Space Science Reviews

, Volume 151, Issue 4, pp 243–332 | Cite as

Physics of Solar Prominences: I—Spectral Diagnostics and Non-LTE Modelling

  • N. LabrosseEmail author
  • P. Heinzel
  • J.-C. Vial
  • T. Kucera
  • S. Parenti
  • S. Gunár
  • B. Schmieder
  • G. Kilper


This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.


Solar prominences Spectroscopy Radiative transfer Diagnostics Modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. U. Anzer, P. Heinzel, Prominence parameters derived from magnetic-field measurements and NLTE diagnostics. Sol. Phys. 179, 75–87 (1998) ADSCrossRefGoogle Scholar
  2. U. Anzer, P. Heinzel, The energy balance in solar prominences. Astron. Astrophys. 349, 974–984 (1999) ADSGoogle Scholar
  3. U. Anzer, P. Heinzel, Energy considerations for solar prominences with mass inflow. Astron. Astrophys. 358, 75–78 (2000) ADSGoogle Scholar
  4. U. Anzer, P. Heinzel, On the nature of dark extreme ultraviolet structures seen by SOHO/EIT and TRACE. Astrophys. J. 622, 714–721 (2005). doi: 10.1086/427817 ADSCrossRefGoogle Scholar
  5. U. Anzer, P. Heinzel, Prominence modelling: from observed emission measures to temperature profiles. Astron. Astrophys. 480, 537–542 (2008). doi: 10.1051/0004-6361:20078832 ADSCrossRefGoogle Scholar
  6. U. Anzer, P. Heinzel, F. Fárnik, Prominences on the limb: Diagnostics with UV EUV lines and the soft X-ray continuum. Sol. Phys. 242, 43–52 (2007). doi: 10.1007/s11207-007-0344-1 ADSCrossRefGoogle Scholar
  7. L.H. Auer, D. Mihalas, Non-LTE model atmospheres. II. Effects of balmer α. Astrophys. J. 156, 681 (1969). doi: 10.1086/149998 ADSCrossRefGoogle Scholar
  8. L.H. Auer, F. Paletou, Two-dimensional radiative transfer with partial frequency redistribution I. General method. Astron. Astrophys. 285, 675–686 (1994) ADSGoogle Scholar
  9. L. Auer, P.F. Bendicho, J. Trujillo Bueno, Multidimensional radiative transfer with multilevel atoms. 1: ALI method with preconditioning of the rate equations. Astron. Astrophys. 292, 599–615 (1994) ADSGoogle Scholar
  10. E.H. Avrett, New models of the solar chromosphere and transition region from SUMER observations, in The Physics of Chromospheric Plasmas, ed. by P. Heinzel, I. Dorotovič, R.J. Rutten. Astronomical Society of the Pacific Conference Series, vol. 368 (2007), p. 81 Google Scholar
  11. E.H. Avrett, R. Loeser, Iterative Solution of Multilevel Transfer Problems, ed. by W. Kalkofen (1987), p. 135 Google Scholar
  12. E.H. Avrett, R. Loeser, The PANDORA atmosphere program (Invited Review), in Cool Stars, Stellar Systems, and the Sun, ed. by M.S. Giampapa, J.A. Bookbinder. Astronomical Society of the Pacific Conference Series, vol. 26 (1992), p. 489 Google Scholar
  13. J.D.F. Bartoe, G.E. Brueckner, New stigmatic, coma-free, concave-grating spectrograph. J. Opt. Soc. Am. 65, 13–21 (1975) ADSCrossRefGoogle Scholar
  14. T.S. Bastian, M.W. Ewell Jr., H. Zirin, A study of solar prominences near lambda = 1 millimeter. Astrophys. J. 418, 510 (1993). doi: 10.1086/173413 ADSCrossRefGoogle Scholar
  15. F. Baudin, E. Ibarra, E.H. Avrett, J.C. Vial, K. Bocchialini, A. Costa, P. Lemaire, M. Rovira, A contribution to the understanding of chromospheric oscillations. Sol. Phys. 241, 39–51 (2007). doi: 10.1007/s11207-007-0006-3 ADSCrossRefGoogle Scholar
  16. J.M. Beckers, A study of the fine structures in the solar chromosphere, PhD thesis, University of Utrecht (AFCRL-Environmental Research Paper, No. 49), 1964 Google Scholar
  17. C. Bendlin, E. Wiehr, G. Stellmacher, Spectroscopic analysis of prominence emissions. Astron. Astrophys. 197, 274–280 (1988) ADSGoogle Scholar
  18. T.E. Berger, R.A. Shine, G.L. Slater, T.D. Tarbell, A.M. Title, T.J. Okamoto, K. Ichimoto, Y. Katsukawa, Y. Suematsu, S. Tsuneta, B.W. Lites, T. Shimizu, Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. 676, 89–92 (2008). doi: 10.1086/587171 ADSCrossRefGoogle Scholar
  19. V. Bommier, S. Sahal-Brechot, J.L. Leroy, The linear polarization of hydrogen H-beta radiation and the joint diagnostic of magnetic field vector and electron density in quiescent prominences. I—The magnetic field. Astron. Astrophys. 156, 79–89 (1986a) ADSGoogle Scholar
  20. V. Bommier, J.L. Leroy, S. Sahal-Brechot, The linear polarization of hydrogen H-beta radiation and the joint diagnostic of magnetic field vector and electron density in quiescent prominences. II—The electron density. Astron. Astrophys. 156, 90–94 (1986b) ADSGoogle Scholar
  21. V. Bommier, E. Landi Degl’Innocenti, J.L. Leroy, S. Sahal-Brechot, Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the HeI D3 and H-alpha lines. Sol. Phys. 154, 231–260 (1994). doi: 10.1007/BF00681098 ADSCrossRefGoogle Scholar
  22. R.M. Bonnet, P. Lemaire, J.C. Vial, G. Artzner, P. Gouttebroze, A. Jouchoux, A. Vidal-Madjar, J.W. Leibacher, A. Skumanich, The LPSP instrument on OSO 8. II—In-flight performance and preliminary results. Astrophys. J. 221, 1032–1053 (1978). doi: 10.1086/156109 ADSCrossRefGoogle Scholar
  23. R.M. Bonnet, M. Decaudin, E.C. Bruner Jr., L.W. Acton, W.A. Brown, High-resolution Lyman-alpha filtergrams of the sun. Astrophys. J. 237, 47–50 (1980). doi: 10.1086/183232 ADSCrossRefGoogle Scholar
  24. J. Chae, The formation of a prominence in NOAA active region 8668. II. Trace observations of jets and eruptions associated with canceling magnetic features. Astrophys. J. 584, 1084–1094 (2003). doi: 10.1086/345739 ADSCrossRefGoogle Scholar
  25. J. Chae, U. Schühle, P. Lemaire, SUMER measurements of nonthermal motions: Constraints on coronal heating mechanisms. Astrophys. J. 505, 957–973 (1998). doi: 10.1086/306179 ADSCrossRefGoogle Scholar
  26. J. Chae, C. Denker, T.J. Spirock, H. Wang, P.R. Goode, High-resolution Hα observations of proper motion in NOAA 8668: Evidence for filament mass injection by chromospheric reconnection. Sol. Phys. 195, 333–346 (2000) ADSCrossRefGoogle Scholar
  27. J. Chae, Y.D. Park, H.M. Park, Imaging spectroscopy of a solar filament using a tunable Hα filter. Sol. Phys. 234, 115–134 (2006). doi: 10.1007/s11207-006-0047-z ADSCrossRefGoogle Scholar
  28. J. Chae, H.M. Park, Y.D. Park, Hα spectral properties of velocity threads constituting a quiescent solar filament. J. Korean Astron. Soc. 40, 67–82 (2007) ADSGoogle Scholar
  29. J. Chae, K. Ahn, E.K. Lim, G.S. Choe, T. Sakurai, Persistent horizontal flows and magnetic support of vertical threads in a quiescent prominence. Astrophys. J. 689, 73–76 (2008). doi: 10.1086/595785 ADSCrossRefGoogle Scholar
  30. E.S. Chang, D. Deming, Accurate determination of electron densities in active and quiescent prominences: the mid-infrared advantage. Sol. Phys. 179, 89–124 (1998) ADSCrossRefGoogle Scholar
  31. C. Chiuderi, F. Chiuderi-Drago, Energy balance in the prominence-corona transition region. Sol. Phys. 132, 81–94 (1991). doi: 10.1007/BF00159131 ADSCrossRefGoogle Scholar
  32. F. Chiuderi-Drago, The He I abundance in solar filaments. Astron. Astrophys. 443, 1055–1059 (2005). doi: 10.1051/0004-6361:20053341 ADSCrossRefGoogle Scholar
  33. F. Chiuderi-Drago, C.E. Alissandrakis, T. Bastian, K. Bocchialini, R.A. Harrison, Joint EUV/radio observations of a solar filament. Sol. Phys. 199, 115–132 (2001) ADSCrossRefGoogle Scholar
