Space Science Reviews

, Volume 152, Issue 1–4, pp 391–421 | Cite as

Induced Magnetic Fields in Solar System Bodies

  • Joachim Saur
  • Fritz M. Neubauer
  • Karl-Heinz Glassmeier


Electromagnetic induction is a powerful technique to study the electrical conductivity of the interior of the Earth and other solar system bodies. Information about the electrical conductivity structure can provide strong constraints on the associated internal composition of planetary bodies. Here we give a review of the basic principles of the electromagnetic induction technique and discuss its application to various bodies of our solar system. We also show that the plasma environment, in which the bodies are embedded, generates in addition to the induced magnetic fields competing plasma magnetic fields. These fields need to be treated appropriately to reliably interpret magnetic field measurements in the vicinity of solar system bodies. Induction measurements are particularly important in the search for liquid water outside of Earth. Magnetic field measurements by the Galileo spacecraft provide strong evidence for a subsurface ocean on Europa and Callisto. The induction technique will provide additional important constraints on the possible subsurface water, when used on future Europa and Ganymede orbiters. It can also be applied to probe Enceladus and Titan with Cassini and future spacecraft.

Electromagnetic induction Magnetic fields Solar system bodies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.H. Acuña, N.F. Ness, The magnetic field of Saturn–Pioneer 11 observations. Science 207, 444–446 (1980) ADSCrossRefGoogle Scholar
  2. B.J. Anderson, M.H. Acuña, D.A. Lohr, J. Scheifele, A. Raval, H. Korth, J.A. Slavin, The magnetometer instrument on MESSENGER. Space Sci. Rev. 131, 417–450 (2007). doi: 10.1007/s11214-007-9246-7 ADSCrossRefGoogle Scholar
  3. B.J. Anderson, M.H. Acuña, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt, The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82 (2008). doi: 10.1126/science.1159081 ADSCrossRefGoogle Scholar
  4. J.D. Anderson, G. Schubert, R.A. Jacobson, E.L. Lau, W.B. Moore, W.L. Sjogren, Europa’s differentiated internal structure: Inferences from four Galileo encounters. Science 281, 2019–2022 (1998) ADSCrossRefGoogle Scholar
  5. C. Arridge, N. Andre, N. Achilleos, et al., Thermal electron periodicities at 20rs in Saturn’s magnetosphere. Geophys. Res. Lett. 35, 15 (2008) Google Scholar
  6. H. Backes, et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992–995 (2005) ADSCrossRefGoogle Scholar
  7. W. Baumjohann, R.A. Treumann, Basic Space Plasma Physics (Imperial College Press, London, 1996) Google Scholar
  8. J.L. Blank, W.R. Sill, Response of the Moon to the time-varying interplanetary magnetic field. J. Geophys. Res. 74, 736–743 (1969). doi: 10.1029/JA074i003p00736 ADSCrossRefGoogle Scholar
  9. J.E.P. Connerney, M.H. Acuna, N.F. Ness, T. Satoh, New models of Jupiter’s magnetic field constrained by the Io Flux Tube footprint. J. Geophys. Res. 103, 11929–11939 (1998) ADSCrossRefGoogle Scholar
  10. S. Constable, C. Constable, Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity. Geochem. Geophys. Geosyst. 5 (2004). doi: 10.1029/2003GC000634
