Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The Solar Dynamo


Observations relevant to current models of the solar dynamo are presented, with emphasis on the history of solar magnetic activity and on the location and nature of the solar tachocline. The problems encountered when direct numerical simulation is used to analyse the solar cycle are discussed, and recent progress is reviewed. Mean field dynamo theory is still the basis of most theories of the solar dynamo, so a discussion of its fundamental principles and its underlying assumptions is given. The role of magnetic helicity is discussed. Some of the most popular models based on mean field theory are reviewed briefly. Dynamo models based on severe truncations of the full MHD equations are discussed.

This is a preview of subscription content, log in to check access.


  1. J.A. Abreu, J. Beer, F. Steinhilber, S.M. Tobias, N.O. Weiss, For how long will the current grand maximum of solar activity persist? Geophys. Res. Lett. 35, L20109 (2008). doi:10.1029/2008GL035442

  2. P. Ashwin, E. Covas, R. Tavakol, Transverse instability for non-normal parameters. Nonlinearity 12, 563–577 (1999)

  3. H.W. Babcock, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572–587 (1961)

  4. C.S. Baldner, S. Basu, Solar cycle related changes at the base of the convection zone. Astrophys. J. 686, 1349–1361 (2008)

  5. S. Basu, Effects of errors in the solar radius on helioseismic inferences. Mon. Not. R. Astron. Soc. 298, 719–728 (1998)

  6. S. Basu, H.M. Antia, Effects of diffusion on the extent of overshoot below the solar convection zone. Mon. Not. R. Astron. Soc. 269, 1137–1144 (1994)

  7. S. Basu, H.M. Antia, A study of possible temporal and latitudinal variations in the properties of the solar tachocline. Mon. Not. R. Astron. Soc. 324, 498–508 (2001)

  8. S. Basu, H.M. Antia, Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553–565 (2003)

  9. J.G. Beck, A comparison of differential rotation measurements. Solar Phys. 191, 47–70 (1999)

  10. J. Beer, S.M. Tobias, N.O. Weiss, An active Sun throughout the Maunder minimum. Solar Phys. 181, 237–249 (1998)

  11. S. Boldyrev, F. Cattaneo, Magnetic-field generation in Kolmogorov turbulence. Phys. Rev. Lett. 92, 144501 (2004)

  12. S.I. Braginsky, Nearly axisymmetric model of the hydromagnetic dynamo of the Earth. Geomagn. Aeron. 15, 122–128 (1975)

  13. A. Brandenburg, The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539–547 (2005)

  14. A. Brandenburg, D. Schmitt, Simulations of an alpha-effect due to magnetic buoyancy. Astron. Astrophys. 338, L55–L58 (1998)

  15. A. Brandenburg, D. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005)

  16. A. Brandenburg, K.-H. Rädler, M. Rheinhardt, P.J. Kapyla, Magnetic diffusivity tensor and dynamo. Astrophys. J. 676, 740–751 (2008)

  17. M.K. Browning, M.S. Miesch, A.S. Brun, J. Toomre, Dynamo action in the solar convection zone and tachocline: pumping and organization of toroidal fields. Astrophys. J. 648, L157–L160 (2006)

  18. A.S. Brun, M.S. Miesch, J. Toomre, Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 1073–1098 (2004)

  19. A.S. Brun, M. Rempel, Large scale flows in the solar convection zone. Space Sci. Rev. 144, 151–173 (2009)

  20. F. Cattaneo, On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42 (1999)

  21. F. Cattaneo, D.W. Hughes, Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401–418 (2006)

  22. K.H. Chan, X. Liao, K. Zhang, A three-dimensional multilayered spherical dynamic interface dynamo using the Malkus-Proctor formulation. Astrophys. J. 682, 1392–1403 (2008)

  23. P. Charbonneau, K.B. MacGregor, Solar interface dynamos II. Linear, kinematic models in spherical geometry. Astrophys. J. 486, 502 (1997)

  24. J. Christensen-Dalsgaard, M.J. Thompson, Observational results and issues concerning the tachocline, in The Solar Tachocline, ed. by D.W. Hughes, R. Rosner, N.O. Weiss (Cambridge University Press, Cambridge, 2007), pp. 53–85

  25. J. Christensen-Dalsgaard, D.O. Gough, M.J. Thompson, The depth of the solar convection zone. Astrophys. J. 378, 413–437 (1991)