  34. A. Ciaravella, J.C. Raymond, B.J. Thompson, A. van Ballegooijen, L. Strachan, J. Li, L. Gardner, R. O’Neal, E. Antonucci, J. Kohl, G. Noci, Solar and heliospheric observatory observations of a helical coronal mass ejection. Astrophys. J. 529, 575–591 (2000). doi: 10.1086/308260 ADSCrossRefGoogle Scholar
  35. A. Ciaravella, J.C. Raymond, A. van Ballegooijen, L. Strachan, A. Vourlidas, J. Li, J. Chen, A. Panasyuk, Physical parameters of the 2000 February 11 coronal mass ejection: Ultraviolet spectra versus white-light images. Astrophys. J. 597, 1118–1134 (2003). doi: 10.1086/381220 ADSCrossRefGoogle Scholar
  36. D. Cirigliano, J.C. Vial, M. Rovira, Prominence corona transition region plasma diagnostics from SOHO observations. Sol. Phys. 223, 95–118 (2004). doi: 10.1007/s11207-004-5101-0 ADSCrossRefGoogle Scholar
  37. L.E. Cram, I.M. Vardavas, Resonance line scattering from optically thin structures located above the solar limb. Sol. Phys. 57, 27–36 (1978). doi: 10.1007/BF00152041 ADSCrossRefGoogle Scholar
  38. J.L. Culhane, L.K. Harra, A.M. James, K. Al-Janabi, L.J. Bradley, R.A. Chaudry, K. Rees, J.A. Tandy, P. Thomas, M.C.R. Whillock, B. Winter, G.A. Doschek, C.M. Korendyke, C.M. Brown, S. Myers, J. Mariska, J. Seely, J. Lang, B.J. Kent, B.M. Shaughnessy, P.R. Young, G.M. Simnett, C.M. Castelli, S. Mahmoud, H. Mapson-Menard, B.J. Probyn, R.J. Thomas, J. Davila, K. Dere, D. Windt, J. Shea, R. Hagood, R. Moye, H. Hara, T. Watanabe, K. Matsuzaki, T. Kosugi, V. Hansteen, Ø. Wikstol, The EUV imaging spectrometer for Hinode. Sol. Phys. 243, 19–61 (2007). doi: 10.1007/s01007-007-0293-1 ADSCrossRefGoogle Scholar
  39. I.E. Dammasch, G. Stellmacher, E. Wiehr, Spectroscopy of solar prominences from space and ground. Astron. Nachr. 324, 338–339 (2003) ADSCrossRefGoogle Scholar
  40. C.R. de Boer, G. Stellmacher, E. Wiehr, The hot prominence periphery in EUV lines. Astron. Astrophys. 334, 280–288 (1998) ADSGoogle Scholar
  41. G. Del Zanna, F. Chiuderi-Drago, S. Parenti, SOHO CDS and SUMER observations of quiescent filaments and their interpretation. Astron. Astrophys. 420, 307–317 (2004). doi: 10.1051/0004-6361:20034267 ADSCrossRefGoogle Scholar
  42. J.P. Delaboudinière, G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, F. Millier, X.Y. Song, B. Au, K.P. Dere, R.A. Howard, R. Kreplin, D.J. Michels, J.D. Moses, J.M. Defise, C. Jamar, P. Rochus, J.P. Chauvineau, J.P. Marioge, R.C. Catura, J.R. Lemen, L. Shing, R.A. Stern, J.B. Gurman, W.M. Neupert, A. Maucherat, F. Clette, P. Cugnon, E.L. van Dessel, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995). doi: 10.1007/BF00733432 ADSCrossRefGoogle Scholar
  43. Y. Deng, Y. Lin, B. Schmieder, O. Engvold, Filament activation and magnetic reconnection. Sol. Phys. 209, 153–170 (2002). doi: 10.1023/A:1020924406991 ADSCrossRefGoogle Scholar
  44. K.P. Dere, E. Landi, H.E. Mason, B.C. Monsignori Fossi, P.R. Young, CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149–173 (1997). doi: 10.1051/aas:1997368 ADSCrossRefGoogle Scholar
  45. V. Domingo, B. Fleck, A.I. Poland, The SOHO mission: an overview. Sol. Phys. 162, 1–2 (1995). doi: 10.1007/BF00733425 ADSCrossRefGoogle Scholar
  46. R.B. Dunn, Photometry of the solar chromosphere, PhD thesis, Harvard University, 1961 Google Scholar
  47. H. Ebadi, J. Vial, A. Ajabshirizadeh, The He II lines in the Lyman series profiles of solar prominences. Sol. Phys. 257, 91–98 (2009). doi: 10.1007/s11207-009-9368-z ADSCrossRefGoogle Scholar
  48. O. Engvold, The fine structure of prominences. I—Observations—H-alpha filtergrams. Sol. Phys. 49, 283–295 (1976). doi: 10.1007/BF00162453 ADSCrossRefGoogle Scholar
  49. O. Engvold, Thermodynamic models and fine structure of prominences. Sol. Phys. 67, 351–355 (1980). doi: 10.1007/BF00149812 ADSCrossRefGoogle Scholar
  50. O. Engvold, The prominence-corona transition region, in Solar and Stellar Coronal Structure and Dynamics, ed. by R.C. Altrock (1988), pp. 151–169 Google Scholar
  51. O. Engvold, Prominence environment, in Dynamics and Structure of Quiescent Solar Prominences, ed. by E.R. Priest. Astrophysics and Space Science Library, vol. 150 (1989), pp. 47–76 Google Scholar
  52. O. Engvold, E. Wiehr, A. Wittmann, The influence of spatial resolution on the Ca/+/K line width and shift in a quiescent prominence. Astron. Astrophys. 85, 326–328 (1980) ADSGoogle Scholar
  53. O. Engvold, T. Hirayama, J.L. Leroy, E.R. Priest, E. Tandberg-Hanssen, Hvar reference atmosphere of quiescent prominences, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), p. 294. doi: 10.1007/BFb0025640 CrossRefGoogle Scholar
  54. U. Feldman, G.A. Dorschek, F.D. Rosenberg, XUV spectra of the 1973 June 15 solar flare observed from Skylab. II—Intersystem and forbidden transitions in transition zone and coronal ions. Astrophys. J. 215, 652–665 (1977). doi: 10.1086/155399 ADSCrossRefGoogle Scholar
  55. J.M. Fontenla, M. Rovira, The Lyman alpha line in solar prominences. Sol. Phys. 85, 141–156 (1983). doi: 10.1007/BF00148265 ADSCrossRefGoogle Scholar
  56. J.M. Fontenla, M. Rovira, Quiescent prominence threads models. Sol. Phys. 96, 53–92 (1985). doi: 10.1007/BF00239794 ADSCrossRefGoogle Scholar
  57. J.M. Fontenla, E.J. Reichmann, E. Tandberg-Hanssen, The Lyman-alpha line in various solar features. I—Observations. Astrophys. J. 329, 464–481 (1988). doi: 10.1086/166392 ADSCrossRefGoogle Scholar
  58. J.M. Fontenla, M. Rovira, J.C. Vial, P. Gouttebroze, Prominence thread models including ambipolar diffusion. Astrophys. J. 466, 496 (1996). doi: 10.1086/177527 ADSCrossRefGoogle Scholar
  59. H. Gilbert, G. Kilper, D. Alexander, Observational evidence supporting cross-field diffusion of neutral material in solar filaments. Astrophys. J. 671, 978–989 (2007). doi: 10.1086/522884 ADSCrossRefGoogle Scholar
  60. H.R. Gilbert, V.H. Hansteen, T.E. Holzer, Neutral atom diffusion in a partially ionized prominence plasma. Astrophys. J. 577, 464–474 (2002). doi: 10.1086/342165 ADSCrossRefGoogle Scholar
  61. H.R. Gilbert, T.E. Holzer, R.M. MacQueen, A new technique for deriving prominence mass from SOHO/EIT Fe XII (19.5 nanometers) absorption features. Astrophys. J. 618, 524–536 (2005). doi: 10.1086/425975 ADSCrossRefGoogle Scholar
  62. H.R. Gilbert, L.E. Falco, T.E. Holzer, R.M. MacQueen, Application of a new technique for deriving prominence mass from SOHO EIT Fe XII (19.5 nm) absorption features. Astrophys. J. 641, 606–610 (2006). doi: 10.1086/500354 ADSCrossRefGoogle Scholar
  63. H.R. Gilbert, G. Kilper, T.A. Kucera, D. Alexander, J.B. Gurman, Comparing prominence absorption in different caronal lines (2010, in preparation) Google Scholar
  64. L. Golub, J. Bookbinder, E. Deluca, M. Karovska, H. Warren, C.J. Schrijver, R. Shine, T. Tarbell, A. Title, J. Wolfson, B. Handy, C. Kankelborg, A new view of the solar corona from the Transition Region and Coronal Explorer (TRACE). Phys. Plasmas 6, 2205–2216 (1999). doi: 10.1063/1.873473 ADSCrossRefGoogle Scholar
  65. L. Golub, E. Deluca, G. Austin, J. Bookbinder, D. Caldwell, P. Cheimets, J. Cirtain, M. Cosmo, P. Reid, A. Sette, M. Weber, T. Sakao, R. Kano, K. Shibasaki, H. Hara, S. Tsuneta, K. Kumagai, T. Tamura, M. Shimojo, J. McCracken, J. Carpenter, H. Haight, R. Siler, E. Wright, J. Tucker, H. Rutledge, M. Barbera, G. Peres, S. Varisco, The X-ray telescope (XRT) for the Hinode mission. Sol. Phys. 243, 63–86 (2007). doi: 10.1007/s11207-007-0182-1 ADSCrossRefGoogle Scholar
