Space Science Reviews

, Volume 153, Issue 1–4, pp 411–429 | Cite as

From Gas to Satellitesimals: Disk Formation and Evolution

Article

Abstract

The subject of satellite formation is strictly linked to the one of planetary formation. Giant planets strongly shape the evolution of the circum-planetary disks during their formation and thus, indirectly, influence the initial conditions for the processes governing satellite formation. In order to fully understand the present features of the satellite systems of the giant planets, we need to take into account their formation environments and histories and the role of the different physical parameters. In particular, the pressure and temperature profiles in the circum-planetary nebulae shaped their chemical gradients by allowing for the condensation of ices and noble gases. These chemical gradients, in turn, set the composition of the satellitesimals, which represent the building blocks of the present regular satellites.

Keywords

Solar system: formation Planets and satellites: formation Accretion disks Planets and satellites: Jupiter Planets and satellites: Saturn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.B. Agnor, D.P. Hamilton, Neptune’s capture of its moon Triton during a planet-binary gravitational encounter. Nature 441, 192–194 (2006) CrossRefADSGoogle Scholar
  2. Y. Alibert, O. Mousis, Structure and evolution of the Saturn’s subnebula—implications for the formation of Titan. Lunar Planet. Sci. XXXVII, 1141–1142 (2006) ADSGoogle Scholar
  3. Y. Alibert, O. Mousis, Formation of Titan in Saturn’s subnebula: constraints from Huygens probe measurements. Astron. Astrophys. 465, 1051–1060 (2007) CrossRefADSGoogle Scholar
  4. Y. Alibert, O. Mousis, C. Mordasini, W. Benz, Jupiter and Saturn formation models. Bull. Am. Astron. Soc. 37, 673 (2005) ADSGoogle Scholar
  5. P. Artymowicz, On the formation of eccentric superplanets, in Brown Dwarfs and Extrasolar Planets, ed. by R. Rebolo, E.L. Martin, M.R. Zapatero Osorio. ASP Conference Series, vol. 134 (Astronomical Society of the Pacific, San Francisco, 1998), pp. 152–161 Google Scholar
  6. D. Banfield, N. Murray, A dynamical history of the inner Neptunian satellites. Icarus 99, 390–401 (1992) CrossRefADSGoogle Scholar
  7. A.P. Boss, Protostellar formation in rotating interstellar clouds. I—Numerical methods and tests. Astrophys. J. 236, 619–627 (1980) CrossRefADSGoogle Scholar
  8. R.M. Canup, W.R. Ward, Formation of the Galilean satellites: Conditions of accretion. Astron. J. 124, 3404–3423 (2002) CrossRefADSGoogle Scholar
  9. R.M. Canup, W.R. Ward, A common mass scaling for satellite systems of gaseous planets. Nature 441, 834–839 (2006) CrossRefADSGoogle Scholar
  10. A. Coradini, G. Magni, Structure of the satellitary accretion disk of Saturn. Icarus 59, 376–391 (1984) CrossRefADSGoogle Scholar
  11. G. D’Angelo, T. Henning, W. Kley, Nested-grid calculations of disk-planet interaction. Astron. Astrophys. 385, 647–670 (2002) CrossRefADSGoogle Scholar
  12. Dalton et al., Space Sci. Rev. (2010, this issue) Google Scholar
  13. T. Encrenaz, The chemical atmospheric composition of the giant planets. Earth Moon Planets 67, 77–87 (1994) CrossRefADSGoogle Scholar
  14. R. Greenberg, The dynamics of Uranus satellites. Icarus 24, 325–332 (1975) CrossRefADSGoogle Scholar
  15. P. Goldreich, N. Murray, Y. Longaretti, D. Banfield, Neptune’s story. Science 245, 500–504 (1989) CrossRefADSGoogle Scholar
  16. P. Goldreich, Y. Lithwick, R. Sari, Final stages of planet formation. Astrophys. J. 614, 1024–1037 (2004) CrossRefGoogle Scholar
  17. T. Guillot, D.J. Stevenson, W.B. Hubbard, D. Saumon, The interior of Jupiter, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004), pp. 35–57 Google Scholar