  26. J. Christensen-Dalsgaard, M.J.P.F.G. Monteiro, M.J. Thompson, Helioseismic estimation of the convective overshoot in the Sun. Mon. Not. R. Astron. Soc. 276, 283–292 (1995)

  27. K.S. Cline, N.H. Brummell, F. Cattaneo, Dynamo action driven by shear and magnetic buoyancy. Astrophys. J. 599, 1449–1468 (2003)

  28. A. Courvoisier, D.W. Hughes, S.M. Tobias, The alpha effect in a family of chaotic flows. Phys. Rev. Lett. 96, 034503 (2006)

  29. T.G. Cowling, The Magnetic Field of Sunspots. Mon. Not. R. Astron. Soc. 94, 39–48 (1933)

  30. E. Covas, R. Tavakol, P. Ashwin, A. Tworkowski, J.M. Brooke, In-out intermittency in PDE and ODE models. Chaos 11, 404–409 (2001)

  31. M. Dikpati, P. Charbonneau, A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508–520 (1995)

  32. M. Dikpati, G. deToma, P.A. Gilman, Predicting the strength of solar cycle 24 using a flux transport dynamo-based tool. Geophys. Res. Lett. 33, L05102 (2006)

  33. M. Dikpati, P.A. Gilman, Flux-transport solar dynamos. Space Sci. Rev. 144, 67–75 (2009)

  34. J.A. Eddy, The Maunder minimum. Science 192, 1189–1202 (1976)

  35. Y. Fan, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 1 (2004).

  36. D.J. Galloway, M.R.E. Proctor, N.O. Weiss, Formation of intense magnetic fields near the surface of the Sun. Nature 266, 686–689 (1977)

  37. D.J. Galloway, M.R.E. Proctor, Numerical calculations of fast dynamos for smooth velocity fields with realistic diffusion. Nature 356, 691–693 (1992)

  38. P.A. Gilman, Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II—Dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. 53, 243–268 (1983)

  39. G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. II—Field propagation in the convection zone. Astrophys. J. 291, 300–307 (1985)

  40. A.V. Gruzinov, P.H. Diamond, Self-consistent theory of mean-field electrodynamics. Phys. Rev. Lett. 72, 1651–1653 (1994)

  41. D.A. Haber, B.W. Hindman, J. Toomre, R.S. Bogart, R.M. Larsen, F. Hill, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855–864 (2002)

  42. G.E. Hale, On the probable existence of a magnetic field in sunspots. Astrophys. J. 28, 315–343 (1908)

  43. G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of sun-spots. Astrophys. J. 49, 153–185 (1919)

  44. R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Deeply penetrating banded zonal flows in the solar convection zone. Astrophys. J. 533, L163–L166 (2000a)

  45. R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Dynamic variations at the base of the solar convection zone. Science 287, 2456–2460 (2000b)

  46. D.W. Hughes, F. Cattaneo, The alpha-effect in rotating convection: size matters. J. Fluid Mech. 594, 445–461 (2008)

  47. A.B. Iskakov, A.A. Schekochihin, S.C. Cowley, J.C. McWilliams, M.R.E. Proctor, Numerical demonstration of fluctuation dynamo at low magnetic Prandtl numbers. Phys. Rev. Lett. 98, 208501 (2007)

  48. S.A. Jepps, Numerical models of hydromagnetic dynamos. J. Fluid Mech. 67, 625–646 (1975)

  49. C.A. Jones, Dynamo theory, in Dynamos, ed. by P. Cardin, L.F. Cugliandiolo (Ecole de Physique de les Houches, Elsevier, Amsterdam, 2008)

  50. C.A. Jones, N.O. Weiss, F. Cattaneo, Nonlinear dynamos: a complex generalization of the Lorenz equations. Physica D 14D, 161–176 (1985)

  51. J. Jurc̆ak, L.R. Bellot Rubio, Penumbral models in the light of Hinode spectropolarimetric observations. Astron. Astrophys. 481, L17–L20 (2008)

  52. P.J. Käpylä, M.J. Korpi, A. Brandenburg, Large-scale dynamos in turbulent convection with shear. Astron. Astrophys. 491, 353–362 (2008)