  11. T.E. Cravens, et al., Titan’s ionosphere: Model comparisons with Cassini Ta data. Geophys. Res. Lett. 32, 12108 (2005) ADSCrossRefGoogle Scholar
  12. M.K. Dougherty, N. Achilleos, N. Andre, C.S.A.A. Balogh, C. Bertucci, et al., Cassini magnetometer observations during Saturn orbit insertion. Science 307, 1266–1270 (2005) ADSCrossRefGoogle Scholar
  13. M.K. Dougherty, K.K. Khurana, F.M. Neubauer, C.T. Russell, J. Saur, J.S. Leisner, M. Burton, Identification of a dynamic atmosphere at Enceladus with the Cassini Magnetometer. Science 311, 1406 (2006) ADSCrossRefGoogle Scholar
  14. P. Dyal, D.I. Gordon, Lunar surface magnetometers. IEEE Trans. Magn. 9, 226–231 (1973). doi: 10.1109/TMAG.1973.1067650 ADSCrossRefGoogle Scholar
  15. P. Dyal, C.W. Parkin, Global electromagnetic induction in the Moon and planets. Phys. Earth Planet. Inter. 7, 251–265 (1973). doi: 10.1016/0031-9201(73)90052-6 ADSCrossRefGoogle Scholar
  16. P. Dyal, C.W. Parkin, D. W.D., Magnetism and the interior of the moon. Rev. Geophys. Space Phys. 12, 568–591 (1975) ADSCrossRefGoogle Scholar
  17. S. Espinosa, M. Dougherty, Periodic perturbations in Saturn’s magnetic field. Geophys. Res. Lett. 27, 2785–2788 (2000) ADSCrossRefGoogle Scholar
  18. S. Espinosa, D. Southwood, M. Dougherty, How can Saturn impose its rotation period in a noncorotating magnetosphere? J. Geophys. Res. 108, 11–1 (2003) Google Scholar
  19. L.W. Esposito, J.E. Colwell, K. Larsen, et al., Ultraviolet imaging spectroscopy shows an active Saturnian system. Science 307, 1251 (2005) ADSCrossRefGoogle Scholar
  20. F.P. Fanale, Y.P. Li, E. Decarlo, C. Farley, S. Sharma, K. Horton, An experimental estimate of Europa’s “ocean” composition independent of Galileo orbital remote sensing. J. Geophys. Res. 106, 14595–14600 (2001) ADSCrossRefGoogle Scholar
  21. G. Giampieri, M. Dougherty, C.T. Smith, E.J. Russell, A regular period for Saturn’s magnetic field that may track its internal rotation. Nature 441, 62–64 (2006) ADSCrossRefGoogle Scholar
  22. K.H. Glassmeier, H.U. Auster, U. Motschmann, A feedback dynamo generating Mercury’s magnetic field. Geophys. Res. Lett. 34, 22201–22205 (2007a). doi: 10.1029/2007GL031662 ADSCrossRefGoogle Scholar
  23. K.H. Glassmeier, J. Grosser, U. Auster, D. Constantinescu, Y. Narita, S. Stellmach, Electromagnetic induction effects and dynamo action in the Hermean system. Space Sci. Rev. 132, 511–527 (2007b). doi: 10.1007/s11214-007-9244-9 ADSCrossRefGoogle Scholar
  24. K.H. Glassmeier, H. Auster, D. Heyner, K. Okrafka, C. Carr, G. Berghofer, B.J. Anderson, A. Balogh, W. Baumjohann, P.J. Cargill, U. Christensen, M. Delva, M. Dougherty, K. Fornaçon, T.S. Horbury, E.A. Lucek, W. Magnes, M. Mandea, A. Matsuoka, M. Matsushima, U. Motschmann, R. Nakamura, Y. Narita, I. Richter, K. Schwingenschuh, H. Shibuya, J.A. Slavin, C. Sotin, B. Stoll, H. Tsunakawa, S. Vennerstrom, J. Vogt, T. Zhang, The fluxgate magnetometer of the BepiColombo planetary orbiter. Planet. Space Sci. (2009) Google Scholar
  25. O. Grasset, C. Sotin, F. Deschamps, On the internal structure and dynamics of titan. Planet. Space Sci. 48, 617–636 (2000) ADSCrossRefGoogle Scholar
