Space Science Reviews

, Volume 148, Issue 1–4, pp 71–104 | Cite as

Towards a One Percent Measurement of Frame Dragging by Spin with Satellite Laser Ranging to LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models

  • Ignazio Ciufolini
  • Antonio Paolozzi
  • Erricos C. Pavlis
  • John C. Ries
  • Rolf Koenig
  • Richard A. Matzner
  • Giampiero Sindoni
  • Hans Neumayer


During the past century Einstein’s theory of General Relativity gave rise to an experimental triumph; however, there are still aspects of this theory to be measured or more accurately tested. Today one of the main challenges in experimental gravitation, together with the direct detection of gravitational waves, is the accurate measurement of the gravitomagnetic field generated by the angular momentum of a body. Here, after a brief introduction on frame-dragging, gravitomagnetism and Lunar Laser Ranging tests, we describe the past measurements of frame-dragging by the Earth spin using the satellites LAGEOS, LAGEOS 2 and the Earth’s gravity models obtained by the GRACE project. We demonstrate that these measurements have an accuracy of approximately 10%.

We then describe the LARES experiment to be launched in 2010 by the Italian Space Agency for a measurement of frame-dragging with an accuracy of a few percent.

We finally demonstrate that a number of claims by a single individual, that the error budget of the frame-dragging measurements with LAGEOS-LAGEOS 2 and LARES has been underestimated, are indeed ill-founded.

General Relativity Frame-dragging Gravitomagnetism Lense-Thirring effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.I. Andrès et al., Spin axis behavior of the LAGEOS satellites. J. Geophys. Res. 109, B06403–1-12 (2004) CrossRefGoogle Scholar
  2. N. Ashby, B. Shahid-Saless, Geodetic precession or dragging of inertial frames? Phys. Rev. D 42, 1118–1122 (1990) CrossRefADSGoogle Scholar
  3. B.M. Barker, R.F. O’Connel, The gravitational interaction: Spin, rotation, and quantum effects – A review. Gen. Relativ. Gravit. 11, 149–175 (1979) CrossRefADSGoogle Scholar
  4. P.L. Bender et al., The lunar laser ranging experiment. Science 182, 229–238 (1973) CrossRefADSGoogle Scholar
  5. B. Bertotti, I. Ciufolini, P.L. Bender, New test of general relativity: measurement of de Sitter geodetic precession rate for lunar perigee. Phys. Rev. Lett. 58, 1062–1065 (1987) CrossRefMathSciNetADSGoogle Scholar
  6. P.E. Ciddor, Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 35(9), 1566–1573 (1996) CrossRefADSGoogle Scholar
  7. I. Ciufolini, Theory and experiments in General Relativity and other metric theories, Ph.D. Dissertation, Univ. of Texas, Austin, Pub. Ann Arbor, Michigan, 1984 Google Scholar
  8. I. Ciufolini, Measurement of the Lense-Thirring drag on high-altitude laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986) CrossRefADSGoogle Scholar
  9. I. Ciufolini, A comprehensive introduction to the Lageos gravitomagnetic experiment: from the importance of the gravitomagnetic field in physics to preliminary error analysis and error budget. Int. J. Mod. Phys. A 4, 3083–3145 (1989); see also Tapley et al. (1989) CrossRefADSGoogle Scholar
  10. I. Ciufolini, Gravitomagnetism and status of the LAGEOS III experiment. Class. Quantum Gravity 11, A73–A81 (1994) CrossRefADSGoogle Scholar
  11. I. Ciufolini, On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cim. A 109, 1709–1720 (1996) CrossRefADSGoogle Scholar