  53. S.R. Keating, L.J. Silvers, P.H. Diamond, On crossphase and the quenching of the turbulent diffusion of magnetic fields in two dimensions. Astrophys. J. Lett. 678, L137 (2008)

  54. E. Knobloch, S.M. Tobias, N.O. Weiss, Modulation and symmetry changes in stellar dynamos. Mon. Not. R. Astron. Soc. 297, 1123–1138 (1998)

  55. A.G. Kosovichev, Helioseismic constraints on the gradient of angular velocity at the base of the solar convection zone. Astrophys. J. 469, L61–L64 (1996)

  56. F. Krause, K.-H. Rädler, Mean Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, New York, 1980)

  57. A.S. Landsberg, E. Knobloch, Oscillatory bifurcation with broken translation symmetry. Phys. Rev. E 53, 3579–3600 (1996)

  58. R.B. Leighton, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1–26 (1969)

  59. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

  60. J.A. Markiel, J.H. Thomas, Solar interface dynamo profiles with a realistic rotation profile. Astrophys. J. 523, 827–837 (1999)

  61. M.S. Miesch, J. Toomre, Turbulence, magnetism, and shear in stellar interiors. Annu. Rev. Fluid Mech. 41, 317–345 (2009)

  62. H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978)

  63. M.J.P.F.G. Monteiro, J. Christensen-Dalsgaard, M.J. Thompson, Seismic study of overshoot at the base of the solar convective envelope. Astron. Astrophys. 283, 247–262 (1994)

  64. M. Ossendrijver, The solar dynamo. Astron. Astrophys. Rev. 11, 287 (2003)

  65. E.N. Parker, Hydromagnetic dynamo models. Astrophys. J. 122, 293 (1955)

  66. E.N. Parker, Cosmical Magnetic Fields, their Origin and Activity (Clarendon Press, Oxford, 1979)

  67. E.N. Parker, A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408, 707 (1993)

  68. E.N. Parker, Solar dynamo, in Encyclopedia of Geomagnetism and Paleomagnetism, ed. by D. Gubbins, E. Herrero-Bervera (Springer, Dordrecht, 2007), p. 178

  69. K. Petrovay, J. Zsargo, On the validity of quasi-linear kinematic mean-field electrodynamics in astrophysical flows. Mon. Not. R. Astron. Soc. 296, 245 (1998)

  70. A. Pouquet, U. Frisch, J. Léorat, Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976)

  71. M.R.E. Proctor, Dynamo processes: the interaction of turbulence and magnetic fields, in Stellar Astrophysical Fluid Dynamics, ed. by M.J. Thompson, J. Christensen-Dalsgaard (Cambridge university Press, Cambridge, 2003)

  72. K.-H. Rädler, Mean-field magnetohydrodynamics as a basis of solar dynamo theory, in IAU Symposium 1971, ed. by V. Bumba, J. Kleczek (Dordrecht-Holland, Dordrecht, 1976), p. 323

  73. S. Régnier, C.E. Parnell, A.L. Haynes, A new view of quiet-Sun topology from Hinode/SOT. Astron. Astrophys. 484, L47–L50 (2008)

  74. M. Rempel, Overshoot at the base of the solar convection zone: a semianalytical approach. Astrophys. J. 607, 1046–1064 (2004)

  75. J.C. Ribes, E. Nesme-Ribes, The solar sunspot cycle in the Maunder minimum AD-1645 to AD-1715. Astron. Astrophys. 276, 549–563 (1993)

  76. A. Serebryanskiy, D.-Y. Chou, Comparison of solar cycle variations of solar p-mode frequencies from GONG and MDI. Astrophys. J. 633, 1187–1190 (2005)

  77. M. Schrinner, K.H. Rädler, D. Schmitt, M. Rheinhardt, U.R. Christensen, Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo. Geophys. Astrophys. Fluid Dyn. 101, 81–116 (2007)

  78. D. Sokoloff, H. Zhang, K.M. Kuzanyan, V.N. Obridko, D.N. Tomin, V.N. Tutubalin, Current helicity and twist as two indicators of the mirror asymmetry of solar magnetic fields. Solar Phys. 248, 17–28 (2008)

