Space Science Reviews

, Volume 153, Issue 1–4, pp 431–446 | Cite as

Planetesimals and Satellitesimals: Formation of the Satellite Systems

  • Ignacio Mosqueira
  • Paul Estrada
  • Diego Turrini


The origin of the regular satellites ties directly to planetary formation in that the satellites form in gas and dust disks around the giant planets and may be viewed as mini-solar systems, involving a number of closely related underlying physical processes. The regular satellites of Jupiter and Saturn share a number of remarkable similarities that taken together make a compelling case for a deep-seated order and structure governing their origin. Furthermore, the similarities in the mass ratio of the largest satellites to their primaries, the specific angular momenta, and the bulk compositions of the two satellite systems are significant and in need of explanation. Yet, the differences are also striking. We advance a common framework for the origin of the regular satellites of Jupiter and Saturn and discuss the accretion of satellites in gaseous, circumplanetary disks. Following giant planet formation, planetesimals in the planet’s feeding zone undergo a brief period of intense collisional grinding. Mass delivery to the circumplanetary disk via ablation of planetesimal fragments has implications for a host of satellite observations, tying the history of planetesimals to that of satellitesimals and ultimately that of the satellites themselves. By contrast, irregular satellites are objects captured during the final stages of planetary formation or the early evolution of the Solar System; their distinct origin is reflected in their physical properties, which has implications for the subsequent evolution of the satellites systems.