  66. C. Gontikakis, J.C. Vial, P. Gouttebroze, Emission of hydrogen lines by moving solar prominences. Astron. Astrophys. 325, 803–812 (1997a) ADSGoogle Scholar
  67. C. Gontikakis, J.C. Vial, P. Gouttebroze, Spectral diagnostics for eruptive prominences. Sol. Phys. 172, 189–197 (1997b) ADSCrossRefGoogle Scholar
  68. P. Gouttebroze, Radiative transfer in cylindrical threads with incident radiation. II. 2D azimuth-dependent case. Astron. Astrophys. 434, 1165–1171 (2005). doi: 10.1051/0004-6361:20042309 ADSCrossRefGoogle Scholar
  69. P. Gouttebroze, Radiative transfer in cylindrical threads with incident radiation. III. Hydrogen spectrum. Astron. Astrophys. 448, 367–374 (2006). doi: 10.1051/0004-6361:20054139 ADSCrossRefGoogle Scholar
  70. P. Gouttebroze, Radiative transfer in cylindrical threads with incident radiation. IV. Time-dependent and thermal equilibrium models. Astron. Astrophys. 465, 1041–1049 (2007). doi: 10.1051/0004-6361:20066636 ADSCrossRefGoogle Scholar
  71. P. Gouttebroze, Radiative transfer in cylindrical threads with incident radiation. V. 2D transfer with 3D velocity fields. Astron. Astrophys. 487, 805–813 (2008). doi: 10.1051/0004-6361:20079272 zbMATHADSCrossRefGoogle Scholar
  72. P. Gouttebroze, P. Heinzel, Calcium to hydrogen line ratios in solar prominences. Astron. Astrophys. 385, 273–280 (2002). doi: 10.1051/0004-6361:20020142 ADSCrossRefGoogle Scholar
  73. P. Gouttebroze, N. Labrosse, A ready-made code for the computation of prominence NLTE models. Sol. Phys. 196, 349–355 (2000) ADSCrossRefGoogle Scholar
  74. P. Gouttebroze, N. Labrosse, Radiative transfer in cylindrical threads with incident radiation. VI. A hydrogen plus helium system. Astron. Astrophys. 503, 663–671 (2009). doi: 10.1051/0004-6361/200811483 ADSCrossRefGoogle Scholar
  75. P. Gouttebroze, P. Lemaire, J.C. Vial, G. Artzner, The solar hydrogen Lyman-beta and Lyman-alpha lines—Disk center observations from OSO 8 compared with theoretical profiles. Astrophys. J. 225, 655–664 (1978). doi: 10.1086/156526 ADSCrossRefGoogle Scholar
  76. P. Gouttebroze, P. Heinzel, J.C. Vial, The hydrogen spectrum of model prominences. Astron. Astrophys. Suppl. Ser. 99, 513–543 (1993) ADSGoogle Scholar
  77. P. Gouttebroze, N. Labrosse, P. Heinzel, J.C. Vial, Prediction of line intensity ratios in solar prominences, in SOLMAG 2002. Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference, ed. by H. Sawaya-Lacoste. ESA Special Publication, vol. 505 (2002), pp. 421–424 Google Scholar
  78. S. Gunár, P. Heinzel, U. Anzer, Prominence fine structures in a magnetic equilibrium. III. Lyman continuum in 2D configurations. Astron. Astrophys. 463, 737–743 (2007a). doi: 10.1051/0004-6361:20066142 ADSCrossRefGoogle Scholar
  79. S. Gunár, P. Heinzel, B. Schmieder, P. Schwartz, U. Anzer, Properties of prominence fine-structure threads derived from SOHO/SUMER hydrogen Lyman lines. Astron. Astrophys. 472, 929–936 (2007b). doi: 10.1051/0004-6361:20077785 ADSCrossRefGoogle Scholar
  80. S. Gunár, P. Heinzel, U. Anzer, B. Schmieder, On Lyman-line asymmetries in quiescent prominences. Astron. Astrophys. 490, 307–313 (2008). doi: 10.1051/0004-6361:200810127 ADSCrossRefGoogle Scholar
  81. B.N. Handy, L.W. Acton, C.C. Kankelborg, C.J. Wolfson, D.J. Akin, M.E. Bruner, R. Caravalho, R.C. Catura, R. Chevalier, D.W. Duncan, C.G. Edwards, C.N. Feinstein, S.L. Freeland, F.M. Friedlaender, C.H. Hoffmann, N.E. Hurlburt, B.K. Jurcevich, N.L. Katz, G.A. Kelly, J.R. Lemen, M. Levay, R.W. Lindgren, D.P. Mathur, S.B. Meyer, S.J. Morrison, M.D. Morrison, R.W. Nightingale, T.P. Pope, R.A. Rehse, C.J. Schrijver, R.A. Shine, L. Shing, K.T. Strong, T.D. Tarbell, A.M. Title, D.D. Torgerson, L. Golub, J.A. Bookbinder, D. Caldwell, P.N. Cheimets, W.N. Davis, E.E. Deluca, R.A. McMullen, H.P. Warren, D. Amato, R. Fisher, H. Maldonado, C. Parkinson, The transition region and coronal explorer. Sol. Phys. 187, 229–260 (1999). doi: 10.1023/A:1005166902804 ADSCrossRefGoogle Scholar
  82. R.A. Harrison, M.K. Carter, T.A. Clark, C. Lindsey, J.T. Jefferies, D.G. Sime, G. Watt, T.L. Roellig, E.E. Becklin, D.A. Naylor, G.J. Tompkins, D. Braun, An active solar prominence in 1.3 MM radiation. Astron. Astrophys. 274, 9 (1993) ADSGoogle Scholar
  83. R.A. Harrison, E.C. Sawyer, M.K. Carter, A.M. Cruise, R.M. Cutler, A. Fludra, R.W. Hayes, B.J. Kent, J. Lang, D.J. Parker, J. Payne, C.D. Pike, S.C. Peskett, A.G. Richards, J.L. Gulhane, K. Norman, A.A. Breeveld, E.R. Breeveld, K.F. Al Janabi, A.J. McCalden, J.H. Parkinson, D.G. Self, P.D. Thomas, A.I. Poland, R.J. Thomas, W.T. Thompson, O. Kjeldseth-Moe, P. Brekke, J. Karud, P. Maltby, B. Aschenbach, H. Bräuninger, M. Kühne, J. Hollandt, O.H.W. Siegmund, M.C.E. Huber, A.H. Gabriel, H.E. Mason, B.J.I. Bromage, The coronal diagnostic spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 233–290 (1995). doi: 10.1007/BF00733431 ADSCrossRefGoogle Scholar
  84. J.N. Heasley, D. Mihalas, Structure and spectrum of quiescent prominences—Energy balance and hydrogen spectrum. Astrophys. J. 205, 273–285 (1976). doi: 10.1086/154273 ADSCrossRefGoogle Scholar
  85. J.N. Heasley, R.W. Milkey, Structure and spectrum of quiescent prominences. II—Hydrogen and helium spectra. Astrophys. J. 210, 827–835 (1976). doi: 10.1086/154892 ADSCrossRefGoogle Scholar
  86. J.N. Heasley, R.W. Milkey, Structure and spectrum of quiescent prominences. III—Application of theoretical models in helium abundance determinations. Astrophys. J. 221, 677–688 (1978). doi: 10.1086/156072 ADSCrossRefGoogle Scholar
  87. J.N. Heasley, R.W. Milkey, Structure and spectrum of quiescent prominences. IV—The ultraviolet ionization continua of hydrogen and helium. Astrophys. J. 268, 398–402 (1983). doi: 10.1086/160965 ADSCrossRefGoogle Scholar
  88. J.N. Heasley, D. Mihalas, A.I. Poland, Theoretical Helium I emission-line intensities for quiescent prominences. Astrophys. J. 192, 181–192 (1974). doi: 10.1086/153049 ADSCrossRefGoogle Scholar
  89. P. Heinzel, Resonance scattering of radiation in solar prominences. I Partial redistribution in optically thin subordinate lines. Bull. Astron. Inst. Czechoslov. 34, 1–17 (1983) ADSGoogle Scholar
  90. P. Heinzel, Hydrogen lines formation in filamentary prominences. Hvar Obs. Bull. 13, 317 (1989) ADSGoogle Scholar
  91. P. Heinzel, Hydrogen line formation in filamentary prominences, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), p. 279. doi: 10.1007/BFb0025640 CrossRefGoogle Scholar
  92. P. Heinzel, Multilevel NLTE radiative transfer in isolated atmospheric structures: implementation of the MALI-technique. Astron. Astrophys. 299, 563 (1995) ADSGoogle Scholar
  93. P. Heinzel, Multiwavelength observations of solar prominences, in Solar and Stellar Physics Through Eclipses, ed. by O. Demircan, S.O. Selam, B. Albayrak. Astronomical Society of the Pacific Conference Series, vol. 370 (2007), p. 46 Google Scholar
  94. P. Heinzel, U. Anzer, Magnetic dips in prominences. Sol. Phys. 184, 103–111 (1999) ADSCrossRefGoogle Scholar
  95. P. Heinzel, U. Anzer, Prominence fine structures in a magnetic equilibrium: Two-dimensional models with multilevel radiative transfer. Astron. Astrophys. 375, 1082–1090 (2001). doi: 10.1051/0004-6361:20010926 ADSCrossRefGoogle Scholar
