Space Science Reviews

, Volume 152, Issue 1–4, pp 135–157 | Cite as

Separation of the Magnetic Field into External and Internal Parts

Article

Abstract

The magnetic field of a planet or a planetary moon contains contributions from a variety of sources in the environment of the body (external sources) and its interior (internal sources). This chapter describes different methods that have been developed for the separation of external and internal source contributions, and their application to selected planets and one of Jupiter’s moons, Ganymede.

Keywords

Spherical harmonic analysis External current systems Magnetospheric currents Earth Mars Mercury Ganymede 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.I. Alexeev, E.S. Belenkaya, S.Yu. Bobrovnikov, J.A. Slavin, M. Sarantos, Paraboloid model of Mercury’s magnetosphere. J. Geophys. Res. 113(A12), 12210 (2008) CrossRefGoogle Scholar
  2. B.J. Anderson, M.H. Acuña, D.A. Lohr, J. Scheifele, A. Raval, H. Korth, J.A. Slavin, The magnetometer instrument on MESSENGER. Space Sci. Rev. 131, 417–450 (2007). doi:10.1007/s11214-007-9246-7 CrossRefADSGoogle Scholar
  3. B.J. Anderson, M.H. Acuña, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt, The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82 (2008). doi:10.1126/science.1159081 CrossRefADSGoogle Scholar
  4. G. Backus, Poloidal and toroidal fields in geomagnetic field modeling. Rev. Geophys. 24, 75–109 (1986) CrossRefADSMathSciNetGoogle Scholar
  5. L. Bauer, Chief results of a preliminary analysis of the Earth’s magnetic field for 1922. Terr. Magn. Atmos. Electr. 28(1), 1–28 (1923) CrossRefGoogle Scholar
  6. W. Baumjohann, A. Matsuoka, W. Magnes, K.H. Glassmeier, R. Nakamura, H. Biernat, M. Delva, K. Schwingenschuh, T. Zhang, H.H.U. Auster, K. Fornaçon, U. Motschmann, I. Richter, A. Balogh, C. Carr, P.J. Cargill, M. Dougherty, T.S. Horbury, E.A. Lucek, T. Takahashi, M. Tanaka, T. Nagai, H. Tsunakawa, M. Matsushima, M. Shinohara, H. Kawano, A. Yoshikawa, H. Shibuya, T. Nakagawa, M. Hoshino, Y. Tanaka, R. Kataoka, B. Anderson, C. Russell, Magnetic field investigation of Mercury’s magnetosphere and inner heliosphere environment by MMO/MGF. Planet. Space Sci. 57, (2009) Google Scholar
  7. J.C. Cain, B.B. Ferguson, D. Mozzoni, An n=90 internal potential function of the Martian crustal magnetic field. J. Geophys. Res. (Planets) 108, 2–1 (2003). doi:10.1029/2000JE001487 Google Scholar
  8. S. Chapman, J. Bartels, Geomagnetism, vols. I+II (Clarendon Press, Oxford, 1940) Google Scholar
  9. J.Y. Choe, D.B. Beard, The compressed geomagnetic field as a function of dipole tilt. Planet. Space Sci. 22, 595–608 (1974a) CrossRefADSGoogle Scholar
  10. J.Y. Choe, D.B. Beard, The near Earth magnetic field of the magnetotail current. Planet. Space Sci. 22, 609–615 (1974b). doi:10.1016/0032-0633(74)90094-4 CrossRefADSGoogle Scholar
  11. J.T. Clarke, J. Ajello, G. Ballester, L.B. Jaffel, J. Connerney, J.C. Gerard, G.R. Gladstone, D. Grodent, W. Pryor, J. Trauger, J.H. Waite Jr., Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature 415, 997–1000 (2002) CrossRefADSGoogle Scholar
  12. M.W. Dunlop, A. Balogh, K.H. Glassmeier, P. Robert, Four-point cluster application of magnetic field analysis tools: The curlometer. J. Geophys. Res. 107, 23–12314 (2002). doi:10.1029/2001JA005088 Google Scholar
  13. E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006) ADSGoogle Scholar
  14. H. Fritsche, Die Elemente des Erdmagnetismus und ihre säkularen Änderungen während des Zeitraumes 1550 bis 1900 (St. Petersburg, 1900) Google Scholar
  15. C.F. Gauss, Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838 (Göttinger Magnetischer Verein, Leipzig, 1839), pp. 1–52 Google Scholar
  16. G. Giampieri, A. Balogh, Modelling of magnetic field measurements at Mercury. Planet. Space Sci. 49, 1637–1642 (2001) CrossRefADSGoogle Scholar