Planet formation Satellite formation Origin of satellites Giant planets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. Adachi, C. Hayashi, K. Nakazawa, Prog. Theor. Phys. 56, 1756–1771 (1976) CrossRefADSGoogle Scholar
  2. C.B. Agnor, D.P. Hamilton, Nature 441, 192 (2006) CrossRefADSGoogle Scholar
  3. Y. Alibert, O. Mousis, W. Benz, Astron. Astrophys. 439, 1205–1213 (2005) CrossRefADSGoogle Scholar
  4. J.D. Anderson, R.A. Jacobsen, T.P. McElrath, W.B. Moore, G. Schubert, P.C. Thomas, Icarus 153, 157–161 (2001) CrossRefADSGoogle Scholar
  5. S.K. Atreya, M.H. Wong, T.C. Owen, P.R. Mahaffy, H.B. Niemann, I. de Pater, P. Drossart, T. Encrenaz, Planet. Space Sci. 47, 1243–1262 (1999) CrossRefADSGoogle Scholar
  6. B. Ayliffe, M.R. Bate, Mon. Not. R. Astron. Soc. 397(2), 657–665 (2009) CrossRefADSGoogle Scholar
  7. M.R. Bate, S.H. Lubow, G.I. Ogilvie, K.A. Miller, Mon. Not. R. Astron. Soc. 341, 213–229 (2003) CrossRefADSGoogle Scholar
  8. P. Bodenheimer, J.B. Pollack, Icarus 67, 391–408 (1986) CrossRefADSGoogle Scholar
  9. V.A. Bronshten, Meteo. Iss. 8, 38–50 (1983) (in Russian) Google Scholar
  10. G. Bryden, X. Chen, D.N.C. Lin, R.P. Nelson, C.B. Papaloizou, Astrophys. J. 514, 344–367 (1999) CrossRefADSGoogle Scholar
  11. R.M. Canup, W.R. Ward, Astron. J. 124, 3404–3423 (2002) CrossRefADSGoogle Scholar
  12. R.M. Canup, W.R. Ward, in Europa Book, ed. by W. McKinnon, R. Pappalardo, K. Khurana (University of Arizona Press, Tucson, 2009, in press) Google Scholar
  13. P. Cassen, D. Pettibone, Astrophys. J. 208, 500–511 (1976) CrossRefADSGoogle Scholar
  14. S. Charnoz, A. Morbidelli, Icarus 166, 141–156 (2003) CrossRefADSGoogle Scholar
  15. E.I. Chiang, M.K. Joung, M.J. Creech-Eakman, C. Qi, J.E. Kessler, G.A. Blake, E.F. van Dishoeck, Astrophys. J. 547, 1077–1089 (2001) CrossRefADSGoogle Scholar
  16. G. Colombo, F.A. Franklin, Icarus 15, 186–189 (1971) CrossRefADSGoogle Scholar
  17. A. Coradini, P. Cerroni, G. Magni, C. Federico, in Origin and Evolution of Planetary and Satellite Atmospheres, ed. by S.K. Atreya, J.B. Pollack, M.S. Matthews (University of Arizona Press, Tucson, 1989), pp. 723–762 Google Scholar
  18. M. Cuk, B.J. Gladman, Astrophys. J. 636, L113–L116 (2005) CrossRefADSGoogle Scholar
  19. J.N. Cuzzi, S. Weidenschilling, in Meteors and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 353–381 Google Scholar
  20. G. D’Angelo, W. Kley, T. Henning, Astrophys. J. 586, 540–561 (2003) CrossRefADSGoogle Scholar
  21. P.R. Estrada, I. Mosqueira, J.J. Lissauer, G. D’Angelo, D.P. Cruikshank, in Europa Book, ed. by W. McKinnon, R. Pappalardo, K. Khurana (University of Arizona Press, Tuscon, 2009, in press) Google Scholar
  22. P. Goldreich, Y. Lithwick, R. Sari, Astrophys. J. 614, 1024–1037 (2004) CrossRefGoogle Scholar
  23. P. Goldreich, N. Murray, Y. Longaretti, D. Banfield, Science 245, 500–504 (1989) CrossRefADSGoogle Scholar
  24. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Nature 435, 466–469 (2005) CrossRefADSGoogle Scholar
  25. J. Goodman, R.R. Rafikov, Astrophys. J. 552, 793–802 (2001) CrossRefADSGoogle Scholar
  26. T.A. Heppenheimer, C. Porco, Icarus 30, 385–401 (1977) CrossRefADSGoogle Scholar
  27. O. Hubickyj, P. Bodenheimer, J.J. Lissauer, Icarus 179, 415–431 (2005) CrossRefADSGoogle Scholar
  28. R.A. Jacobson, P.G. Antreasian, J.J. Bordi, K.E. Criddle, R. Ionasescu, J.B. Jones, R.A. Mackenzie, M.C. Meek, D. Parcher, F.J. Pelletier, W.M. Owen, D.C. Roth, I.M. Roundhill, J.R. Stauch, Astron. J. 132, 2520–2526 (2006) CrossRefADSGoogle Scholar
  29. D. Jewitt, N. Haghighipour, Annu. Rev. Astron. Astrophys. 45, 261–295 (2007) CrossRefADSGoogle Scholar
  30. T.V. Johnson, J.I. Lunine, Nature 435, 67–71 (2005) ADSGoogle Scholar
  31. T.V. Johnson, J.C. Castillo-Rogez, D.L. Matson, P.C. Thomas, Phoebes shape: possible constraints on internal structure and origin. 40th Lunar and Planetary Science Conference (2009) Google Scholar
  32. D.M. Kary, J.J. Lissauer, Y. Greenzweig, Icarus 106, 288–307 (1993) CrossRefADSGoogle Scholar
  33. M.H. Lee, S.J. Peale, 31st DDA meeting. Bull. Am. Astron. Soc. 32, 860 (2000) ADSGoogle Scholar
  34. H. Li, S.H. Lubow, S. Li, D.N.C. Lin, Astrophys. J. 690, L52–L55 (2009) CrossRefADSGoogle Scholar
  35. D.N.C. Lin, J. Papaloizou, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (University of Arizona Press, Tucson, 1993), pp. 749–836 Google Scholar
  36. J.I. Lunine, D.J. Stevenson, Icarus 52, 14–39 (1982) CrossRefADSGoogle Scholar
  37. A.B. Makalkin, V.A. Dorofeeva, E.L. Ruskol, Sol. Syst. Res. 33, 456 (1999) ADSGoogle Scholar
  38. R. Malhotra, Icarus 106, 264–273 (1993) CrossRefADSGoogle Scholar