  12. I. Ciufolini, The 1995–99 measurements of the Lense-Thirring effect using laser-ranged satellites. Class. Quantum Gravity 17, 2369–2380 (2000) CrossRefADSzbMATHGoogle Scholar
  13. I. Ciufolini, in Proceedings of the I SIGRAV School on General Relativity and Gravitation, Frascati (Rome), September 2002, IOP, Bristol (2005), pp. 27–69 Google Scholar
  14. I. Ciufolini, On the orbit of the LARES satellite (2006). arXiv:gr-qc/0609081v1
  15. I. Ciufolini, Dragging of inertial frames. Nature 449, 41–48 (2007a) CrossRefADSGoogle Scholar
  16. I. Ciufolini, A. Paolozzi, G. Sindoni, E.C. Pavlis, A. Gabrielli, Scientific Aspects of LARES mission, Proc. International Astronautical Congress 09.B4.2.9, Daejeon, Republic of Korea, 12–16 October 2009 (2009a) Google Scholar
  17. I. Ciufolini, Frame-dragging, gravitomagnetism and lunar laser ranging. New Astron. (2009b). doi: 10.1016/j.newast.2009.08.004 Google Scholar
  18. I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004) CrossRefADSGoogle Scholar
  19. I. Ciufolini, E.C. Pavlis, On the measurement of the Lense-Thirring effect using the nodes of the LAGEOS satellites, in reply to “On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites” by L. Iorio. New Astron. 10(8), 636–651 (2005) CrossRefADSGoogle Scholar
  20. I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton Univ. Press, Princeton, 1995) zbMATHGoogle Scholar
  21. I. Ciufolini et al., ASI-NASA Study on LAGEOS III, CNR, Rome, Italy, 1989 Google Scholar
  22. I. Ciufolini et al., Effect of particle drag on the LAGEOS node and measurement of the gravitomagnetic field. Nuovo Cim. B 105, 573–588 (1990) CrossRefADSGoogle Scholar
  23. I. Ciufolini, F. Chieppa, D. Lucchesi, F. Vespe, Test of Lense-Thirring orbital shift due to spin. Class. Quantum Gravity 14, 2701–2726 (1997a) CrossRefMathSciNetADSzbMATHGoogle Scholar
  24. I. Ciufolini, D. Lucchesi, F. Vespe, F. Chieppa, Measurement of gravitomagnetism. Europhys. Lett. 39, 359–364 (1997b) CrossRefADSGoogle Scholar
  25. I. Ciufolini, A. Paolozzi et al., LARES phase. A study for the Italian Space Agency, 1998a Google Scholar
  26. I. Ciufolini, E.C. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Perez-Mercader, Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science 279, 2100–2103 (1998b) CrossRefADSGoogle Scholar
  27. I. Ciufolini et al., Italian Space Agency Phase A Report on LARES, Italian Space Agency, ASI, Rome, 1998c Google Scholar
  28. I. Ciufolini et al., INFN study on LARES/WEBER-SAT, 2004 Google Scholar
  29. I. Ciufolini, E.C. Pavlis, R. Peron, Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 11, 527–550 (2006) CrossRefADSGoogle Scholar
  30. I. Ciufolini et al., Gravitomagnetism and its measurement with laser ranging to the LAGEOS satellites and GRACE Earth gravity models, in General Relativity and John Archibald Wheeler: Frame-Dragging, Gravitational-Waves and Gravitational Tests, ed. by I. Ciufolini, R. Matzner (Springer, Berlin, 2010a) Google Scholar
  31. I. Ciufolini et al., The LARES space experiment: LARES orbit, error analysis and satellite structure, in General Relativity and John Archibald Wheeler: Frame-Dragging, Gravitational-Waves and Gravitational Tests, ed. by I. Ciufolini, R. Matzner (Springer, Berlin, 2010b) Google Scholar
  32. I. Ciufolini, A. Anselmo et al., Effect of particle drag in the LARES experiment (2009c, to be published) Google Scholar
  33. S.C. Cohen, P.J. Dunn, LAGEOS scientific results. J. Geophys. Res. B 90, 9215–9438 (1985) CrossRefADSGoogle Scholar
  34. L. Cugusi, E. Proverbio, Relativistic effects on the motion of Earth’s artificial satellites. Astron. Astrophys. 69, 321–325 (1978) ADSGoogle Scholar