  96. P. Heinzel, U. Anzer, 2D radiative transfer in magnetically confined structures, in Stellar Atmosphere Modeling, ed. by I. Hubeny, D. Mihalas, K. Werner. Astronomical Society of the Pacific Conference Series, vol. 288 (2003), p. 441 Google Scholar
  97. P. Heinzel, B. Rompolt, Hydrogen emission from moving solar prominences. Sol. Phys. 110, 171–189 (1987). doi: 10.1007/BF00148210 ADSCrossRefGoogle Scholar
  98. P. Heinzel, J.C. Vial, OSO-8 observations of a quiescent prominence—A comparison of Lyman-alpha with theoretical intensities. Astron. Astrophys. 121, 155–157 (1983) ADSGoogle Scholar
  99. P. Heinzel, P. Gouttebroze, J.C. Vial, Formation of the hydrogen spectrum in quiescent prominences—One-dimensional models with standard partial redistribution. Astron. Astrophys. 183, 351–362 (1987) ADSGoogle Scholar
  100. P. Heinzel, P. Gouttebroze, J.C. Vial, Non LTE modelling of prominences, in Universitat de les Illes Balears, Palma de Mallorca (Spain) (1988), p. 71 Google Scholar
  101. P. Heinzel, P. Gouttebroze, J.C. Vial, Theoretical correlations between prominence plasma parameters and the emitted radiation. Astron. Astrophys. 292, 656–668 (1994) ADSGoogle Scholar
  102. P. Heinzel, V. Bommier, J.C. Vial, A complex diagnostic of solar prominences. Sol. Phys. 164, 211–222 (1996). doi: 10.1007/BF00146635 ADSCrossRefGoogle Scholar
  103. P. Heinzel, N. Mein, P. Mein, Cloud model with variable source function for solar Hα structures. II. Dynamical models. Astron. Astrophys. 346, 322–328 (1999) ADSGoogle Scholar
  104. P. Heinzel, B. Schmieder, J.C. Vial, P. Kotrč, SOHO/SUMER observations and analysis of the hydrogen Lyman spectrum in solar prominences. Astron. Astrophys. 370, 281–297 (2001a). doi: 10.1051/0004-6361:20010265 ADSCrossRefGoogle Scholar
  105. P. Heinzel, B. Schmieder, K. Tziotziou, Why are solar filaments more extended in extreme-ultraviolet lines than in Hα? Astrophys. J. 561, 223–227 (2001b). doi: 10.1086/324755 ADSCrossRefGoogle Scholar
  106. P. Heinzel, U. Anzer, B. Schmieder, A spectroscopic model of EUV filaments. Sol. Phys. 216, 159–171 (2003a). doi: 10.1023/A:1026130028966 ADSCrossRefGoogle Scholar
  107. P. Heinzel, U. Anzer, B. Schmieder, P. Schwartz, EUV-filaments and their mass loading, in Solar Variability as an Input to the Earth’s Environment, ed. by A. Wilson. ESA Special Publication, vol. 535 (2003b), pp. 447–457 Google Scholar
  108. P. Heinzel, U. Anzer, S. Gunár, Prominence fine structures in a magnetic equilibrium. II. A grid of two-dimensional models. Astron. Astrophys. 442, 331–343 (2005). doi: 10.1051/0004-6361:20053360 ADSCrossRefGoogle Scholar
  109. P. Heinzel, B. Schmieder, F. Fárník, P. Schwartz, N. Labrosse, P. Kotrč, U. Anzer, G. Molodij, A. Berlicki, E.E. DeLuca, L. Golub, T. Watanabe, T. Berger, Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. Astrophys. J. 686, 1383–1396 (2008). doi: 10.1086/591018 ADSCrossRefGoogle Scholar
  110. T. Hirayama, On the model of the solar quiescent prominence and the effect of the solar UV radiation on the prominence. Publ. Astron. Soc. Jpn. 15, 122 (1963) ADSGoogle Scholar
  111. T. Hirayama, Spectral analysis of four quiescent prominences observed at the Peruvian eclipse. Sol. Phys. 17, 50–75 (1971). doi: 10.1007/BF00152861 ADSCrossRefGoogle Scholar
  112. T. Hirayama, Ionized helium in prominences and in the chromosphere. Sol. Phys. 24, 310–323 (1972). doi: 10.1007/BF00153371 ADSCrossRefGoogle Scholar
  113. T. Hirayama, Modern observations of solar prominences. Sol. Phys. 100, 415–434 (1985). doi: 10.1007/BF00158439 ADSCrossRefGoogle Scholar
  114. T. Hirayama, Physical conditions in prominences, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), pp. 187–203 CrossRefGoogle Scholar
  115. R.A. Howard, J.D. Moses, A. Vourlidas, J.S. Newmark, D.G. Socker, S.P. Plunkett, C.M. Korendyke, J.W. Cook, A. Hurley, J.M. Davila, W.T. Thompson, O.C. St Cyr, E. Mentzell, K. Mehalick, J.R. Lemen, J.P. Wuelser, D.W. Duncan, T.D. Tarbell, C.J. Wolfson, A. Moore, R.A. Harrison, N.R. Waltham, J. Lang, C.J. Davis, C.J. Eyles, H. Mapson-Menard, G.M. Simnett, J.P. Halain, J.M. Defise, E. Mazy, P. Rochus, R. Mercier, M.F. Ravet, F. Delmotte, F. Auchere, J.P. Delaboudiniere, V. Bothmer, W. Deutsch, D. Wang, N. Rich, S. Cooper, V. Stephens, G. Maahs, R. Baugh, D. McMullin, T. Carter, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67–115 (2008). doi: 10.1007/s11214-008-9341-4 ADSCrossRefGoogle Scholar
  116. I. Hubeny, A modified Rybicki method and the partial coherent scattering approximation. Astron. Astrophys. 145, 461–474 (1985) ADSGoogle Scholar
  117. I. Hubeny, Accelerated lambda iteration: An overview, in Stellar Atmosphere Modeling, ed. by I. Hubeny, D. Mihalas, K. Werner. Astronomical Society of the Pacific Conference Series, vol. 288 (2003), p. 17 Google Scholar
  118. I. Hubeny, T. Lanz, Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method. Astrophys. J. 439, 875–904 (1995). doi: 10.1086/175226 ADSCrossRefGoogle Scholar
  119. I. Hubeny, B.W. Lites, Partial redistribution in multilevel atoms. I. Method and application to the solar hydrogen line formation. Astrophys. J. 455, 376 (1995). doi: 10.1086/176584 ADSCrossRefGoogle Scholar
  120. D.G. Hummer, Non-coherent scattering: I. The redistribution function with Doppler broadening. Mon. Not. R. Astron. Soc. 125, 21–37 (1962) ADSGoogle Scholar
  121. D.G. Hummer, Non-coherent scattering-VI. Solutions of the transfer problem with a frequency-dependent source function. Mon. Not. R. Astron. Soc. 145, 95 (1969) ADSGoogle Scholar
  122. C.L. Hyder, B.W. Lites, Hα Doppler brightening and Lyman-α Doppler dimming in moving Hα prominences. Sol. Phys. 14, 147–156 (1970). doi: 10.1007/BF00240170 ADSGoogle Scholar
  123. D.R. Inglis, E. Teller, Ionic depression of series limits in Cne-electron spectra. Astrophys. J. 90, 439 (1939). doi: 10.1086/144118 zbMATHADSCrossRefGoogle Scholar
  124. Y. Irimajiri, T. Takano, H. Nakajima, K. Shibasaki, Y. Hanaoka, K. Ichimoto, Simultaneous multifrequency observations of an eruptive prominence at millimeter wavelengths. Sol. Phys. 156, 363–375 (1995). doi: 10.1007/BF00670232 ADSCrossRefGoogle Scholar
  125. G.S. Ivanov-Kholodnyi, G.M. Nikol’skii, Ultraviolet solar radiation and the transition layer between the chromosphere and the corona. Astron. Zh. 38, 45 (1961) ADSGoogle Scholar
  126. S. Jejčič, P. Heinzel, Electron densities in quiescent prominences derived from eclipse observations. Sol. Phys. 254, 89–100 (2009). doi: 10.1007/s11207-008-9289-2 ADSCrossRefGoogle Scholar
  127. P.G. Judge, On spectroscopic filling factors and the solar transition region. Astrophys. J. 531, 585–590 (2000). doi: 10.1086/308458 ADSCrossRefGoogle Scholar
  128. M. Kanno, G.L. Withbroe, R.W. Noyes, Analysis of extreme-ultraviolet spectroheliograms of solar prominences. Sol. Phys. 69, 313–326 (1981). doi: 10.1007/BF00149997 ADSCrossRefGoogle Scholar
  129. J. Keady, D. Kilcrease, in Allen’s astrophysical quantities, ed. by A.N. Cox (Springer, New York, 2000), pp. 95–120. Chap. Radiation Google Scholar
  130. G. Kilper, H. Gilbert, D. Alexander, Mass composition in pre-eruption quiet Sun filaments. Astrophys. J. 704, 522–530 (2009). doi: 10.1088/0004-637X/704/1/522 ADSCrossRefGoogle Scholar
  131. O. Kjeldseth-Moe, J.W. Cook, S.A. Mango, EUV observations of quiescent prominences from SKYLAB. Sol. Phys. 61, 319–334 (1979). doi: 10.1007/BF00150417 ADSCrossRefGoogle Scholar