  26. P.M. Grindrod, A.D. Fortes, F. Nimmo, et al., The long-term stability of a possible aqueous ammonium sulfate ocean inside titan. Icarus 197, 137–151 (2008) ADSCrossRefGoogle Scholar
  27. J. Grosser, K.H. Glassmeier, A. Stadelmann, Induced magnetic field effects at planet Mercury. Planet. Space Sci. 52, 1251–1260 (2004). doi: 10.1016/j.pss.2004.08.005 ADSCrossRefGoogle Scholar
  28. D.A. Gurnett, W.S. Kurth, A. Roux, S.J. Bolton, C.F. Kennel, Galileo plasma wave observations in the Io plasma torus and near Io. Science 274, 391–392 (1996) ADSCrossRefGoogle Scholar
  29. D.A. Gurnett, et al., The variable rotation period of the inner region of Saturn’s plasma disk. Science 316, 442–445 (2007) ADSCrossRefGoogle Scholar
  30. D.T. Hall, D.F. Strobel, P.D. Feldman, M.A. McGrath, H.A. Weaver, Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373(6516), 677–679 (1995) ADSCrossRefGoogle Scholar
  31. K.P. Hand, C.F. Chyba, Empirical constraints on the salinity of the European ocean and implications for a thin ice shell. Icarus 189, 424–438 (2007) ADSCrossRefGoogle Scholar
  32. C.J. Hansen, et al., Enceladus’ water vapor plume. Science 311, 1422–1425 (2006) ADSCrossRefGoogle Scholar
  33. D. Heyner, D. Schmitt, J. Wicht, K.H. Glassmeier, H. Korth, U. Motschmann, Concerning the initial temporal evolution of a Hermean feedback dynamo. Earth Planet. Sci. Lett. (2009) Google Scholar
  34. B.A. Hobbs, L.L. Hood, F. Herbert, C.P. Sonett, An upper bound on the radius of a highly electrically conducting lunar core. J. Geophys. Res. 88, 97 (1983). doi: 10.1029/JB088iS01p00B97 ADSCrossRefGoogle Scholar
  35. L. Hood, G. Schubert, Inhibition of solar wind impingement on Mercury by planetary induction currents. J. Geophys. Res. 84, 2641–2647 (1979) ADSCrossRefGoogle Scholar
  36. L.L. Hood, F. Herbert, C.P. Sonett, The deep lunar electrical conductivity profile—Structural and thermal inferences. J. Geophys. Res. 87, 5311–5326 (1982). doi: 10.1029/JB087iB07p05311 ADSCrossRefGoogle Scholar
  37. R. Hunten, et al., Saturn (Univ. of Arizona Press, Tucson, 1984) Google Scholar
  38. T. Hurford, P. Helfenstein, G. Hoppa, R. Greenberg, B. Bills, Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447, 292–294 (2007) ADSCrossRefGoogle Scholar
  39. H. Hussmann, T. Spohn, K. Wieczerkowski, Thermal equilibrium states of Europa’s ice shell: Implications for internal ocean thickness and surface heat flow. Icarus 156, 143–151 (2002) ADSCrossRefGoogle Scholar
  40. H. Hussmann, F. Sohl, T. Spohn, Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-Neptunian objects. Icarus 185, 258–273 (2006) ADSCrossRefGoogle Scholar
  41. X. Jia, R. Walker, M. Kivelson, K. Khurana, J. Linker, Three-dimensional MHD simulations of Ganymede’s magnetosphere. J. Geophys. Res. 113, 06212 (2008) CrossRefGoogle Scholar
  42. J. Kargel, J. Kaye, J. Head, G. Marion, R. Sassen, O.P. Ballesteros, S. Grant, D. Hogenboom, Europa’s crust and ocean: Origin, composition and the prospects for life. Icarus 148, 368–390 (2000) CrossRefGoogle Scholar
  43. C. Keller, T.E. Cravens, L. Gan, One-dimensional multispecies hydrodynamic models of the ramside ionosphere of titan. J. Geophys. Res. 99, 6511–6525 (1994) ADSCrossRefGoogle Scholar