  18. F. Hersant, D. Gautier, G. Tobie, I.J. Lunine, Interpretation of the carbon abundance in Saturn measured by Cassini. Planet. Space Sci. 56, 1103–1111 (2008) CrossRefADSGoogle Scholar
  19. K. Kornet, S. Wolf, M. Rozyczka, On the diversity of giant planets. Simulating the evolution of solids in protoplanetary disks. Planet. Space Sci. 55, 536–546 (2007) CrossRefADSGoogle Scholar
  20. L. Landau, E. Lifschitz, Mechanique des Fluides (Mir Editions, Moscow, 1971) Google Scholar
  21. J.J. Lissauer, Urey prize lecture: on the diversity of plausible planetary systems. Icarus 114, 217–236 (1995) CrossRefADSGoogle Scholar
  22. S.H. Lubow, G.I. Ogilvie, Secular interactions between inclined planets and a gaseous disk. Astrophys. J. 560, 997–1009 (2001) CrossRefADSGoogle Scholar
  23. J.I. Lunine, A. Coradini, D. Gautier, T.C. Owen, G. Wuchterl, The origin of Jupiter, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004), pp. 19–34 Google Scholar
  24. J.J. Lissauer, D.J. Stevenson, Formation of giant planets, in Protostars & Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (University of Arizona Press, Tucson, 2007), pp. 591–606 Google Scholar
  25. J.J. Lissauer, O. Hubickyj, G. D’Angelo, P. Bodenheimer, Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus 199, 338–350 (2009) CrossRefADSGoogle Scholar
  26. G. Magni, A. Coradini, Formation of Jupiter by nucleated instability. Planet. Space Sci. 52(5–6), 343–360 (2004) CrossRefADSGoogle Scholar
  27. A.B. Makalin, V.A. Dorofeeva, E.L. Ruskol, Modeling the protosatellite circum-Jovian accretion disk: An estimate of the basic parameters. Sol. Syst. Res. 33, 578 (1999) Google Scholar
  28. A.B. Makalkin, E.L. Ruskol, Gas dissipation from the Jupiter’s protosatellite disk. Astron. Vestn. 57, 545–554 (2003) Google Scholar
  29. H. Mizuno, Formation of the giant planets. Prog. Theor. Phys. 64, 544–557 (1980) CrossRefADSGoogle Scholar
  30. I. Mosqueira, P. Estrada, D. Turrini, Space Sci. Rev. (2010, this issue). doi:10.1007/s11214-009-9614-6
  31. O. Mousis, J.I. Lunine, C. Thomas, M. Pasek, U. Marbœuf, Y. Alibert, V. Ballenegger, D. Cordier, Y. Ellinger, F. Pauzat, S. Picaud, Clathration of volatiles in the solar nebula and implications for the origin of titan’s atmosphere. Astrophys. J. 691, 1780–1786 (2008) CrossRefADSGoogle Scholar
  32. J.B. Pollack, G. Consolmagno, Origin and evolution of the Saturn system, in Saturn, ed. by T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1984), p. 811 Google Scholar
  33. R.R. Rafikov, Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 648, 666–682 (2006) CrossRefADSGoogle Scholar
  34. H. Rauer, A. Hatzes, Extrasolar planets and planet formation. Planet. Space Sci. 55, 535 (2007) CrossRefADSGoogle Scholar
  35. E.L. Ruskol, The origin of Jovian and Saturnian satellites in accretion disks. Astron. Vestn. 40(6), 499–504 (2006) Google Scholar
  36. V.S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Nauka, Moscow, 1969), translation into English by the Israel Program for Scientific Translations, 1972, NASA TTF-677 Google Scholar
  37. N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973) ADSGoogle Scholar
  38. D.J. Stevenson, Formation of the giant planets. Planet. Space Sci. 30, 755–764 (1982) CrossRefADSGoogle Scholar
  39. D.J. Stevenson, Jupiter and its moons. Science 294, 71–72 (2001) CrossRefGoogle Scholar
  40. W.R. Ward, Survival of planetary systems. Astrophys. J. 482, L211–L214 (1997) CrossRefADSGoogle Scholar
  41. G. Wuchterl, Hydrodynamics of giant planet formation III: Saturn nucleated instability. Icarus 91, 5364 (1991) Google Scholar
  42. G. Wuchterl, The critical mass for protoplanets revisited—Massive envelopes through convection. Icarus 106, 323–338 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.INAF-IFSIRomeItaly
  2. 2.INAF-IASFRomeItaly

Personalised recommendations