  132. J.L. Kohl, G.L. Withbroe, EUV spectroscopic plasma diagnostics for the solar wind acceleration region. Astrophys. J. 256, 263–270 (1982). doi: 10.1086/159904 ADSCrossRefGoogle Scholar
  133. J.L. Kohl, R. Esser, L.D. Gardner, S. Habbal, P.S. Daigneau, E.F. Dennis, G.U. Nystrom, A. Panasyuk, J.C. Raymond, P.L. Smith, L. Strachan, A.A. van Ballegooijen, G. Noci, S. Fineschi, M. Romoli, A. Ciaravella, A. Modigliani, M.C.E. Huber, E. Antonucci, C. Benna, S. Giordano, G. Tondello, P. Nicolosi, G. Naletto, C. Pernechele, D. Spadaro, G. Poletto, S. Livi, O. von der Lühe, J. Geiss, J.G. Timothy, G. Gloeckler, A. Allegra, G. Basile, R. Brusa, B. Wood, O.H.W. Siegmund, W. Fowler, R. Fisher, M. Jhabvala, The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 313–356 (1995). doi: 10.1007/BF00733433 ADSCrossRefGoogle Scholar
  134. C.M. Korendyke, A. Vourlidas, J.W. Cook, K.P. Dere, R.A. Howard, J.S. Morrill, J.D. Moses, N.E. Moulton, D.G. Socker, High-resolution imaging of the upper solar chromosphere: First light performance of the very-high-resolution advanced ultraviolet telescope. Sol. Phys. 200, 63–73 (2001) ADSCrossRefGoogle Scholar
  135. T. Kosugi, K. Matsuzaki, T. Sakao, T. Shimizu, Y. Sone, S. Tachikawa, T. Hashimoto, K. Minesugi, A. Ohnishi, T. Yamada, S. Tsuneta, H. Hara, K. Ichimoto, Y. Suematsu, M. Shimojo, T. Watanabe, S. Shimada, J.M. Davis, L.D. Hill, J.K. Owens, A.M. Title, J.L. Culhane, L.K. Harra, G.A. Doschek, L. Golub, The Hinode (Solar-B) mission: An overview. Sol. Phys. 243, 3–17 (2007). doi: 10.1007/s11207-007-9014-6 ADSCrossRefGoogle Scholar
  136. S. Koutchmy, C. Lebecq, G. Stellmacher, The electron density of faint prominences observed during the solar eclipse of July 31, 1981. Astron. Astrophys. 119, 261–264 (1983) ADSGoogle Scholar
  137. T.A. Kucera, E. Landi, Ultraviolet observations of prominence activation and cool loop dynamics. Astrophys. J. 645, 1525–1536 (2006). doi: 10.1086/504398 ADSCrossRefGoogle Scholar
  138. T.A. Kucera, E. Landi, An observation of low-level heating in an erupting prominence. Astrophys. J. 673, 611–620 (2008). doi: 10.1086/523694 ADSCrossRefGoogle Scholar
  139. T.A. Kucera, G.A. Dulk, A.L. Kiplinger, R.M. Winglee, T.S. Bastian, M. Graeter, Multiple wavelength observations of an off-limb eruptive solar flare. Astrophys. J. 412, 853–864 (1993). doi: 10.1086/172967 ADSCrossRefGoogle Scholar
  140. T.A. Kucera, V. Andretta, A.I. Poland, Neutral hydrogen column depths in prominences using EUV absorption features. Sol. Phys. 183, 107–121 (1998) ADSCrossRefGoogle Scholar
  141. T.A. Kucera, G. Aulanier, B. Schmieder, N. Mein, J.C. Vial, Filament channel structures in a SI IV line related to a 3d magnetic model. Sol. Phys. 186, 259–280 (1999) ADSCrossRefGoogle Scholar
  142. T.A. Kucera, M. Tovar, B. de Pontieu, Prominence motions observed at high cadences in temperatures from 10 000 to 250 000 K. Sol. Phys. 212, 81–97 (2003). doi: 10.1023/A:1022900604972 ADSCrossRefGoogle Scholar
  143. N.P.M. Kuin, A.I. Poland, Opacity effects on the radiative losses of coronal loops. Astrophys. J. 370, 763–774 (1991). doi: 10.1086/169859 ADSCrossRefGoogle Scholar
  144. P. Kunasz, L.H. Auer, Short characteristic integration of radiative transfer problems: formal solution in two-dimensional slabs. J. Quant. Spectrosc. Radiat. Transfer 39, 67–79 (1988). doi: 10.1016/0022-4073(88)90021-0 ADSCrossRefGoogle Scholar
  145. N. Labrosse, P. Gouttebroze, Formation of helium spectrum in solar quiescent prominences. Astron. Astrophys. 380, 323–340 (2001). doi: 10.1051/0004-6361:20011395 ADSCrossRefGoogle Scholar
  146. N. Labrosse, P. Gouttebroze, Non-LTE radiative transfer in model prominences. I. Integrated intensities of He I triplet lines. Astrophys. J. 617, 614–622 (2004). doi: 10.1086/425168 ADSCrossRefGoogle Scholar
  147. N. Labrosse, P. Gouttebroze, P. Heinzel, J.C. Vial, Line profiles and intensity ratios in prominence models with a prominence to corona interface, in Solar Variability: From Core to Outer Frontiers, ed. by J. Kuijpers. ESA Special Publication, vol. 506 (2002), pp. 451–454 Google Scholar
  148. N. Labrosse, J.C. Vial, P. Gouttebroze, Plasma diagnostic of a solar prominence from hydrogen and helium resonance lines, in SF2A-2006: Semaine de l’Astrophysique Francaise, ed. by D. Barret, F. Casoli, G. Lagache, A. Lecavelier, L. Pagani (2006a), p. 549 Google Scholar
  149. N. Labrosse, J.C. Vial, P. Gouttebroze, The helium spectrum in erupting solar prominences, in Solar Active Regions and 3D Magnetic Structure, 26th meeting of the IAU, Joint Discussion 3, 16–17 August, 2006, Prague, Czech Republic, JD03, #47 3 (2006b) Google Scholar
  150. N. Labrosse, P. Gouttebroze, J.C. Vial, Effect of motions in prominences on the helium resonance lines in the extreme ultraviolet. Astron. Astrophys. 463, 1171–1179 (2007a). doi: 10.1051/0004-6361:20065775 ADSCrossRefGoogle Scholar
  151. N. Labrosse, P. Gouttebroze, J.C. Vial, Spectral diagnostics of active prominences, in The Physics of Chromospheric Plasmas, ed. by P. Heinzel, I. Dorotovič, R.J. Rutten. Astronomical Society of the Pacific Conference Series, vol. 368 (2007b), p. 337 Google Scholar
  152. N. Labrosse, J.C. Vial, P. Gouttebroze, Diagnostics of active and eruptive prominences through hydrogen and helium lines modelling. Ann. Geophys. 26, 2961–2965 (2008) ADSCrossRefGoogle Scholar
  153. E. Landi, M. Landini, Simultaneous temperature and density diagnostics of optically thin plasmas. Astron. Astrophys. 327, 1230–1241 (1997) ADSGoogle Scholar
  154. D.A. Landman, Physical conditions in the cool parts of prominences. II—The MG triplet lines. Astrophys. J. 279, 438–445 (1984). doi: 10.1086/161906 ADSCrossRefGoogle Scholar
  155. D.A. Landman, Physical conditions in the cool parts of prominences and spicules—The effects of model atom level truncation on the derived plasma parameters. Astrophys. J. 305, 546–552 (1986). doi: 10.1086/164267 ADSCrossRefGoogle Scholar
  156. L. Léger, F. Paletou, 2D non-LTE radiative modelling of He I spectral lines formed in solar prominences. Astron. Astrophys. 498, 869–875 (2009). doi: 10.1051/0004-6361/200810296 ADSCrossRefGoogle Scholar
  157. K. Li, B. Schmieder, J.M. Malherbe, T. Roudier, J.E. Wiik, Physical properties of the quiescent prominence of 5 June 1996, from Hα observations. Sol. Phys. 183, 323–338 (1998) ADSCrossRefGoogle Scholar
  158. K. Li, X. Gu, X. Chen, Calculations and physical properties of the D3 emission lines of a prominence. Mon. Not. R. Astron. Soc. 313, 761–766 (2000). doi: 10.1046/j.1365-8711.2000.03336.x ADSCrossRefGoogle Scholar
  159. Y. Lin, O.R. Engvold, J.E. Wiik, Counterstreaming in a large polar crown filament. Sol. Phys. 216, 109–120 (2003). doi: 10.1023/A:1026150809598 ADSCrossRefGoogle Scholar
  160. Y. Lin, O. Engvold, L. Rouppe van der Voort, J.E. Wiik, T.E. Berger, Thin threads of solar filaments. Sol. Phys. 226, 239–254 (2005). doi: 10.1007/s11207-005-6876-3 ADSCrossRefGoogle Scholar
  161. Y. Lin, O. Engvold, L.H.M. Rouppe van der Voort, M. van Noort, Evidence of traveling waves in filament threads. Sol. Phys. 246, 65–72 (2007). doi: 10.1007/s11207-007-0402-8 ADSCrossRefGoogle Scholar
  162. Y. Lin, S.F. Martin, O. Engvold, L.H.M. Rouppe van der Voort, M. van Noort, On small active region filaments, fibrils and surges. Adv. Space Res. 42, 803–811 (2008). doi: 10.1016/j.asr.2007.05.052 ADSCrossRefGoogle Scholar