  44. A. Khan, J.A.D. Connolly, N. Olsen, K. Mosegaard, Constraining the composition and thermal state of the moon from an inversion of electromagnetic lunar day-side transfer functions. Earth Planet. Sci. Lett. 248, 579–598 (2006). doi: 10.1016/j.epsl.2006.04.008 ADSCrossRefGoogle Scholar
  45. K.K. Khurana, M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, C. Polanskey, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998) ADSCrossRefGoogle Scholar
  46. K.K. Khurana, M.G. Kivelson, C.T. Russell, Searching for liquid water in Europa by using surface observations. Astrobiol. J. 2, 93–103 (2002) ADSCrossRefGoogle Scholar
  47. K.K. Khurana, et al., The configuration of Jupiter’s magnetosphere, in Jupiter, ed. by F. Bagenal (Cambridge Univ. Press, Cambridge, 2004), pp. 593–616, Chap. 24 Google Scholar
  48. M.G. Kivelson, K.K. Khurana, R.J. Walker, C.T. Russell, J.A. Linker, D.J. Southwood, C. Polanskey, A magnetic signature at Io: Initial report from the Galileo magnetometer. Science 273, 337–340 (1996) ADSCrossRefGoogle Scholar
  49. M.G. Kivelson, K.K. Khurana, S. Joy, C.T. Russell, D.J. Southwood, R.J. Walker, C. Polanskey, Europa’s magnetic signature: Report from Galileo’s first pass on 19 December 1996. Science 276, 1239–1241 (1997) ADSCrossRefGoogle Scholar
  50. M.G. Kivelson, K.K. Khurana, D.J. Stevenson, L. Bennett, S. Joy, C.T. Russell, R.J. Walker, C. Zimmer, C. Polanskey, Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment. J. Geophys. Res. 104(A3), 4609–4625 (1999) ADSCrossRefGoogle Scholar
  51. M.G. Kivelson, K.K. Khurana, C.T. Russell, M. Volwerk, J. Walker, C. Zimmer, Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science 289(5483), 1340–1343 (2000) ADSCrossRefGoogle Scholar
  52. M.G. Kivelson, K.K. Khurana, M. Volwerk, The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002) ADSCrossRefGoogle Scholar
  53. M.G. Kivelson, F. Bagenal, F.M. Neubauer, W. Kurth, C. Paranicas, J. Saur, Magnetospheric interactions with satellites, in Jupiter, ed. by F. Bagenal (Cambridge Univ. Press, Cambridge, 2004), pp. 513–536, Chap. 21 Google Scholar
  54. A.J. Kliore, D.P. Hinson, F.M. Flasar, A.F. Nagy, T.E. Cravens, The ionosphere of Europa from Galileo radio occultations. Science 277(5324), 355–358 (1997) ADSCrossRefGoogle Scholar
  55. A. Kopp, W. Ip, Resistive MHD simulations of Ganymede’s magnetosphere 1. Time variabilities of the magnetic field topology. J. Geophys. Res. 107, 41–11490 (2002) Google Scholar
  56. B.N. Lahiri, A.T. Price, Electromagnetic induction in non-uniform conductors. Philos. Trans. R. 784(A 237), 509–540 (1939) ADSCrossRefGoogle Scholar
  57. R. Laine, D. Lin, S. Dong, Interaction of close-in planets with the magnetosphere of their host stars. 1. Diffusion, Ohmic dissipation of time-dependent field, planetary inflation, and mass loss. Astrophys. J. 685, 521–542 (2008) ADSCrossRefGoogle Scholar
  58. R.D. Lorenz, B.W. Stiles, R.L. Kirk, et al., Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319, 1649 (2008) ADSCrossRefGoogle Scholar
  59. Y. Ma, et al., Comparisons between MHD model calculations and observations of Cassini flybys of Titan. J. Geophys. Res. 111, 05207 (2006) CrossRefGoogle Scholar