  39. W.B. McKinnon, Icarus 130, 540–543 (1997) CrossRefADSGoogle Scholar
  40. W.B. McKinnon, Formation time of the Galilean satellites form Callisto’s state of partial differentiation. 37th Lunar and Planetary Science Conference (2006) Google Scholar
  41. R. Merk, D. Prialnik, Icarus 183, 283–295 (2006) CrossRefADSGoogle Scholar
  42. A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Nature 435, 462–465 (2005) CrossRefADSGoogle Scholar
  43. I. Mosqueira, P.R. Estrada, Icarus 163, 198–231 (2003a) CrossRefADSGoogle Scholar
  44. I. Mosqueira, P.R. Estrada, Icarus 163, 232–255 (2003b) CrossRefADSGoogle Scholar
  45. I. Mosqueira, P.R. Estrada, On the origin of the Saturnian satellite system: did Iapetus form in-situ? 36th Lunar and Planetary Science Conference, League City, Texas, abstract no. 1951 (2005) Google Scholar
  46. I. Mosqueira, P.R. Estrada, S. Charnoz, Decoding the origin of the regular satellites of gaseous giants—Iapetus: the Rosetta Ice-moon. Icarus (2009) Google Scholar
  47. I. Mosqueira, P.R. Estrada, J.N. Cuzzi, S.W. Squyres, Circumjovian disk clearing after gap-opening and the formation of a partially differentiated Callisto. Proceedings of the 32nd LPSC, 12–16 March 2001, Houston, Texas, abstract no. 1989 (2001) Google Scholar
  48. D. Nesvorny, J.L.A. Alvarellos, L. Dones, H. Levison, Astron. J. 126, 398–429 (2003) CrossRefADSGoogle Scholar
  49. D. Nesvorny, C. Beaugé, L. Dones, Astron. J. 127, 1768–1783 (2004) CrossRefADSGoogle Scholar
  50. D. Nesvorny, D. Vokrouhlicky, A. Morbidelli, Astron. J. 133, 1962–1976 (2007) CrossRefADSGoogle Scholar
  51. E.C. Ostriker, Astrophys. J. 513, 252–258 (1999) CrossRefADSGoogle Scholar
  52. J.B. Pollack, J.A. Burns, M.E. Tauber, Icarus 37, 587–611 (1979) CrossRefADSGoogle Scholar
  53. J.B. Pollack, A.S. Grossman, R. Moore, H.C. Graboske, Icarus 29, 35–48 (1976) CrossRefADSGoogle Scholar
  54. J.B. Pollack, M. Podolak, P. Bodenheimer, B. Christofferson, Icarus 67, 409–443 (1986) CrossRefADSGoogle Scholar
  55. J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Icarus 124, 62–85 (1996) CrossRefADSGoogle Scholar
  56. J.B. Pollack, R.T. Reynolds, Icarus 21, 248–253 (1974) CrossRefADSGoogle Scholar
  57. C.C. Porco et al., Science 307, 1237–1242 (2005) CrossRefADSGoogle Scholar
  58. D. Prialnik, M. Podolak, Icarus 117, 420–430 (1995) CrossRefADSGoogle Scholar
  59. D. Prialnik, G. Sarid, E.D. Rosenberg, R. Merk, Space Sci. Rev. 138, 147–164 (2008) CrossRefADSGoogle Scholar
  60. R.G. Prinn, B. Fegley, Astrophys. J. 249, 308–317 (1981) CrossRefADSGoogle Scholar
  61. R.R. Rafikov, Astrophys. J. 572, 566–579 (2002) CrossRefADSGoogle Scholar
  62. V.S. Safronov, G.V. Pechernikova, E.L. Ruskol, A.V. Vitiazev, in Satellites, ed. by J.A. Burns, M.S. Matthews (University of Arizona Press, Tucson, 1986) Google Scholar
  63. P.M. Schenk, K. Zahnle, Icarus 192, 135–149 (2007) CrossRefADSGoogle Scholar
  64. G. Schubert et al., Space Sci. Rev. (2010, this issue) Google Scholar
  65. A.P. Showman, R. Malhotra, Icarus 127, 93–111 (1997) CrossRefADSGoogle Scholar
  66. S.A. Stern, P.R. Weissman, Nature 409, 589–591 (2001) CrossRefADSGoogle Scholar
  67. D.J. Stevenson, W.B. McKinnon, R. Canup, G. Schubert, M. Zuber, The power of JIMO for determining Galilean satellite internal structure and origin. American Geophysical Union Fall Meeting, abstract P11C-05 (2003) Google Scholar
  68. H. Tanaka, T. Takeuchi, W.R. Ward, Astrophys. J. 565, 1257–1274 (2002) CrossRefADSGoogle Scholar
  69. P.C. Thomas, J.W. Armstrong, S.W. Asmar, J.A. Burns, T. Denk, B. Giese, P. Helfenstein, L. Iess, T.V. Johnson, A. McEwen, L. Nicolaisen, C. Porco, N. Rappaport, J. Richardson, L. Somenzi, P. Tortora, E.P. Turtle, J. Veverka, Nature 448, 50–56 (2007) CrossRefADSGoogle Scholar
  70. K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Nature 435, 459–461 (2005) CrossRefADSGoogle Scholar
  71. D. Turrini, F. Marzari, H. Beust, Mon. Not. R. Astron. Soc. 391, 1029–1051 (2008) CrossRefADSGoogle Scholar
  72. D. Turrini, F. Marzari, F. Tosi, Mon. Not. R. Astron. Soc. 392, 455–474 (2009) CrossRefADSGoogle Scholar
  73. D. Vokrouhlicky, D. Nesvorny, H.F. Levison, Astron. J. 136, 1463–1476 (2008) CrossRefADSGoogle Scholar
  74. S.J. Weidenschilling, D.R. Davis, Icarus 62, 16–29 (1985) CrossRefADSGoogle Scholar
  75. G.W. Wetherill, G.R. Stewart, Icarus 106, 190 (1993) CrossRefADSGoogle Scholar
  76. A.N. Youdin, F.H. Shu, Astrophys. J. 580, 494–505 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ignacio Mosqueira
    • 1
  • Paul Estrada
    • 1
  • Diego Turrini
    • 2
  1. 1.SETI InstituteMountain ViewUS
  2. 2.INAF-IFSIRomeItaly

Personalised recommendations