  79. E.A. Spiegel, Chaos and intermittency in the solar cycle. Space Sci. Rev. 144, 25–51 (2009)

  80. E.A. Spiegel, N.O. Weiss, Magnetic activity and variations in solar luminosity. Nature 287, 616 (1980)

  81. M. Steenbeck, F. Krause, K.-H. Rädler, A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion under the influence of Coriolis forces. Z. Naturforsch. 21a, 369–376 (1966)

  82. R.F. Stein, A. Nordlund, Solar surface magneto-convection and dynamo action, in SOLMAG 2002. Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference and IAU Colloquium 188, 11–15 June 2002, Santorini, Greece, ed. by H. Sawaya-Lacoste. ESA SP, vol. 505 (ESA Publications Division, Noordwijk, 2002), pp. 83–89

  83. S. Stellmach, U. Hansen, Cartesian convection driven dynamos at Low Ekman number. Phys. Rev. E. 70, 056312:1–16 (2004)

  84. J.-C. Thelen, Non-linear αω-dynamos driven by magnetic buoyancy. Mon. Not. R. Astron. Soc. 315, 165–183 (2000)

  85. J.-C. Thelen, F. Cattaneo, Dynamo action driven by convection; the influence of magnetic boundary conditions. Mon. Not. R. Astron. Soc. 315, L13–L17 (2000)

  86. J.H. Thomas, N.O. Weiss, Sunspots and Starspots (Cambridge University Press, Cambridge, 2008)

  87. M.J. Thompson, J. Christensen-Dalsgaard, M.S. Miesch, J. Toomre, The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599–643 (2003)

  88. S.M. Tobias, Grand minima in nonlinear dynamos. Astron. Astrophys. 307, L21 (1996)

  89. S.M. Tobias, The solar cycle: parity interactions and amplitude modulation. Astron. Astrophys. 322, 1007–1017 (1997)

  90. S.M. Tobias, Modulation of solar and stellar dynamos. Astron. Nachr. 323, 417–423 (2002)

  91. S.M. Tobias, The solar tachocline: Formation, stability and its role in the solar dynamo, in Fluid Dynamics and Dynamos in Astrophysics and Geophysics, ed. by A.M. Soward, C.A. Jones, D.W. Hughes, N.O. Weiss (CRC Press, Boca Raton, 2005), p. 193

  92. S.M. Tobias, The Solar Dynamo: The role of penetration, rotation and shear on convective dynamos. Space Sci. Rev. 144, 77–86 (2009)

  93. S.M. Tobias, N.O. Weiss, V. Kirk, Chaotically modulated stellar dynamos. Mon. Not. R. Astron. Soc. 273, 1150–1166 (1995)

  94. S.M. Tobias, F. Cattaneo, Dynamo action in complex flows: the quick and the fast. J. Fluid Mech. 601, 101–122 (2008)

  95. S.M. Tobias, F. Cattaneo, N.H. Brummell, Dynamo action with penetration, rotation and shear. Astrophys. J. 685, 596 (2008)

  96. S.I. Vainshtein, F. Cattaneo, Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165–171 (1992)

  97. S.V. Vorontsov, J. Christensen-Dalsgaard, J. Schou, V.N. Strakhov, M.J. Thompson, Helioseismic measurement of solar torsional oscillations. Science 296, 101–103 (2002)

  98. A. Vögler, M. Schüssler, A solar surface dynamo. Astron. Astrophys. 465, L43–L46 (2007)

  99. N.O. Weiss, The expulsion of magnetic flux by eddies. Proc. R. Soc. Lond. A 293, 310 (1966)

  100. N.O. Weiss, M.J. Thompson, The solar dynamo. Space Sci. Rev. 144, 53–66 (2009)

  101. N.O. Weiss, F. Cattaneo, C.A. Jones, Periodic and aperiodic dynamo waves. Geophys. Astrophys. Fluid Dyn. 30, 305–341 (1984)

  102. A. Yoshizawa, H. Kato, N. Yokoi, Mean field theory interpretation of solar polarity reversal. Astrophys. J. 537, 1039–1053 (2000)

Download references

Author information

Correspondence to Chris A. Jones.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jones, C.A., Thompson, M.J. & Tobias, S.M. The Solar Dynamo. Space Sci Rev 152, 591–616 (2010).

Download citation

  • Solar magnetism
  • Solar dynamo
  • Sunspots
  • Solar cycles
  • Solar interior
  • Helioseismology