  60. W. McKinnon, M. Zolensky, Sulfate content of Europa’s ocean and shell: Evolutionary considerations and some geological and strobiological implications. Astrobiology 3, 879–897 (2003) ADSCrossRefGoogle Scholar
  61. N.F. Ness, J.E.P. Connerney, Neptune’s magnetic field and field-geometric properties, in Neptune and Triton, ed. by D.P. Cruikshank (Univ. of Arizona Press, Tucson, 1995), pp. 141–168 Google Scholar
  62. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Magnetic field observations near Mercury: preliminary results from Mariner 10. Science 185, 131–135 (1974) ADSCrossRefGoogle Scholar
  63. N.F. Ness, M.H. Acuña, K.W. Behannon, L.F. Burlaga, J. Connerney, R.P. Lepping, F.M. Neubauer, Magnetic fields at Uranus. Science 233, 85–89 (1986) ADSCrossRefGoogle Scholar
  64. N.F. Ness, M.H. Acuña, L.F. Burlaga, J. Connerney, R.P. Lepping, F.M. Neubauer, Magnetic fields at Neptune. Science 246, 1473–1478 (1989) ADSCrossRefGoogle Scholar
  65. F.M. Neubauer, Nonlinear standing Alfvén wave current system at Io: Theory. J. Geophys. Res. 85(A3), 1171–1178 (1980) ADSCrossRefGoogle Scholar
  66. F.M. Neubauer, The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res. 103(E9), 19843–19866 (1998) ADSCrossRefGoogle Scholar
  67. F.M. Neubauer, Alfvén wings and electromagnetic induction in the interiors: Europa and Callisto. J. Geophys. Res. 104(A12), 28671 (1999) ADSCrossRefGoogle Scholar
  68. N. Olsen, Induction studies with satellite data. Surv. Geophys. 20, 309–340 (1999) ADSCrossRefGoogle Scholar
  69. N. Olsen, et al., Separation of magnetic field into external and internal parts, in Planetary Magnetism (Springer, Berlin, 2009) Google Scholar
  70. R.T. Pappalardo, et al., Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res. 104, 24015–24056 (1999) ADSCrossRefGoogle Scholar
  71. W. Parkinson, Introduction of Geomagnetism (Scottish Academic Press, Edinburgh, 1983) Google Scholar
  72. C. Paty, R. Winglee, Multi-fluid simulations of Ganymede’s magnetosphere. Geophys. Res. Lett. 31, 24806 (2004) ADSCrossRefGoogle Scholar
  73. C. Porco, et al., Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006) ADSCrossRefGoogle Scholar
  74. F. Postberg, S. Kempf, J. Schmidt, N. Brillantov, A. Beinsen, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009) ADSCrossRefGoogle Scholar
  75. T. Rikitake, Electromagnetism and the Earth’s Interior (Elsevier, Amsterdam, 1966) Google Scholar
  76. J. Saur, A model for Io’s local electric field for a combined Alfvénic and unipolar inductor far-field coupling. J. Geophys. Res. 109, 01210 (2004) CrossRefGoogle Scholar
  77. J. Saur, D.F. Strobel, F.M. Neubauer, Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere. J. Geophys. Res. 103(E9), 19947–19962 (1998) ADSCrossRefGoogle Scholar
  78. J. Saur, F.M. Neubauer, D.F. Strobel, M.E. Summers, Interpretation of Galileo’s Io plasma and field observations: The J0, I24, I27 flybys, and close polar passes. J. Geophys. Res. 107(A12), 1422 (2002). doi: 10.1029/2001JA005067 CrossRefGoogle Scholar
