Pays-Bas 39, 515–536 (1920) Google Scholar
  209. R.G. Prinn, B. Fegley Jr., Astrophys. J. 249, 308–317 (1981) ADSGoogle Scholar
  210. N.A. Pushin, A.A. Glagoleva, J. Chem. Soc., Trans. 71, 2813–2822 (1922) Google Scholar
  211. F. Raulin, Space Sci. Rev. 135(1–4), 37–48 (2008) ADSGoogle Scholar
  212. J.A. Ripmeester, C.I. Ratcliffe, J. Phys. Chem. 94(25), 8773–8776 (1990) Google Scholar
  213. A.P. Rollet, G. Vuillard, C. R. Acad. Sci. Paris 243, 383–386 (1956) Google Scholar
  214. H.K. Ross, Ind. Eng. Chem. 46(3), 601–610 (1954) Google Scholar
  215. R.G. Ross, P. Andersson, G. Backstrom, Nature 259, 553–554 (1976) ADSGoogle Scholar
  216. R.G. Ross, P. Andersson, G. Bäckström, High Temp. High Press. 9, 87–96 (1977) Google Scholar
  217. T.R. Rubin, W.F. Giauque, J. Am. Chem. Soc. 74(3), 800–804 (1952) Google Scholar
  218. F.F. Rupert, J. Am. Chem. Soc. 31(8), 866–868 (1909) Google Scholar
  219. F.F. Rupert, J. Am. Chem. Soc. 32(6), 748–749 (1910) Google Scholar
  220. C.G. Salzmann, P.G. Radaelli, A. Hallbrucker, E. Mayer, J.L. Finney, Science 311, 1758–1761 (2006) ADSGoogle Scholar
  221. C.G. Salzmann, P.G. Radaelli, E. Mayer, J.L. Finney, Phys. Rev. Lett. 103(10), 105701 (2009) ADSGoogle Scholar
  222. J.M. Schicks, J.A. Ripmeester, Angew. Chem., Int. Ed. 43, 3310–3313 (2004) Google Scholar
  223. B. Schmitt, C. de Bergh, M. Festou (eds.), Solar System Ices (Kluwer, Dordrecht, 1998). 826 pp. Google Scholar
  224. G. Schubert, T. Spohn, R.T. Reynolds, in Satellites, ed. by J.A. Burns, M. Matthews (University of Arizona Press, Tucson, 1986), pp. 224–292 Google Scholar
  225. G.H. Shaw, J. Chem. Phys. 84(10), 5862–5868 (1986) ADSGoogle Scholar
  226. H. Shimizu, T. Kumazaki, T. Kume, S. Sasaki, J. Phys. Chem., B 106, 30–33 (2002) Google Scholar
  227. V.P. Shpakov, J.S. Tse, C.A. Tulk, B. Kvamme, V.R. Belosludov, Chem. Phys. Lett. 282(2), 107–114 (1998) ADSGoogle Scholar
  228. M.B. Simakov, in Proc. First European Workshop on Exo-/Astro-Biology. ESA SP-496 (2001), pp. 211–214 Google Scholar
  229. G.A. Slack, Phys. Rev. B 22(6), 3065–3071 (1980) ADSGoogle Scholar
  230. E.D. Sloan, C. Koh, Clathrate Hydrates of Natural Gases, 3rd edn. (Dekker, New York, 2007) Google Scholar
  231. S.J. Smith, B.E. Lang, S. Liu, J. Boerio-Goates, B.F. Woodfield, J. Chem. Thermodyn. 39(5), 712–716 (2007) Google Scholar
  232. A. Smits, S. Postma, Verslagen Akad. Wet. 12, 110–118 (1910) Google Scholar
  233. A. Smits, S. Postma, Z. Anorg. Chem. 71(1), 250–253 (1911) Google Scholar
  234. A. Smits, S. Postma, Proc. K. Ned. Akad. Wet. 17(1), 182–191 (1914) Google Scholar
  235. F. Sohl, H. Hussmann, B. Schwenker, T. Spohn, J. Geophys. Res. 108, 1–11 (2003) Google Scholar
  236. F. Sohl, M. Choukroun, J. Kargel, J. Kimura, R. Pappalardo, S. Vance, M. Zolotov, Space Sci. Rev. (2010, this issue) Google Scholar
  237. A. Sprung, Ann. Phys. Chem. 159(9), 1–35 (1876) ADSGoogle Scholar
