Space Science Reviews

, Volume 150, Issue 1–4, pp 243–284

CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission

  • H. E. Spence
  • A. W. Case
  • M. J. Golightly
  • T. Heine
  • B. A. Larsen
  • J. B. Blake
  • P. Caranza
  • W. R. Crain
  • J. George
  • M. Lalic
  • A. Lin
  • M. D. Looper
  • J. E. Mazur
  • D. Salvaggio
  • J. C. Kasper
  • T. J. Stubbs
  • M. Doucette
  • P. Ford
  • R. Foster
  • R. Goeke
  • D. Gordon
  • B. Klatt
  • J. O’Connor
  • M. Smith
  • T. Onsager
  • C. Zeitlin
  • L. W. Townsend
  • Y. Charara
Article

Abstract

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) characterizes the radiation environment to be experienced by humans during future lunar missions. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaTER investigation quantifies the linear energy transfer (LET) spectrum in these materials through direct measurements with the lunar space radiation environment, particularly the interactions of ions with energies above 10 MeV, which penetrate and are detected by CRaTER. Combined with models of radiation transport through materials, CRaTER LET measurements constrain models of the biological effects of ionizing radiation in the lunar environment as well as provide valuable information on radiation effects on electronic systems in deep space. In addition to these human exploration goals, CRaTER measurements also provide new insights on the spatial and temporal variability of the SEP and GCR populations and their interactions with the lunar surface. We present here an overview of the CRaTER science goals and investigation, including: an instrument description; observation strategies; instrument testing, characterization, and calibration; and data analysis, interpretation, and modeling plans.

LRO Galactic cosmic rays Solar energetic protons Radiation effects LET spectrum Lunar science 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Adams, M. Bhattacharya, Z.W. Lin, G. Pendleton, J.W. Watts, The ionizing radiation environment on the moon. Adv. Space Res. 40, 338–341 (2007) CrossRefADSGoogle Scholar
  2. G.D. Badhwar, M.J. Golightly, A. Konradi et al., In-flight radiation measurements on STS-60. Radiat. Meas. 26(1), 17–34 (1996) CrossRefGoogle Scholar
  3. J.B. Blake, J.F. Fennell, L.M. Friesen, B.M. Johnson, W.A. Kolasinski, D.J. Mabry, J.V. Osborn, S.H. Penzin, E.R. Schnauss, H.E. Spence, D.N. Baker, R. Belian, T.A. Fritz, W. Ford, B. Laubscher, R. Stiglich, R.A. Baraze, M.F. Hilsenrath, W.L. Imhof, J.R. Kilner, J. Mobilia, H.D. Voss, A. Korth, M. Güll, K. Fischer, M. Grande, D. Hall, CEPPAD: comprehensive energetic particle and pitch angle distribution experiment on POLAR. Space Sci. Rev. 71, 531 (1995) CrossRefADSGoogle Scholar
  4. H.V. Cane, D. Lario, An introduction to CMEs and energetic particles. Space Sci. Rev. 123, 45–56 (2006) CrossRefADSGoogle Scholar
  5. A.W. Case, H.E. Spence, M.J. Owens, P. Riley, D. Odstrcil, Ambient solar wind’s effect on ICME transit times. Geophys. Res. Lett. 35, L15105 (2008). doi:10.1029/2008GL034493 CrossRefADSGoogle Scholar
  6. E.W. Cascio, J.M. Sisterson, J.B. Flanz, M.S. Wagner, The proton irradiation program at the Northeast Proton Therapy Center, in NSREC Proceedings (2003) Google Scholar
  7. E.W. Cascio, J.M. Sisterson, B. Gottschalk, S. Sarkar, Measurements of the energy spectrum of degraded proton beams at NPTC, in NSREC Proceedings (2004) Google Scholar
  8. Y.M. Charara, Characterization of the cosmic ray telescope for the effects of radiation (CRaTER) detector. PhD Dissertation, The University of Tennessee, Knoxville, Tennessee, December 2008 Google Scholar
  9. D. Clack, J.C. Kasper, A.J. Lazarus, J.T. Steinberg, W.M. Farrell, Wind observations of extreme ion temperature anisotropies in the lunar wake. Geophys. Res. Lett. 31, 6 (2004) CrossRefGoogle Scholar
  10. J.E. Colwell, S. Batiste, M. Horányi, S. Robertson, S. Sture, Lunar surface: dust dynamics and regolith mechanics. Rev. Geophys. 45, RG2006 (2007). doi:10.1029/2005RG000184 CrossRefADSGoogle Scholar
  11. M.J. Golightly, K. Hardy, W. Quam, Radiation-dosimetry measurements during US space-shuttle missions with the RME-III. Radiat. Meas. 23(1), 25–42 (1994) CrossRefGoogle Scholar
  12. J.S. Halekas, G.T. Delory, D.A. Brain, R.P. Lin, M.O. Fillingim, C.O. Lee, R.A. Mewaldt, T.J. Stubbs, W.M. Farrell, M.K. Hudson, Extreme lunar surface charging during solar energetic particle events. Geophys. Res. Lett. 34, L02111 (2007). doi:10.1029/2006GL028517 CrossRefGoogle Scholar
  13. C.-L. Huang, H.E. Spence, B.T. Kress, Assessing access of galactic cosmic rays at Moon’s orbit. Geophys. Res. Lett. 36, L09109 (2009). doi:10.1029/2009GL037916 CrossRefGoogle Scholar
  14. A.J. Jordan, H.E. Spence, J.B. Blake, T. Mulligan, D. Shaul, M. Galametz, Multipoint, high time resolution galactic cosmic ray observations associated with two interplanetary coronal mass ejections. J. Geophys. Res. 114, A07107 (2009). doi:10.1029/2008JA013891 CrossRefGoogle Scholar
  15. Y. Kim, J.W. Wilson, S.A. Thibeault, J.E. Nealy, F.F. Badavi, R.L. Kiefer, Performance study of galactic cosmic ray shield materials, NASA Technical Paper 3473, November 1994 Google Scholar
  16. J.G. Luhmann et al., STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117–184 (2007) CrossRefADSGoogle Scholar
  17. J.E. Mazur, G.M. Mason, J.R. Dwyer, J. Giacalone, J.R. Jokipii, E.C. Stone, Interplanetary magnetic field line mixing deduced from impulsive solar flare particles. Astrophys. J. 532, L79 (2000) CrossRefADSGoogle Scholar
  18. R.A. Mewaldt, Solar energetic particle composition, energy spectra, and space weather. Space Sci. Rev. 124, 303–316 (2006) CrossRefADSGoogle Scholar
  19. I.G. Mitrofanov et al., Lunar exploration neutron detector for NASA’S lunar reconnaissance orbiter project. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9608-4 Google Scholar
  20. T. Mulligan, J.B. Blake, D. Shaul, J.J. Quenby, R.A. Leske, R.A. Mewaldt, M. Galametz, Short-period variability in the galactic cosmic ray intensity: high statistical resolution observations and interpretation around the time of a Forbush decrease in August 2006. J. Geophys. Res. 114, A07105 (2009). doi:10.1029/2008JA013783 CrossRefGoogle Scholar
  21. A.J. Owens, J.R. Jokipii, Interplanetary scintillations of cosmic rays, 502. Astrophys. J. 181, L147–L150 (1973) CrossRefADSGoogle Scholar
  22. J.J. Quenby, T. Mulligan, J.B. Blake, J.E. Mazur, D. Shaul, Local and nonlocal geometry of interplanetary coronal mass ejections: Galactic cosmic ray (GCR) short-period variations and magnetic field modeling. J. Geophys. Res. 113, A10102 (2008). doi:10.1029/2007JA012849 CrossRefADSGoogle Scholar
  23. R. Saunders, R. Arvidson, G. Badhwar et al., Mars Odyssey mission summary. Space Sci. Rev. 110, 1–36 (2004) CrossRefADSGoogle Scholar
  24. H.E. Spence, M.G. Kivelson, The variation of the plasma sheet polytropic index along the midnight meridian in a finite width tail. Geophys. Res. Lett. 17(5), 591–594 (1990) CrossRefADSGoogle Scholar
  25. E.C. Stone, C.M.S. Cohen, W.R. Cook, A.C. Cummings, B. Gauld et al., The cosmic-ray isotope spectrometer for the advanced composition explorer. Space Sci. Rev. 86, 285–356 (1998) CrossRefADSGoogle Scholar
  26. T.J. Stubbs, R.R. Vondrak, W.M. Farrell, A dynamic fountain model for lunar dust. Adv. Space Res. 37(1), 59–66 (2006) CrossRefADSGoogle Scholar
  27. T.J. Stubbs, R.R. Vondrak, W.M. Farrell, Impact of dust on lunar exploration, in Proceedings of Dust in Planetary Systems 2005, ed. by H. Kruger, A. Graps (Eur. Space Agency Spec. Publ., 2007) Google Scholar
  28. L.W. Townsend, T.M. Miller, T.A. Gabriel, HETC radiation transport code development for cosmic ray shielding applications in space. Radiat. Protect. Dosimetry 116(1–4), 135–139 (2005) CrossRefGoogle Scholar
  29. W.R. Webber, J.A. Lezniak, The comparative spectra of cosmic-ray protons and helium nuclei. Astrophys. Space Sci. 30, 361–380 (1974) CrossRefADSGoogle Scholar
  30. J.W. Wilson, F.F. Badavi, F.A. Cucinotta, J.L. Shinn, G.D. Badhwar, R. Silberberg, C.H. Tsao, L.W. Townsend, R.K. Tripathi, HZETRN: Description of a free-space ion and nucleon transport and shielding computer program. NASA Technical Paper 3495, US Government Printing Office, Washington, DC, 1995 Google Scholar
  31. R.M. Winglee, E.M. Harnett, Radiation mitigation at the moon by the terrestrial magnetosphere, Geophys. Res. Lett. 34 (2007). doi:10.1029/2007GL030507
  32. W.-M. Yao et al., Review of particle physics. J. Phys. G: Nucl. Part. Phys. 33, 1–1232 (2006). doi:10.1088/0954-3899/33/1/001 CrossRefADSGoogle Scholar
  33. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, vol. 1 (Pergamon Press, New York, 1984) Google Scholar
  34. H.A. Zook, J.E. McCoy, Large scale lunar horizon glow and a high altitude lunar dust exosphere. Geophys. Res. Lett. 18(11), 2117–2120 (1991) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • H. E. Spence
    • 1
  • A. W. Case
    • 1
  • M. J. Golightly
    • 1
  • T. Heine
    • 1
  • B. A. Larsen
    • 1
  • J. B. Blake
    • 2
  • P. Caranza
    • 2
  • W. R. Crain
    • 2
  • J. George
    • 2
  • M. Lalic
    • 2
  • A. Lin
    • 2
  • M. D. Looper
    • 2
  • J. E. Mazur
    • 2
  • D. Salvaggio
    • 2
  • J. C. Kasper
    • 3
  • T. J. Stubbs
    • 4
  • M. Doucette
    • 5
  • P. Ford
    • 5
  • R. Foster
    • 5
  • R. Goeke
    • 5
  • D. Gordon
    • 5
  • B. Klatt
    • 5
  • J. O’Connor
    • 5
  • M. Smith
    • 5
  • T. Onsager
    • 6
  • C. Zeitlin
    • 7
  • L. W. Townsend
    • 8
  • Y. Charara
    • 8
  1. 1.Boston UniversityBostonUSA
  2. 2.The Aerospace CorporationEl SegundoUSA
  3. 3.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  4. 4.University of Maryland, Baltimore CountyBaltimoreUSA
  5. 5.Massachusetts Institute of TechnologyCambridgeUSA
  6. 6.NOAA Spaceweather Prediction CenterBoulderUSA
  7. 7.Southwest Research InstituteSan AntonioUSA
  8. 8.University of TennesseeKnoxvilleUSA

Personalised recommendations