  79. J. Saur, F.M. Neubauer, N. Schilling, Hemisphere coupling in Enceladus’ asymmetric plasma interaction. J. Geophys. Res. 112, 11209 (2007). doi: 10.1029/2007JA012479 CrossRefGoogle Scholar
  80. J. Saur, N. Schilling, F.M. Neubauer, et al., Evidence for temporal variability of Enceladus’ gas jets: Modeling of Cassini observations. Geophys. Res. Lett. 35, 20105 (2008) ADSCrossRefGoogle Scholar
  81. N. Schilling, K.K. Khurana, M.G. Kivelson, Limits on an intrinsic dipole moment in Europa. J. Geophys. Res. 109, 05006 (2004) CrossRefGoogle Scholar
  82. N. Schilling, F.M. Neubauer, J. Saur, Time-varying interaction of Europa with the Jovian magnetosphere: Constraints on the conductivity of Europa’s subsurface ocean. Icarus 192, 41–55 (2007) ADSCrossRefGoogle Scholar
  83. N. Schilling, F.M. Neubauer, J. Saur, Influence of the internally induced magnetic field on the plasma interaction of Europa. J. Geophys. Res. 113, 03203 (2008) CrossRefGoogle Scholar
  84. J. Schmidt, N. Brilliantov, F. Spahn, S. Kempf, Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Science 451, 685–688 (2008) Google Scholar
  85. U. Schmucker, Magnetic and electric fields due to electromagnetic induction by external sources, in Landolt-Börnstein New-Series, 5/2b (Springer, Berlin–Heidelberg, 1985), pp. 100–125 Google Scholar
  86. G. Schubert, J. Anderson, B. Travis, J. Palguta, Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188, 345–355 (2007) ADSCrossRefGoogle Scholar
  87. M. Siegert, J. Ellis-Evans, M. Tranter, C. Mayer, J.R. Petit, A. Salamatin, J. Priscu, Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 416, 603–609 (2001) ADSCrossRefGoogle Scholar
  88. M. Siegert, S. Carter, I. Tabacco, S. Popov, D. Blankenship, A revised inventory of Antarctic subglacial lakes. Antarct. Sci. 17, 453–460 (2005) CrossRefGoogle Scholar
  89. S. Simon, A. Bößwetter, T. Bagdonat, U. Motschmann, K.H. Glassmeier, Plasma environment of Titan: a 3-D hybrid simulation study. Ann. Geophys. 24, 1113–1135 (2006) ADSCrossRefGoogle Scholar
  90. G. Siscoe, L. Christopher, Variations in the solar wind stand-off distance at Mercury. Geophys. Res. Lett. 2, 158–160 (1975) ADSCrossRefGoogle Scholar
  91. B.A. Smith, L. Soderblom, R. Batson, P. Bridges, J. Inge, H. Masursky, A new look at the Saturn system: The voyager 2 images. Science 215, 505–537 (1982) ADSGoogle Scholar
  92. B.A. Smith, et al., Voyager 2 at Neptune: imaging science results. Science 246, 1422–1449 (1989) ADSCrossRefGoogle Scholar
  93. E. Smith, L. Davis, D. Jones, P. Coleman, D. Colburn, P. Dyal, C. Sonett, Saturn’s magnetic field and magnetosphere. Science 207, 407–410 (1980) ADSCrossRefGoogle Scholar
  94. B. Smith-Konter, R.T. Pappalardo, Tidally driven stress accumulation and shear failure of Enceladus’ tiger stripes. Icarus 198, 435 (2008) ADSCrossRefGoogle Scholar
  95. F. Sohl, H. Hussmann, B. Schwentker, T. Spohn, R.D. Lorenz, Interior structure models and tidal love numbers of titan. J. Geophys. Res. 108, 4–1 (2003) CrossRefGoogle Scholar
  96. C.P. Sonett, Electromagnetic induction in the moon. Rev. Geophys. Space Phys. 20, 411–455 (1982) ADSCrossRefGoogle Scholar
  97. C.P. Sonett, P. Dyal, C.W. Parkin, D.S. Colburn, J.D. Mihalov, B.F. Smith, Whole body response of the moon to electromagnetic induction by the solar wind. Science 172, 256–258 (1971) ADSCrossRefGoogle Scholar