  163. Y.E. Litvinenko, S.F. Martin, Magnetic reconnection as the cause of a photospheric canceling feature and mass flows in a filament. Sol. Phys. 190, 45–58 (1999). doi: 10.1023/A:1005284116353 ADSCrossRefGoogle Scholar
  164. Y. Liu, H. Kurokawa, K. Shibata, Production of filaments by surges. Astrophys. J. 631, 93–96 (2005). doi: 10.1086/496919 ADSCrossRefGoogle Scholar
  165. D.H. Mackay, K. Galsgaard, Evolution of a density enhancement in a stratified atmosphere with uniform vertical magnetic field. Sol. Phys. 198, 289–312 (2001). doi: 10.1023/A:1005266330720 ADSCrossRefGoogle Scholar
  166. D.H. Mackay, J.T. Karpen, J.L. Ballester, B. Schmieder, G. Aulanier, Physics of solar prominences: II—magnetic structure and dynamics. Space Sci. Rev. (2010). doi: 10.1007/s11214-010-9628-0, this issue
  167. M.S. Madjarska, J.C. Vial, K. Bocchialini, V.N. Dermendjiev, Plasma diagnostics of a solar prominence observed on 12 June 1997 by EIT, Sumer and CDS, in 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, ed. by J.C. Vial, B. Kaldeich-Schü. ESA Special Publication, vol. 446 (1999), p. 467 Google Scholar
  168. J.T. Mariska, Relative chemical abundances in different solar regions. Astrophys. J. 235, 268–273 (1980). doi: 10.1086/157630 ADSCrossRefGoogle Scholar
  169. J.T. Mariska, The Solar Transition Region (Cambridge University Press, Cambridge, 1992) Google Scholar
  170. J.T. Mariska, G.A. Doschek, U. Feldman, Extreme-ultraviolet limb spectra of a prominence observed from SKYLAB. Astrophys. J. 232, 929–939 (1979). doi: 10.1086/157356 ADSCrossRefGoogle Scholar
  171. H.E. Mason, B.C. Monsignori Fossi, Spectroscopic diagnostics in the VUV for solar and stellar plasmas. Astron. Astrophys. Rev. 6, 123–179 (1994). doi: 10.1007/BF01208253 ADSCrossRefGoogle Scholar
  172. N. Mein, P. Mein, P. Heinzel, J.C. Vial, J.M. Malherbe, J. Staiger, Cloud model with variable source function for solar Hα structures. Astron. Astrophys. 309, 275–283 (1996) ADSGoogle Scholar
  173. P. Mein, N. Mein, Dynamical fine structure of a quiescent prominence. Sol. Phys. 136, 317–333 (1991). doi: 10.1007/BF00146539 ADSCrossRefGoogle Scholar
  174. D. Mihalas, Stellar Atmospheres, 2nd edn. (Freeman, San Francisco, 1978) Google Scholar
  175. D. Mihalas, L.H. Auer, B.R. Mihalas, Two-dimensional radiative transfer. I—Planar geometry. Astrophys. J. 220, 1001–1023 (1978). doi: 10.1086/155988 ADSCrossRefGoogle Scholar
  176. R.W. Milkey, D. Mihalas, Resonance-line transfer with partial redistribution: A preliminary study of Lyman α in the solar chromosphere. Astrophys. J. 185, 709–726 (1973). doi: 10.1086/152448 ADSCrossRefGoogle Scholar
  177. R.W. Milkey, J.N. Heasley, H.A. Beebe, Helium excitation in the solar chromosphere: He I in a homogeneous chromosphere. Astrophys. J. 186, 1043–1052 (1973). doi: 10.1086/152568 ADSCrossRefGoogle Scholar
  178. R.W. Milkey, J.N. Heasley, E.J. Schmahl, O. Engvold, Frequency redistribution effects in the formation of Lyman alpha in prominences and their influence on the ratio of H-alpha to L-alpha, in IAU Colloq. 44: Physics of Solar Prominences, ed. by E. Jensen, P. Maltby, F.Q. Orrall (1979), pp. 53–55 Google Scholar
  179. B.C. Monsignori Fossi, M. Landini, Models for inner corona parameters. Adv. Space Res. 11, 281–292 (1991). doi: 10.1016/0273-1177(91)90121-Y ADSCrossRefGoogle Scholar
  180. N.N. Morozhenko, Helium Excitation and Structure of Quiescent Solar Prominences, ed. by V.I. Voroshilov (1970), p. 176 Google Scholar
  181. N.N. Morozhenko, Radiation transfer in prominences with filamentary structure. Sol. Phys. 58, 47–56 (1978). doi: 10.1007/BF00152554 ADSCrossRefGoogle Scholar
  182. N.N. Morozhenko, On the excitation of lower levels of singlet helium in quiescent prominences. Sol. Phys. 92, 153–160 (1984). doi: 10.1007/BF00157242 ADSCrossRefGoogle Scholar
  183. N.N. Morozhenko, V.V. Zharkova, The spectral properties of filamentary, physically inhomogeneous prominences. II—Hydrogen (second level excitation, ionization). Astrom. Astrofiz. 47, 34–41 (1982) ADSGoogle Scholar
  184. D.C. Morton, K.G. Widing, The solar Lyman-alpha emission line. Astrophys. J. 133, 596 (1961). doi: 10.1086/147062 ADSCrossRefGoogle Scholar
  185. R.W. Noyes, W. Kalkofen, The solar Lyman continuum and the structure of the solar chromosphere. Sol. Phys. 15, 120–138 (1970). doi: 10.1007/BF00149479 ADSCrossRefGoogle Scholar
  186. R.W. Noyes, A.K. Dupree, M.C.E. Huber, W.H. Parkinson, E.M. Reeves, G.L. Withbroe, Extreme-ultraviolet emission from solar prominences. Astrophys. J. 178, 515–526 (1972). doi: 10.1086/151812 ADSCrossRefGoogle Scholar
  187. L. Ofman, T.A. Kucera, Z. Mouradian, A.I. Poland, SUMER observations of the evolution and the disappearance of a solar prominence. Sol. Phys. 183, 97–106 (1998) ADSCrossRefGoogle Scholar
  188. T.J. Okamoto, S. Tsuneta, T.E. Berger, K. Ichimoto, Y. Katsukawa, B.W. Lites, S. Nagata, K. Shibata, T. Shimizu, R.A. Shine, Y. Suematsu, T.D. Tarbell, A.M. Title, Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577 (2007). doi: 10.1126/science.1145447 ADSCrossRefGoogle Scholar
  189. R. Oliver, Prominence seismology using small amplitude oscillations. Space Sci. Rev. 39 (2009). doi: 10.1007/s11214-009-9527-4
  190. G.L. Olson, L.H. Auer, J.R. Buchler, A rapidly convergent iterative solution of the non-LTE radiation transfer problem. J. Quant. Spectrosc. Radiat. Transfer 35, 431–442 (1986). doi: 10.1016/0022-4073(86)90030-0 ADSCrossRefGoogle Scholar
  191. A. Omont, E.W. Smith, J. Cooper, Redistribution of resonance radiation. I. The effect of collisions. Astrophys. J. 175, 185 (1972). doi: 10.1086/151548 ADSCrossRefGoogle Scholar
  192. F.Q. Orrall, E.J. Schmahl, The prominence-corona interface compared with the chromosphere-corona transition region. Sol. Phys. 50, 365–381 (1976). doi: 10.1007/BF00155299 ADSCrossRefGoogle Scholar
  193. F.Q. Orrall, E.J. Schmahl, The H I Lyman continuum in solar prominences and its interpretation in the presence of inhomogeneities. Astrophys. J. 240, 908–922 (1980). doi: 10.1086/158304 ADSCrossRefGoogle Scholar
  194. F. Paletou, Two-dimensional multilevel radiative transfer with standard partial frequency redistribution in isolated solar atmospheric structures. Astron. Astrophys. 302, 587 (1995) ADSGoogle Scholar
  195. F. Paletou, J.C. Vial, L.H. Auer, Two-dimensional radiative transfer with partial frequency redistribution. II. Application to resonance lines in quiescent prominences. Astron. Astrophys. 274, 571 (1993) ADSGoogle Scholar
  196. S. Parenti, J.C. Vial, Prominence and quiet-Sun plasma parameters derived from FUV spectral emission. Astron. Astrophys. 469, 1109–1115 (2007). doi: 10.1051/0004-6361:20077196 ADSCrossRefGoogle Scholar
  197. S. Parenti, J.C. Vial, P. Lemaire, Prominence atlas in the SUMER range 800 1250 Å: I. Observations, data reduction and preliminary results. Sol. Phys. 220, 61–80 (2004). doi: 10.1023/B:sola.0000023444.58697.e7 ADSCrossRefGoogle Scholar
  198. S. Parenti, P. Lemaire, J.C. Vial, Solar hydrogen-Lyman continuum observations with SOHO/SUMER. Astron. Astrophys. 443, 685–689 (2005a). doi: 10.1051/0004-6361:20053431 ADSCrossRefGoogle Scholar