  35. W. Cui, S.N. Zhang, W. Chen, Evidence for frame dragging around spinning black holes in X-ray binaries. Astrophys. J. 492, L53–L58 (1998) CrossRefADSGoogle Scholar
  36. G. Felici, The meaning of systematic errors, a comment to “Reply to On the systematic errors in the Detection of the Lense-Thirring effect with a Mars orbiter”, by L. Iorio (2007). arXiv:gr-qc/0703020v1
  37. R.S. Gross, Combinations of Earth orientation measurements: SPACE94, COMB94, and POLE94. J. Geophys. Res. 101(B4), 8729–8740 (1996) CrossRefADSGoogle Scholar
  38. G.C. Hulley, E.C. Pavlis, A ray-tracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal refractivity gradients. J. Geophys. Res. 112, B06417–1-19 (2007). doi: 10.1029/2006JB004834 CrossRefGoogle Scholar
  39. International Earth Rotation Service (IERS) Annual Report, 1996. Observatoire de Paris, Paris, July 1997 Google Scholar
  40. L. Iorio, On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites. New Astron. 10, 603–615 (2005a) CrossRefADSGoogle Scholar
  41. L. Iorio, The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect with a new satellite. New Astron. 10, 616–635 (2005b) CrossRefADSGoogle Scholar
  42. L. Iorio, Evidence of the gravitomagnetic field of Mars. Class. Quantum Gravity 23, 5451–5454 (2006) CrossRefADSzbMATHGoogle Scholar
  43. L. Iorio, On some critical issues of the LAGEOS/LAGEOS II Lense-Thirring experiment (2007). arXiv:0710.1022v1 [gr-qc]
  44. L. Iorio, On the impact of the atmospheric drag on the LARES mission. arXiv:0809.3564v2 (2008a); see also: arXiv:0809.3564v1
  45. L. Iorio, An assessment of the systematic uncertainty in present and future tests of the Lense-Thirring effect with satellite laser ranging (2008b). arXiv:0809.1373v2 [gr-qc]
  46. L. Iorio, Will the recently approved LARES mission be able to measure the Lense-Thirring effect at 1%? Gen. Relativ. Gravit. 41, 1717–1724 (2009). doi: 10.1007/s10714-008-0742-1; see also: arXiv:0803.3278v5 [gr-qc] CrossRefADSzbMATHGoogle Scholar
  47. W.M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966) Google Scholar
  48. A.R. Khan, R.F. O’Connell, Gravitational analogue of magnetic force. Nature 261, 480–481 (1976) CrossRefADSGoogle Scholar
  49. S.M. Kopeikin, Comment on “Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit”. Phys. Rev. Lett. 98, 229001–1 (2007) CrossRefADSGoogle Scholar
  50. K. Krogh, Iorio’s “high-precision measurement” of frame-dragging with the Mars Global Surveyor. Class. Quantum Gravity 24, 5709–5715 (2007) CrossRefADSGoogle Scholar
  51. D.M. Lucchesi, Reassessment of the error modelling of non-gravitational perturbations on LAGEOS 2 and their impact in the Lense-Thirring determination. Part I. Planet. Space Sci. 49, 447–463 (2001) CrossRefADSGoogle Scholar
  52. D.M. Lucchesi, Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense-Thirring determination. Part II. Planet. Space Sci. 50, 1067–1100 (2002) CrossRefADSGoogle Scholar
  53. D.M. Lucchesi, The impact of the even zonal harmonics secular variations on the Lense-Thirring effect measurement with the two Lageos satellites. Int. J. Mod. Phys. D 14, 1989–2023 (2005) CrossRefADSzbMATHGoogle Scholar
  54. D.M. Lucchesi, A. Paolozzi, A cost effective approach for LARES satellite, in XVI AIDAA, Palermo, September 2001, pp. 1–14. Paper no. 111 Google Scholar
  55. C.F. Martin, D.P. Rubincam, Effects of Earth albedo on the LAGEOS I satellite. J. Geophys. Res. 101(B2), 3215–3226 (1996) CrossRefADSGoogle Scholar
  56. V.B. Mendes, E.C. Pavlis, High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett. 31, L14602–1-5 (2004). doi: 10.1029/2004GL020308 CrossRefGoogle Scholar
  57. V.B. Mendes, G. Prates, E.C. Pavlis, D.E. Pavlis, R.B. Langley, Improved mapping functions for atmospheric re-fraction correction in SLR. Geophys. Res. Lett. 29, 1414–1-4 (2002). doi: 10.1029/2001GL014394 CrossRefGoogle Scholar
  58. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973) Google Scholar
  59. T.W. Murphy Jr., K. Nordtvedt, S.G. Turyshev, Phys. Rev. Lett. 98, 071102–1-4 (2007a) ADSGoogle Scholar
  60. T.W. Murphy Jr., K. Nordtvedt, S.G. Turyshev, Phys. Rev. Lett. 98, 229002–1 (2007b) ADSGoogle Scholar
  61. R. Noomen, S. Klosko, C. Noll, M. Pearlman (eds.), Toward Millimeter Accuracy in NASA CP 2003-212248. Proc. 13th Int. Laser Ranging Workshop (NASA Goddard, Greenbelt, 2003) Google Scholar
  62. K. Nordtvedt, Existence of the gravitomagnetic interaction. Int. J. Theor. Phys. 27, 1395–1404 (1988) CrossRefzbMATHGoogle Scholar
  63. K. Nordtvedt, LARES and tests on new long ranges forces, in LARES phase. A study for the Italian Space Agency (1998), pp. 34–38 Google Scholar
  64. R.F. O’Connell, A note on frame dragging. Class. Quantum Gravity 22, 3815–3816 (2005) CrossRefMathSciNetADSzbMATHGoogle Scholar
  65. A. Paolozzi, private communication (2005) Google Scholar
  66. E.C. Pavlis, Geodetic contributions to gravitational experiments in space, in Recent Developments in General Relativity, ed. by R. Cianci et al., Genoa, 2000 (Springer, Berlin), pp. 217–233 Google Scholar
  67. D.E. Pavlis et al., GEODYN Operations Manuals, Contractor Report, Raytheon, ITSS, Landover, MD, 1998 Google Scholar
  68. G.E. Peterson, Estimation of the Lense-Thirring precession using laser-ranged satellites, Ph.D. Dissertation, Univ. of Texas, Austin, 1997 Google Scholar
  69. Ch. Reigber, F. Flechtner, R. Koenig, U. Meyer, K. Neumayer, R. Schmidt, P. Schwintzer, S. Zhu, GRACE orbit and gravity field recovery at GFZ Potsdam----first experiences and perspectives. Eos. Trans. AGU 83(47) (2002). Fall Meet. Suppl., Abstract G12B-03 Google Scholar
  70. C. Reigber, R. Schmidt, F. Flechtner, R. Konig, U. Meyer, K.H. Neumayer, P. Schwintzer, S.Y. Zhu, J. Geodyn. 39, 1–10 (2005) CrossRefGoogle Scholar
  71. J.C. Ries, private communication (2005) Google Scholar
  72. J.C. Ries, Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite, Ph.D. dissertation, The University of Texas, Austin, 1989 Google Scholar
  73. J.C. Ries, R.J. Eanes, B.D. Tapley, Lense-Thirring precession determination from laser ranging to artificial satellites, in Nonlinear Gravitodynamics, the Lense-Thirring Effect, Proc. III William Fairbank Meeting (World Scientific, Singapore, 2003a), pp. 201–211 Google Scholar
  74. J.C. Ries, R.J. Eanes, B.D. Tapley, G.E. Peterson, Prospects for an improved Lense-Thirring test with SLR and the GRACE gravity mission, in Toward Millimeter Accuracy, Proc. 13th Int. Laser Ranging Workshop, Report NASA CP 2003-212248, NASA Goddard, Greenbelt, Maryland, 2003b Google Scholar
  75. J.C. Ries, R.J. Eanes, M.M. Watkins, Confirming the frame-dragging effect with satellite laser ranging, in 16th International Workshop on Laser Ranging, Poznan, Poland, 13–17 October 2008 Google Scholar
  76. D.P. Rubincam, General relativity and satellite orbits: the motion of a test particle in the Schwarzschild metric. Celest. Mech. 15, 21–33 (1977) CrossRefADSGoogle Scholar
  77. D.P. Rubincam, Yarkovsky Thermal Drag on LAGEOS. J. Geophys. Res. 93(B11), 13805–13810 (1988) CrossRefADSGoogle Scholar
  78. D.P. Rubincam, Drag on the LAGEOS satellite. J. Geophys. Res. B 95, 4881–4886 (1990) CrossRefADSGoogle Scholar
  79. D.P. Rubincam, A. Mallama, J. Geophys. Res. 100(B10), 20285–20990 (1995) CrossRefADSGoogle Scholar
  80. C. Schmid, Cosmological gravitomagnetism and Mach’s principle. Phys. Rev. D 74, 044031–1-18 (2006) CrossRefADSGoogle Scholar
  81. G. Sindoni, C. Paris, P. Ialongo, On the systematic errors in the detection of the Lense-Thirring effect with a Mars orbiter (2007). arXiv:gr-qc/0701141
  82. I.H. Stairs, S.E. Thorsett, Z. Arzoumanian, Measurement of gravitational spin-orbit coupling in a binary-pulsar system. Phys. Rev. Lett. 93, 141101–1-4 (2004) CrossRefADSGoogle Scholar
  83. B.D. Tapley, The GRACE mission: status and performance assessment. Eos. Trans. AGU 83(47) (2002). Fall Meet. Suppl., Abstract G12B-01 Google Scholar
  84. B.D. Tapley, J.C. Ries, R.J. Eanes, M.M. Watkins, NASA-ASI Study on LAGEOS III, CSR-UT publication n. CSR-89-3, Austin, Texas, 1989 Google Scholar
  85. B.D. Tapley, S. Bettadpur, M. Watkins, C. Reigber, The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 31, L09607–1-4 (2004) CrossRefGoogle Scholar
  86. B.D. Tapley, J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, S. Poole, The GGM03 mean Earth gravity model from GRACE, Eos Trans. AGU 88(52) (2007). Fall Meet.Suppl., Abstract G42A-03 Google Scholar
  87. K.S. Thorne, R.H. Price, D.A. Macdonald, The Membrane Paradigm (Yale Univ. Press, New Haven, 1986) Google Scholar
  88. R.A. Van Patten, C.W.F. Everitt, Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein’s General Theory of Relativity and improved measurements in geodesy. Phys. Rev. Lett. 36, 629–632 (1976) CrossRefADSGoogle Scholar
  89. M. Watkins, D. Yuan, W. Bertiger, G. Kruizinga, L. Romans, S. Wu, GRACE gravity field results from JPL. Eos. Trans. AGU 83(47) (2002). Fall Meet. Suppl., Abstract G12B-02 Google Scholar
  90. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972) Google Scholar
  91. J.M. Weisberg, J.H. Taylor, General relativistic geodetic spin precession in binary pulsar B1913+16: mapping the emission beam in two dimensions. Astrophys. J. 576, 942–949 (2002) CrossRefADSGoogle Scholar
  92. J.G. Williams, X.X. Newhall, J.O. Dickey, Relativity parameters determined from lunar laser ranging. Phys. Rev. D 53, 6730–6739 (1996) CrossRefADSGoogle Scholar
  93. J.G. Williams, S.G. Turyshev, D.H. Boggs, Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101–1-4 (2004a) ADSGoogle Scholar
  94. J.G. Williams, S.G. Turyshev, T.W. Jr. Murphy, Improving LLR tests of gravitational theory. Int. J. Mod. Phys. D 13, 567–582 (2004b) CrossRefADSzbMATHGoogle Scholar
  95. H. Yilmaz, Proposed test of the nature of gravitational interaction. Bull. Am. Phys. Soc. 4, 65 (1959) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ignazio Ciufolini
    • 1
  • Antonio Paolozzi
    • 2
  • Erricos C. Pavlis
    • 3
  • John C. Ries
    • 4
  • Rolf Koenig
    • 5
  • Richard A. Matzner
    • 6
  • Giampiero Sindoni
    • 2
  • Hans Neumayer
    • 5
  1. 1.University of Salento and INFN Sezione di LecceLecceItaly
  2. 2.Sapienza University of RomeScuola di Ingegneria AerospazialeRomaItaly
  3. 3.University of Maryland, Baltimore CountyBaltimoreUSA
  4. 4.Center for Space ResearchUniversity of Texas at AustinAustinUSA
  5. 5.GFZ German Research Centre for GeosciencesPotsdamGermany
  6. 6.Center for RelativityUniversity of Texas at AustinAustinUSA

Personalised recommendations