  98. D.J. Southwood, M.G. Kivelson, Saturnian magnetospheric dynamics: Elucidation of a camshaft model. J. Geophys. Res. 112, 12 (2007) CrossRefGoogle Scholar
  99. F. Spahn, et al., Cassini dust measurements at Enceladus and implications for the origin of the E-ring. Science 311, 1416–1418 (2006) ADSCrossRefGoogle Scholar
  100. B.J. Srivastava, Theory of the magnetotelluric method of a spherical conductor. Geophys. J. R. Astron. Soc. 11, 373–387 (1966) Google Scholar
  101. D. Stevenson, Planetary oceans. Sky Telesc. 104, 38–44 (2002) ADSGoogle Scholar
  102. D.J. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–2 (2003). doi: 10.1016/S0012-821X(02)01126-3 ADSCrossRefGoogle Scholar
  103. S.T. Suess, B.E. Goldstein, Compression of the Hermean magnetosphere by the solar wind. J. Geophys. Res. 84, 3306–3312 (1979) ADSCrossRefGoogle Scholar
  104. W.M. Telford, Applied Geophysics (Cambridge University Press, Cambridge, 1993) Google Scholar
  105. R. Tokar, et al., The interaction of the atmosphere of Enceladus with Saturn’s plasma. Science 311, 1409–1412 (2006) ADSCrossRefGoogle Scholar
  106. G. Tovie, A. Mocquet, C. Sotin, Tidal dissipation within large icy satellites: Applications to Europa and Titan. Icarus 177, 534–549 (2005) ADSCrossRefGoogle Scholar
  107. R.H. Tyler, S. Maus, H. Lühr, Satellite observations of magnetic fields due to ocean tidal flow. Science 239, 239–241 (2003) ADSCrossRefGoogle Scholar
  108. R.H. Tyler, Strong ocean tidal flow and heating on moons of the outer planets. Nature 456, 770–772 (2008) ADSCrossRefGoogle Scholar
  109. L.L. Vanyan, I.V. Egorov, Electromagnetic induction in the moon. Moon 12, 253–275 (1975). doi: 10.1007/BF02629697 ADSCrossRefGoogle Scholar
  110. G.H. Voigt, A mathematical magnetospheric field model with independent physical parameters. Planet. Space Sci. 29, 1–20 (1981). doi: 10.1016/0032-0633(81)90134-3 ADSCrossRefGoogle Scholar
  111. J. Waite, et al., Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1409 (2006) ADSCrossRefGoogle Scholar
  112. J. Wicht, M. Mandea, F. Takahashi, U.R. Christensen, M. Matsushima, B. Langlais, The origin of Mercury’s internal magnetic field. Space Sci. Rev. 132, 261–290 (2007). doi: 10.1007/s11214-007-9280-5 ADSCrossRefGoogle Scholar
  113. C. Zimmer, K. Khurana, M. Kivelson, Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus 147, 329–347 (2000) ADSCrossRefGoogle Scholar
  114. M.Y. Zolotov, An oceanic composition on early and today’s Enceladus. Geophys. Res. Lett. 34, 23 (2007) Google Scholar
  115. M.Y. Zolotov, E. Shock, Composition and stability of salts on the surface of Europa and their oceanic origin. J. Geophys. Res. 106, 32815–32827 (2001) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Joachim Saur
    • 1
  • Fritz M. Neubauer
    • 1
  • Karl-Heinz Glassmeier
    • 2
    • 3
  1. 1.Institut für Geophysik und MeteorologieUniversität zu KölnCologneGermany
  2. 2.Institut für Geophysik und extraterrestrische PhysikTU BraunschweigBraunschweigGermany
  3. 3.Max Planck Institut für SonnensystemforschungKatlenburg-LindauGermany

Personalised recommendations