  199. S. Parenti, J.C. Vial, P. Lemaire, Prominence atlas in the SUMER range 800–1250 Å. II. Line profile properties and ions identifications. Astron. Astrophys. 443, 679–684 (2005b). doi: 10.1051/0004-6361:20053122 ADSCrossRefGoogle Scholar
  200. S. Patsourakos, J.C. Vial, Soho contribution to prominence science. Sol. Phys. 208, 253–281 (2002) ADSCrossRefGoogle Scholar
  201. S. Patsourakos, P. Gouttebroze, A. Vourlidas, The quiet Sun network at subarcsecond resolution: VAULT observations and radiative transfer modeling of cool loops. Astrophys. J. 664, 1214–1220 (2007). doi: 10.1086/518645 ADSCrossRefGoogle Scholar
  202. M.J. Penn, An erupting active region filament: Three-dimensional trajectory and hydrogen column density. Sol. Phys. 197, 313–335 (2000) ADSCrossRefGoogle Scholar
  203. K.J.H. Phillips, U. Feldman, E. Landi, Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere (Cambridge University Press, Cambridge, 2008) CrossRefGoogle Scholar
  204. S. Pojoga, Emission measure of prominence-corona transition region, in IAU Colloq. 144: Solar Coronal Structures (1994), p. 357 Google Scholar
  205. S. Pojoga, R. Molowny-Horas, The transverse velocity field of an EUV solar prominence. Sol. Phys. 185, 113–125 (1999) ADSCrossRefGoogle Scholar
  206. S. Pojoga, A.G. Nikoghossian, Z. Mouradian, A statistical approach to the investigation of fine structure of solar prominences. Astron. Astrophys. 332, 325–338 (1998) ADSGoogle Scholar
  207. A. Poland, U. Anzer, Energy balance in cool quiescent prominences. Sol. Phys. 19, 401–413 (1971). doi: 10.1007/BF00146067 ADSCrossRefGoogle Scholar
  208. A.I. Poland, J.T. Mariska, A model for the structure and formation of prominences, in Universitat de les Illes Balears, Palma de Mallorca (Spain) (1988), p. 133 Google Scholar
  209. A.I. Poland, E. Tandberg-Hanssen, Physical conditions in a quiescent prominence derived from UV spectra obtained with the UVSP instrument on the SMM. Sol. Phys. 84, 63–70 (1983). doi: 10.1007/BF00157443 ADSCrossRefGoogle Scholar
  210. S.R. Pottasch, The lower solar corona: Interpretation of the ultraviolet spectrum. Astrophys. J. 137, 945 (1963). doi: 10.1086/147569 ADSCrossRefGoogle Scholar
  211. S.R. Pottasch, On the interpretation of the solar ultraviolet emission line spectrum. Space Sci. Rev. 3, 816–855 (1964). doi: 10.1007/BF00177958 ADSCrossRefGoogle Scholar
  212. J.D. Purcell, R. Tousey, The profile of solar hydrogen-Lyman-α. J. Geophys. Res. 65, 370 (1960). doi: 10.1029/JZ065i001p00370 ADSCrossRefGoogle Scholar
  213. P. Rudawy, P. Heinzel, Hydrogen photoionization rates for chromospheric and prominence plasmas. Sol. Phys. 138, 123–131 (1992). doi: 10.1007/BF00146200 ADSCrossRefGoogle Scholar
  214. G.B. Rybicki, D.G. Hummer, An accelerated lambda iteration method for multilevel radiative transfer. I—Non-overlapping lines with background continuum. Astron. Astrophys. 245, 171–181 (1991) ADSGoogle Scholar
  215. G.B. Rybicki, D.G. Hummer, An accelerated lambda iteration method for multilevel radiative transfer. II—Overlapping transitions with full continuum. Astron. Astrophys. 262, 209–215 (1992) ADSGoogle Scholar
  216. E.J. Schmahl, F.Q. Orrall, Interpretation of the prominence differential emissions measure for 3 geometries. NASA Conf. Publ. 2442, 127–133 (1986) Google Scholar
  217. B. Schmieder, Overall properties and steady flows, in Dynamics and Structure of Quiescent Solar Prominences (1988), pp. 15–46 Google Scholar
  218. B. Schmieder, M.A. Raadu, J.E. Wiik, Fine structure of solar filaments. II—Dynamics of threads and footpoints. Astron. Astrophys. 252, 353–365 (1991) ADSGoogle Scholar
  219. B. Schmieder, P. Heinzel, T. Kucera, J.C. Vial, Filament observations with SOHO Sumer/cds: The behaviour of hydrogen Lyman lines. Sol. Phys. 181, 309–326 (1998) ADSCrossRefGoogle Scholar
  220. B. Schmieder, P. Heinzel, J.C. Vial, P. Rudawy, SOHO/SUMER observations and analysis of hydrogen Lyman lines in a quiescent prominence. Sol. Phys. 189, 109–127 (1999) ADSCrossRefGoogle Scholar
  221. B. Schmieder, C. Delannée, D.Y. Yong, J.C. Vial, M. Madjarska, Multi-wavelength study of the slow “disparition brusque” of a filament observed with SOHO. Astron. Astrophys. 358, 728–740 (2000) ADSGoogle Scholar
  222. B. Schmieder, K. Tziotziou, P. Heinzel, Spectroscopic diagnostics of an Hα and EUV filament observed with THEMIS and SOHO. Astron. Astrophys. 401, 361–375 (2003). doi: 10.1051/0004-6361:20030126 ADSCrossRefGoogle Scholar
  223. B. Schmieder, Y. Lin, P. Heinzel, P. Schwartz, Multi-wavelength study of a high-latitude EUV filament. Sol. Phys. 221, 297–323 (2004a). doi: 10.1023/B:SOLA.0000035059.50427.68 ADSCrossRefGoogle Scholar
  224. B. Schmieder, N. Mein, Y. Deng, C. Dumitrache, J.M. Malherbe, J. Staiger, E.E. Deluca, Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Sol. Phys. 223, 119–141 (2004b). doi: 10.1007/s11207-004-1107-x ADSCrossRefGoogle Scholar
  225. B. Schmieder, S. Gunár, P. Heinzel, U. Anzer, Spectral diagnostics of the magnetic field orientation in a prominence observed with SOHO/SUMER. Sol. Phys. 241, 53–66 (2007). doi: 10.1007/s11207-007-0251-5 ADSCrossRefGoogle Scholar
  226. B. Schmieder, V. Bommier, R. Kitai, T. Matsumoto, T.T. Ishii, M. Hagino, H. Li, L. Golub, Magnetic causes of the eruption of a quiescent filament. Sol. Phys. 247, 321–333 (2008). doi: 10.1007/s11207-007-9100-9 ADSCrossRefGoogle Scholar
  227. B. Schmieder, R. Chandra, A. Berlicki, P. Mein, Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon). ArXiv e-prints, 2010 Google Scholar
  228. P. Schwartz, P. Heinzel, U. Anzer, B. Schmieder, Determination of the 3D structure of an EUV-filament observed by SoHO/CDS, SoHO/SUMER and VTT/MSDP. Astron. Astrophys. 421, 323–338 (2004). doi: 10.1051/0004-6361:20034199 ADSCrossRefGoogle Scholar
  229. P. Schwartz, P. Heinzel, B. Schmieder, U. Anzer, Study of an extended EUV filament using SoHO/SUMER observations of the hydrogen Lyman lines. Astron. Astrophys. 459, 651–661 (2006). doi: 10.1051/0004-6361:20065619 ADSCrossRefGoogle Scholar
  230. N.R. Sheeley Jr., A volcanic origin for high-FIP material in the solar atmosphere. Astrophys. J. 440, 884 (1995). doi: 10.1086/175326 ADSCrossRefGoogle Scholar
  231. R.K. Smith, N.S. Brickhouse, D.A. Liedahl, J.C. Raymond, Collisional plasma models with APEC/APED: Emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 556, 91–95 (2001). doi: 10.1086/322992 ADSCrossRefGoogle Scholar
  232. D.S. Spicer, U. Feldman, K.G. Widing, M. Rilee, The neon-to-magnesium abundance ratio as a tracer of the source region of prominence material. Astrophys. J. 494, 450 (1998). doi: 10.1086/305203 ADSCrossRefGoogle Scholar
  233. G. Stellmacher, E. Wiehr, The helium singlet-to-triplet line ratio in solar prominences. Astron. Astrophys. 319, 669–672 (1997) ADSGoogle Scholar
  234. G. Stellmacher, E. Wiehr, Two-dimensional photometric analysis of emission lines in quiescent prominences. Sol. Phys. 196, 357–367 (2000) ADSCrossRefGoogle Scholar
  235. G. Stellmacher, S. Koutchmy, C. Lebecq, The 1981 total solar eclipse. III—Photometric study of the prominence remnant in the reversing south polar field. Astron. Astrophys. 162, 307–311 (1986) ADSGoogle Scholar
  236. G. Stellmacher, E. Wiehr, I.E. Dammasch, Spectroscopy of solar prominences simultaneously from space and ground. Sol. Phys. 217, 133–155 (2003) ADSCrossRefGoogle Scholar