  238. H. Suga, Thermochim. Acta 300, 117–126 (1997) Google Scholar
  239. A.K. Sum, R.C. Buruss, E.D. Sloan, J. Phys. Chem. B 101(38), 7371–7377 (1997) Google Scholar
  240. P.J. Tackley, Rev. Geophys. Suppl. 33, 275–282 (1995) ADSGoogle Scholar
  241. T. Takamuku, K. Saisho, S. Nozawa, T. Yamaguchi, J. Mol. Liq. 119, 133–146 (2005) Google Scholar
  242. G. Tammann, Z. Phys. Chem. 46, 818–826 (1903) Google Scholar
  243. G. Tammann, Z. Anorg. Allg. Chem. 179(1), 186–192 (1929) Google Scholar
  244. Y. Tanaka, S. Hada, T. Makita, M. Moritoki, Fluid Phase Equilib. 76, 163–173 (1992) Google Scholar
  245. G. Tobie, O. Grasset, J. Lunine, A. Mocquet, C. Sotin, Icarus 175, 496–502 (2005) ADSGoogle Scholar
  246. G. Tobie, J.I. Lunine, C. Sotin, Nature 440, 61–64 (2006) ADSGoogle Scholar
  247. G. Tobie, B. Giese, T.A. Hurford, R.M. Lopes, F. Nimmo, F. Postberg, K.D. Retherford, J. Schmidt, J.R. Spencer, T. Tokano, E.P. Turtle, Space Sci. Rev. (2010, this issue) Google Scholar
  248. S. Tsunekawa, Y. Ishibashi, Y. Takagi, J. Phys. Soc. Jpn. 33, 862 (1972) ADSGoogle Scholar
  249. C.A. Tulk, H. Kiefte, M.J. Clouter, R.E. Gagnon, J. Phys. Chem. B 101(32), 6154–6157 (1997) Google Scholar
  250. P.H.G. Van Kasteren, Bull. Inst. Int. Froid 1973–1974, 81–87 (1973) Google Scholar
  251. J.H. Van’t Hoff, W. Meyerhoffer, N. Smith, Untersuchungen über die bildungsverhältnisse der oceanischen salzablagerungen, insbesondere des Stassfurter salzlagen. XXIII. Das auftreten von Kieserit bei 25°. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. Phys.-math. Classe. 1901 (1901) pp. 1034–1044 Google Scholar
  252. G. Vuillard, M. Sanchez, Bull. Soc. Chem. France 1961, 1877–1880 (1961) Google Scholar
  253. W.F. Waite, M.B. Helgerud, A. Nur, J.C. Pinkston, L.A. Stern, S.H. Kirby, W.B. Durham, Ann. New York Acad. Sci. 912, 1000–1010 (2000) ADSGoogle Scholar
  254. E. Whalley, in Ices in the Solar System (Riedel, Dordrecht, 1985), pp. 9–37 Google Scholar
  255. E. Whalley, S.J. Jones, L.W. Gold (eds.), Physics and Chemistry of Ice (Royal Society of Canada, Ottawa, 1973) Google Scholar
  256. K.D. Williams, J.P. Devlin, J. Mol. Struct. 416, 277–286 (1997) ADSGoogle Scholar
  257. L.R. Williams, F.S. Long, J. Phys. Chem. 99, 3748–3751 (1995) Google Scholar
  258. J. Xu, D. Imre, R. McGraw, I. Tang, J. Phys. Chem. B 102(38), 7462–7469 (1998) Google Scholar
  259. Y. Yamamoto, K. Nagashima, T. Kornai, A. Wakisaka, Ann. N. Y. Acad. Sci. 912, 797–806 (2000) ADSGoogle Scholar
  260. J. Yarger, J.I. Lunine, M. Burke, J. Geophys. Res. 98(E7), 13109–13117 (1993) ADSGoogle Scholar
  261. T.W. Yergovich, G.W. Swift, F. Kurata, J. Chem. Eng. Data 16(2), 222–226 (1971) Google Scholar
  262. R. Zhang, P.J. Wooldridge, J.P.D. Abbot, M.J. Molina, J. Phys. Chem. 97, 7351–7358 (1993) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Centre for Planetary Sciences at UCL/BirkbeckLondonUK
  2. 2.NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations