Space Science Reviews

, Volume 150, Issue 1–4, pp 285–302 | Cite as

The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration

  • Stewart Nozette
  • Paul Spudis
  • Ben Bussey
  • Robert Jensen
  • Keith Raney
  • Helene Winters
  • Christopher L. Lichtenberg
  • William Marinelli
  • Jason Crusan
  • Michele Gates
  • Mark Robinson
Article

Abstract

The Miniature Radio Frequency (Mini-RF) system is manifested on the Lunar Reconnaissance Orbiter (LRO) as a technology demonstration and an extended mission science instrument. Mini-RF represents a significant step forward in spaceborne RF technology and architecture. It combines synthetic aperture radar (SAR) at two wavelengths (S-band and X-band) and two resolutions (150 m and 30 m) with interferometric and communications functionality in one lightweight (16 kg) package. Previous radar observations (Earth-based, and one bistatic data set from Clementine) of the permanently shadowed regions of the lunar poles seem to indicate areas of high circular polarization ratio (CPR) consistent with volume scattering from volatile deposits (e.g. water ice) buried at shallow (0.1–1 m) depth, but only at unfavorable viewing geometries, and with inconclusive results. The LRO Mini-RF utilizes new wideband hybrid polarization architecture to measure the Stokes parameters of the reflected signal. These data will help to differentiate “true” volumetric ice reflections from “false” returns due to angular surface regolith. Additional lunar science investigations (e.g. pyroclastic deposit characterization) will also be attempted during the LRO extended mission. LRO’s lunar operations will be contemporaneous with India’s Chandrayaan-1, which carries the Forerunner Mini-SAR (S-band wavelength and 150-m resolution), and bistatic radar (S-Band) measurements may be possible. On orbit calibration, procedures for LRO Mini-RF have been validated using Chandrayaan 1 and ground-based facilities (Arecibo and Greenbank Radio Observatories).

Keywords

Lunar Reconnaissance Orbiter Mini RF Lunar poles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Arnold, Ice in the lunar polar regions. J. Geophys. Res. 84, 5659–5668 (1979) CrossRefADSGoogle Scholar
  2. B. Butler, The migration of volatiles on the surfaces of Mercury and the Moon. J. Geophys. Res. 102, 19,283–19,291 (1997) ADSGoogle Scholar
  3. D.B. Campbell, B.A. Campbell, L.M. Carter, J.-L. Margot, N.J.S. Stacy, No evidence for thick deposits of ice at the lunar South Pole. Nature 443, 835–837 (2006) CrossRefADSGoogle Scholar
  4. R.C. Elphic, V.R. Eke, L. Teodoro, D.J. Lawrence, D.B.J. Bussey, Models of the distribution and abundance of hydrogen at the lunar South Pole. Geophys. Res. Lett. 34, L13204 (2007). doi:10.1029/2007GL029954 CrossRefADSGoogle Scholar
  5. W.C. Feldman, S. Maurice, A.B. Binder, B.L. Barraclough, R.C. Elphic, D.J. Lawrence, Fluxes of fast and epithermal neutrons from lunar prospector: evidence for water ice at the lunar poles. Science 281, 1496–1500 (1998) CrossRefADSGoogle Scholar
  6. W.C. Feldman, D.J. Lawrence, R.C. Elphic, B.L. Barraclough, S. Maurice, I. Genetay, A.B. Binder, Polar hydrogen deposits on the Moon. J. Geophys. Res. 105(E2), 4175–4195 (2000) CrossRefADSGoogle Scholar
  7. J.K. Harmon, M.A. Slade, Radar mapping of Mercury: Full-disk Doppler delay images. Science 258, 640–643 (1992) CrossRefADSGoogle Scholar
  8. M.I. Mishchenko, Polarization characteristics of the coherent backscatter opposition effect. Earth Moon Planets 58, 127–144 (1992) CrossRefADSGoogle Scholar
  9. H. Noda, H. Araki, S. Goossens, Y. Isihara, K. Matsumoto, S. Tazawa, S. Sasaki, N. Kawano, S. Sasaki, Illumination conditions at the lunar polar regions by Kaguya (SELENE) laser altimeter. Geophys. Res. Lett. 35, L24203 (2008). doi:10.1029/2008GL035692 CrossRefADSGoogle Scholar
  10. S. Nozette, C. Lichtenberg, P.D. Spudis, R. Bonner, W. Ort, E. Malaret, M. Robinson, E.M. Shoemaker, The Clementine bistatic radar experiment. Science 274, 1495–1498 (1996) CrossRefADSGoogle Scholar
  11. S. Nozette, E.M. Shoemaker, P.D. Spudis, C.L. Lichtenberg, The possibility of ice on the Moon. Science 278, 144–145 (1997) CrossRefGoogle Scholar
  12. S. Nozette, P.D. Spudis, M. Robinson, D.B.J. Bussey, C. Lichtenberg, R. Bonner, Integration of lunar polar remote-sensing data sets: Evidence for ice at the lunar South Pole. J. Geophys. Res. 106(E19), 23253–23266 (2001) CrossRefADSGoogle Scholar
  13. R.K. Raney, Hybrid-polarity SAR architecture. IEEE Trans. Geosci. Remote Sens. 45, 3397–3404 (2007) CrossRefADSGoogle Scholar
  14. R.A. Simpson, G.L. Tyler, Reanalysis of Clementine bistatic radar data for the lunar South Pole. J. Geophys. Res. 104, 3845–3862 (1999) CrossRefADSGoogle Scholar
  15. P.D. Spudis, Ice on the Moon. Space Rev. (2006). http://www.thespacereview.com/article/740/1
  16. P. Spudis, S. Nozette, B. Bussey, K. Raney, H. Winters, C.L. Lichtenberg, W.M. Marinelli, J.C. Crusan, M.M. Gates, Mini-SAR: An imaging radar experiment for the Chandrayaan-1 mission to the Moon. Curr. Sci. (India) 96, 533–539 (2009) Google Scholar
  17. N.J.S. Stacy, High-resolution synthetic aperture radar observations of the moon. Ph.D. dissertation, Cornell University, Ithaca, NY (1993) Google Scholar
  18. N.J.S. Stacy, D.B. Campbell, P.G. Ford, Arecibo radar mapping of the lunar poles: A search for ice deposits. Science 276, 1527–1530 (1997) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Stewart Nozette
    • 1
  • Paul Spudis
    • 1
  • Ben Bussey
    • 2
  • Robert Jensen
    • 2
  • Keith Raney
    • 2
  • Helene Winters
    • 2
  • Christopher L. Lichtenberg
    • 3
  • William Marinelli
    • 4
  • Jason Crusan
    • 4
  • Michele Gates
    • 4
  • Mark Robinson
    • 5
  1. 1.Lunar and Planetary InstituteHoustonUSA
  2. 2.Applied Physics LaboratoryLaurelUSA
  3. 3.Naval Air Warfare CenterChina LakeUSA
  4. 4.National Aeronautics and Space AdministrationWashingtonUSA
  5. 5.Arizona State UniversityTempeUSA

Personalised recommendations