  237. E. Tandberg-Hanssen, The Nature of Solar Prominences (Kluwer, Dordrecht, 1995) Google Scholar
  238. R. Tousey, Apollo Telescope Mount of SKYLAB—an overview. Appl. Opt. 16, 825–836 (1977) ADSGoogle Scholar
  239. R. Tousey, W.E. Austin, J.D. Purcell, K.G. Widing, The extreme ultraviolet emission from the Sun between the Lyman-alpha lines of H I and C VI. Ann. Astrophys. 28, 755 (1965) ADSGoogle Scholar
  240. S. Tsuneta, K. Ichimoto, Y. Katsukawa, S. Nagata, M. Otsubo, T. Shimizu, Y. Suematsu, M. Nakagiri, M. Noguchi, T. Tarbell, A. Title, R. Shine, W. Rosenberg, C. Hoffmann, B. Jurcevich, G. Kushner, M. Levay, B. Lites, D. Elmore, T. Matsushita, N. Kawaguchi, H. Saito, I. Mikami, L.D. Hill, J.K. Owens, The solar optical telescope for the Hinode mission: An overview. Sol. Phys. 249, 167–196 (2008). doi: 10.1007/s11207-008-9174-z ADSCrossRefGoogle Scholar
  241. K. Tziotziou, Chromospheric cloud-model inversion techniques, in The Physics of Chromospheric Plasmas, ed. by P. Heinzel, I. Dorotovič, R.J. Rutten. Astronomical Society of the Pacific Conference Series, vol. 368 (2007), p. 217 Google Scholar
  242. K. Tziotziou, P. Heinzel, P. Mein, N. Mein, Non-LTE inversion of chromospheric Ca II cloud-like features. Astron. Astrophys. 366, 686–698 (2001). doi: 10.1051/0004-6361:20000257 ADSCrossRefGoogle Scholar
  243. A.A. van Ballegooijen, Observations and modeling of a filament on the Sun. Astrophys. J. 612, 519–529 (2004). doi: 10.1086/422512 ADSCrossRefGoogle Scholar
  244. J.E. Vernazza, R.W. Noyes, Inhomogeneous structure of the solar chromosphere from Lyman-continuum data. Sol. Phys. 22, 358–374 (1972). doi: 10.1007/BF00148702 ADSCrossRefGoogle Scholar
  245. J.E. Vernazza, E.H. Avrett, R. Loeser, Structure of the solar chromosphere. III—Models of the EUV brightness components of the quiet-Sun. Astrophys. J. Suppl. Ser. 45, 635–725 (1981). doi: 10.1086/190731 ADSCrossRefGoogle Scholar
  246. J.C. Vial, Optically thick lines in a quiescent prominence—Profiles of Lyman-alpha, Lyman-beta (H I), K and H (Mg II), and K and H (Ca II) lines with the OSO 8 LPSP instrument. Astrophys. J. 253, 330–352 (1982a). doi: 10.1086/159639 ADSCrossRefGoogle Scholar
  247. J.C. Vial, Two-dimensional nonlocal thermodynamic equilibrium transfer computations of resonance lines in quiescent prominences. Astrophys. J. 254, 780–795 (1982b). doi: 10.1086/159789 ADSCrossRefGoogle Scholar
  248. J.C. Vial, The prominence-corona interface, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), pp. 106–119 CrossRefGoogle Scholar
  249. J.C. Vial, H. Ebadi, A. Ajabshirizadeh, The Ly α and Ly β profiles in solar prominences and prominence fine structure. Sol. Phys. 246, 327–338 (2007). doi: 10.1007/s11207-007-9080-9 ADSCrossRefGoogle Scholar
  250. J.C. Vial, P. Lemaire, G. Artzner, P. Gouttebroze, O VI ( \(\lambda=1032~\AA\) ) profiles in and above an active region prominence, compared to quiet Sun center and limb profiles. Sol. Phys. 68, 187–206 (1980) ADSCrossRefGoogle Scholar
  251. J.C. Vial, M. Rovira, J.M. Fontenla, P. Gouttebroze, Multi-thread structure as a possible solution for the L-beta problem in solar prominences, in IAU Colloq. 117: Dynamics of Quiescent Prominences, ed. by V. Ruzdjak, E. Tandberg-Hanssen. Lecture Notes in Physics, vol. 363 (Springer, Berlin, 1990), p. 282. doi: 10.1007/BFb0025640 CrossRefGoogle Scholar
  252. Y.M. Wang, The jetlike nature of HE II lambda304 prominences. Astrophys. J. 520, 71–74 (1999). doi: 10.1086/312149 ADSCrossRefGoogle Scholar
  253. Y.M. Wang, On the relationship between He II λ304 prominences and the photospheric magnetic field. Astrophys. J. 560, 456–465 (2001). doi: 10.1086/322495 ADSCrossRefGoogle Scholar
  254. K.G. Widing, U. Feldman, A.K. Bhatia, The extreme-ultraviolet spectrum (300–630  \(\AA\) ) of an erupting prominence observed from SKYLAB. Astrophys. J. 308, 982–992 (1986). doi: 10.1086/164566 ADSCrossRefGoogle Scholar
  255. J.E. Wiik, P. Heinzel, B. Schmieder, Determination of plasma parameters in a quiescent prominence. Astron. Astrophys. 260, 419–430 (1992) ADSGoogle Scholar
  256. J.E. Wiik, K. Dere, B. Schmieder, UV prominences observed with the HRTS: structure and physical properties. Astron. Astrophys. 273, 267 (1993) ADSGoogle Scholar
  257. J.E. Wiik, B. Schmieder, T. Kucera, A. Poland, P. Brekke, G. Simnett, Eruptive prominence and associated CME observed with SUMER, CDS and LASCO (SOHO). Sol. Phys. 175, 411–436 (1997). doi: 10.1023/A:1004925024794 ADSCrossRefGoogle Scholar
  258. J.E. Wiik, I.E. Dammasch, B. Schmieder, K. Wilhelm, Multiple-thread model of a prominence observed by SUMER and EIT on SOHO. Sol. Phys. 187, 405–426 (1999). doi: 10.1023/A:1005151015043 ADSCrossRefGoogle Scholar
  259. K. Wilhelm, W. Curdt, E. Marsch, U. Schühle, P. Lemaire, A. Gabriel, J.C. Vial, M. Grewing, M.C.E. Huber, S.D. Jordan, A.I. Poland, R.J. Thomas, M. Kühne, J.G. Timothy, D.M. Hassler, O.H.W. Siegmund, SUMER—Solar Ultraviolet Measurements of Emitted Radiation. Sol. Phys. 162, 189–231 (1995). doi: 10.1007/BF00733430 ADSCrossRefGoogle Scholar
  260. B.E. Woodgate, J.C. Brandt, M.W. Kalet, P.J. Kenny, E.A. Tandberg-Hanssen, E.C. Bruner, J.M. Beckers, W. Henze, E.D. Knox, C.L. Hyder, The ultraviolet spectrometer and polarimeter on the solar maximum mission. Sol. Phys. 65, 73–90 (1980). doi: 10.1007/BF00151385 ADSCrossRefGoogle Scholar
  261. N.A. Yakovkin, M.Y. Zel’dina, Excitation and ionization of hydrogen in prominences. Soviet Astron. 8, 262 (1964) ADSGoogle Scholar
  262. N.A. Yakovkin, M.Y. Zel’dina, The Lyman-α radiation field in a chromospheric filament. Soviet Astron. 12, 40 (1968) ADSGoogle Scholar
  263. N.A. Yakovkin, M.Y. Zeldina, C. Lhagvazhav, Helium radiation diffusion in prominences. Sol. Phys. 81, 339–354 (1982) ADSCrossRefGoogle Scholar
  264. Q.Z. Zhang, C. Fang, Semi-empirical models of a quiescent prominence. Astron. Astrophys. 175, 277–281 (1987) ADSGoogle Scholar
  265. V.V. Zharkova, Toward hydrogen emission in filamentary quiescent prominences. Hvar Obs. Bull. 13, 331 (1989) ADSGoogle Scholar
  266. H. Zirin, Production of a short-lived filament by a surge. Sol. Phys. 50, 399–404 (1976). doi: 10.1007/BF00155302 ADSCrossRefGoogle Scholar
  267. J.B. Zirker, Prominence hydrogen lines at 10–20 microns. Sol. Phys. 102, 33–40 (1985). doi: 10.1007/BF00154035 ADSCrossRefGoogle Scholar
  268. J.B. Zirker, S. Koutchmy, Prominence fine structure. II—Diagnostics. Sol. Phys. 131, 107–118 (1991). doi: 10.1007/BF00151747 ADSCrossRefGoogle Scholar
  269. J.B. Zirker, O. Engvold, S.F. Martin, Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature 396, 440 (1998). doi: 10.1038/24798 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • N. Labrosse
    • 1
    Email author
  • P. Heinzel
    • 2
  • J.-C. Vial
    • 3
  • T. Kucera
    • 4
  • S. Parenti
    • 5
  • S. Gunár
    • 2
  • B. Schmieder
    • 6
  • G. Kilper
    • 7
  1. 1.Department of Physics and AstronomyUniversity of GlasgowGlasgowUK
  2. 2.Astronomical InstituteAcademy of Sciences of the Czech RepublicOndřejovCzech Republic
  3. 3.Institut d’Astrophysique SpatialeUniversité Paris XI/CNRSOrsay CedexFrance
  4. 4.NASA/GSFCGreenbeltUSA
  5. 5.Observatoire Royal de BelgiqueBruxellesBelgium
  6. 6.Observatoire de ParisLESIAMeudon cedexFrance
  7. 7.Dept. of Physics and AstronomyRice UniversityHoustonUSA

Personalised recommendations