Space Science Reviews

, Volume 148, Issue 1–4, pp 455–474 | Cite as

The Microscope Mission and Its Uncertainty Analysis

Article

Abstract

The accurate test of the Universality of Free Fall may demonstrate a violation of Einstein Equivalence Principle (EP) as most attempts of Grand Unification theories seem to conduct. The MICROSCOPE space mission aims at an accuracy of 10−15 with a small drag free satellite and a payload based on electrostatic inertial sensors. The two test-masses made of Platinum and Titanium alloys are forced to follow accurately the same orbit. The sets of surrounding electrodes carried by gold coated silica parts allows the generation of electrical fields and electrostatic pressures on the masses. Common forces and torques are exploited to control the satellite drag compensation system and its fine inertial or rotating pointing. Difference in the force along the Earth gravity monopole is accurately measured and interpreted for the test. After a short presentation of the mission and the instrument, most of the relevant parameters to the experiment performance are detailed as well as the associated technologies to reach the expected levels of accuracy. Present error budgets confirm the test expected accuracy of better than 10−15.

Keywords

Equivalence principle Universality of free fall MICROSCOPE space mission Electrostatic inertial sensors Space accelerometers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. André et al., Impact de la propulsion gaz froid sur la mission MICROSCOPE. Cnes Report MIC-NT-S-0-962-CNS (2007) Google Scholar
  2. S. Baessler et al., Improved test of the equivalence principle for gravitational self- energy. Phys. Rev. Lett. 83, 18 (1999) CrossRefGoogle Scholar
  3. C. Brans, R.H. Dickes, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961) MATHCrossRefMathSciNetADSGoogle Scholar
  4. D.G. Currie et al., A lunar laser ranging RetroReflector array for the 21st century, in NLSI Lunar Science Conference (2008) Google Scholar
  5. T. Damour, Testing the equivalence principle: Why and how? Class. Quantum Grav. 13, A33–A41 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  6. T. Damour, J.P. Blaser, Optimizing the choice of materials in equivalence principle experiments, in Particle Astrophysics, Atomic Physics and Gravitation, ed. by J. Tran Than Van, G. Fontaine, E. Hinds (Frontières, Gif-sur-Yvette, 1994), pp. 433–440 Google Scholar
  7. T. Damour, F. Piazza, G. Veneziano, Violation of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D 66, 046007 (2002) CrossRefMathSciNetADSGoogle Scholar
  8. A. Einstein, The Meaning of Relativity (Princeton University Press, Princeton, 1922) (1988) MATHGoogle Scholar
  9. A. Einstein, Theory of radiometer energy source. Z. Phys. 27, 1–6 (1924) CrossRefADSGoogle Scholar
  10. D. Feldman, Z. Liu, P. Nath, Sparticles at the LHC. JHEP 04, 054 (2008) CrossRefADSGoogle Scholar
  11. J. Flury, S. Bettadpur, B.D. Tapley, Precise accelerometry onboard the GRACE gravity field satellite mission. Adv. Space Res. 42, 1414–1423 (2008) CrossRefADSGoogle Scholar
  12. F. Grassia et al., Quantum theory of fluctuations in a cold damped accelerometer. Eur. Phys. J. D 8, 101–110 (1999) ADSGoogle Scholar
  13. E. Guiu et al., Calibration of MICROSCOPE. Adv. Space Res. 39, 315–323 (2007) CrossRefADSGoogle Scholar
  14. G.D. Hammond et al., New constraints on short-range forces coupling mass to intrinsic spin. Phys. Rev. Lett. 98, 081101 (2007) CrossRefADSGoogle Scholar
  15. L. Iorio, LARES/WEBER-SAT and the equivalence principle. Europhys. Lett. 80, 40007 (2007) CrossRefADSGoogle Scholar
  16. V. Josselin, P. Touboul, R. Kielbasa, Capacitive detection scheme for space accelerometers applications. Sens. Actuators 78, 92–98 (1999) CrossRefGoogle Scholar
  17. L. Lafargue, M. Rodrigues, P. Touboul, Towards low temperature electrostatic accelerometry. Rev. Sci. Instrum. 73, 1 (2002) CrossRefADSGoogle Scholar
  18. J. Mester, R. Torii, P. Worden, N. Lockerbie, S. Vitale, C.W.F. Everitt, The STEP mission: principles and baseline design. Class. Quantum Grav. 18, 2475–2486 (2001). See also http://einstein.stanford.edu/ MATHCrossRefADSGoogle Scholar
  19. R. Newman, Prospects for terrestrial equivalence principle tests with a cryogenic torsion pendulum. Class. Quantum Grav. 18, 2407–2415 (2001) MATHCrossRefADSGoogle Scholar
  20. A. Nobili et al., The GG project: Testing the Equivalence Principle in space and on Earth. Adv. Space Res. 25, 1231–1235 (2000) CrossRefADSGoogle Scholar
  21. S.E. Pollack, S. Schlamminger, J.H. Gundlach, Outgassing, temperature gradients and the radiometer effect in LISA: a torsion pendulum investigation. arXiv:gr-qc/0702051v2 (2007)
  22. G. Schäfer, Where do we stand in testing general relativity? Adv. Space Res. 32(7), 1203–1208 (2003) CrossRefADSGoogle Scholar
  23. S. Schlamminger et al., Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 04110 (2008) CrossRefGoogle Scholar
  24. T.J. Sumner et al., STEP (satellite test of the equivalence principle). Adv. Space Res. 39, 254–258 (2007) CrossRefADSGoogle Scholar
  25. P. Touboul et al., MICROSCOPE, testing the equivalence principle in space. C. R. Acad. Sci. Paris, Sér. IV 2, 1271–1286 (2001) Google Scholar
  26. P. Touboul et al., The MICROSCOPE mission. Acta Astronaut. 50(7), 433–443 (2002) CrossRefADSGoogle Scholar
  27. P. Touboul et al., In orbit nano-g measurements, lessons for future space missions. Aerospace Sci. Technol. 8, 431–44 (2004) CrossRefGoogle Scholar
  28. C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1985) Google Scholar
  29. E. Willemenot, P. Touboul, On-ground investigations of space accelerometers noise with an electrostatic torsion pendulum. Rev. Sci. Instrum. 71(1), 302–309 (1999a) CrossRefADSGoogle Scholar
  30. E. Willemenot, P. Touboul, Electrostatically suspended torsion pendulum. Rev. Sci. Instrum. 71(1), 310–314 (1999b) CrossRefADSGoogle Scholar
  31. J.G. Williams, X.X. Newhall, J.O. Dickey, Relativity parameters determined from lunar laser ranging. Phys. Rev. D 53, 6730 (1996) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Physics and Instrumentation DepartmentONERAChâtillon CedexFrance

Personalised recommendations