  17. K.H. Glassmeier, H. Auster, D. Heyner, K. Okrafka, C. Carr, G. Berghofer, B.J. Anderson, A. Balogh, W. Baumjohann, P.J. Cargill, U. Christensen, M. Delva, M. Dougherty, K. Fornaçon, T.S. Horbury, E.A. Lucek, W. Magnes, M. Mandea, A. Matsuoka, M. Matsushima, U. Motschmann, R. Nakamura, Y. Narita, I. Richter, K. Schwingenschuh, H. Shibuya, J.A. Slavin, C. Sotin, B. Stoll, H. Tsunakawa, S. Vennerstrom, J. Vogt, T. Zhang, The fluxgate magnetometer of the BepiColombo planetary orbiter. Planet. Space Sci. 57, (2009) Google Scholar
  18. J. Grosser, K.H. Glassmeier, A. Stadelmann, Induced magnetic field effects at planet Mercury. Planet. Space Sci. 52, 1251–1260 (2004). doi:10.1016/j.pss.2004.08.005 CrossRefADSGoogle Scholar
  19. D. Heyner, Magnetfeldmessungen am Merkur: Einfluss externer Stromsysteme. Diploma thesis, Techn. Univ. Braunschweig (2007) Google Scholar
  20. W.H. Ip, A. Kopp, Resistive MHD simulations of Ganymede’s magnetosphere: 2. Birkeland currents and particle energetics. J. Geophys. Res. 107(A12), 1491 (2002). doi:10.1029/2001JA005072 CrossRefGoogle Scholar
  21. D.J. Jackson, D.B. Beard, The magnetic field of Mercury. J. Geophys. Res. 82, 2828–2836 (1977). doi:10.1029/JA082i019p02828 CrossRefADSGoogle Scholar
  22. X. Jia, R.J. Walker, M.G. Kivelson, K.K. Khurana, J.A. Linker, Three-dimensional MHD simulations of Ganymede’s magnetosphere. J. Geophys. Res. 113, 6212 (2008). doi:10.1029/2007JA012748 CrossRefGoogle Scholar
  23. X. Jia, M.G. Kivelson, K.K. Khurana, R.J. Walker, Magnetic fields of the satellites of Jupiter and Saturn. Space Sci. Rev. (2009a, this issue). doi:10.1007/s11214-009-9507-8 Google Scholar
  24. X. Jia, R.J. Walker, M.G. Kivelson, K.K. Khurana, J.A. Linker, Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. J. Geophys. Res. (2009b) doi:10.1029/2009JA014375 Google Scholar
  25. M.G. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, Cambridge, 1995) Google Scholar
  26. M.G. Kivelson, K.K. Khurana, M. Volwerk, The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002) CrossRefADSGoogle Scholar
  27. M.G. Kivelson, K.K. Khurana, C.T. Russell, R.J. Walker, J. Warnecke, F.V. Coroniti, C. Polanskey, D.J. Southwood, G. Schubert, Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384, 537–541 (1996) CrossRefADSGoogle Scholar
  28. M.G. Kivelson, J. Warnecke, L. Bennett, S. Joy, K.K. Khurana, J.A. Linker, C.T. Russell, R.J. Walker, C. Polanskey, Ganymede’s magnetosphere: Magnetometer overview. J. Geophys. Res. 103, 19963–19972 (1998) CrossRefADSGoogle Scholar
  29. A. Kopp, W.H. Ip, Resistive MHD simulations of Ganymede’s magnetosphere: 1. Time variabilities of the magnetic field topology. J. Geophys. Res. 107(A12), 1490 (2002). doi:10.1029/2001JA005071 CrossRefGoogle Scholar
  30. H. Korth, B.J. Anderson, M.H. Acuña, J.A. Slavin, N.A. Tsyganenko, S.C. Solomon, R.L. McNutt, Determination of the properties of Mercury’s magnetic field by the MESSENGER mission. Planet. Space Sci. 52, 733–746 (2004). doi:10.1016/j.pss.2003.12.008 CrossRefADSGoogle Scholar
  31. R.A. Langel, The main field, in Geomagnetism, vol. 1, ed. by J.A. Jacobs (Academic Press, London, 1987), pp. 249–512 Google Scholar
  32. R.A. Langel, R.H. Estes, Large-scale, near-Earth magnetic fields from external sources and the corresponding induced internal field. J. Geophys. Res. 90, 2487–2494 (1985a) CrossRefADSGoogle Scholar
  33. R.A. Langel, R.H. Estes, The near-Earth magnetic field at 1980 determined from MAGSAT data. J. Geophys. Res. 90, 2495–2509 (1985b) CrossRefADSGoogle Scholar
  34. F.J. Lowes, Mean-square values on sphere of spherical harmonic vector fields. J. Geophys. Res. 71, 2179 (1966) ADSGoogle Scholar
  35. H. Lühr, M. Korte, M. Mandea, The recent magnetic field and its variations, in Geomagnetic Variations, ed. by K. Glassmeier, H. Soffel, J.W. Negendank (Springer, Berlin, 2009), pp. 25–63 CrossRefGoogle Scholar
  36. P. Mauersberger, Das Mittel der Energiedichte des geomagnetischen Hauptfeldes an der Erdoberfläche und seine säkulare Änderung. Gerl. Beitr. Geophys. 65, 207–215 (1956) Google Scholar
  37. S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005) CrossRefADSGoogle Scholar
  38. S. Maus, H. Lühr, G. Balasis, M. Rother, M. Mandea, Introducing POMME, the Potsdam magnetic model of the Earth, in Earth Observation with CHAMP, Results from Three Years in Orbit, ed. by C. Reigber, H. Lühr, P. Schwintzer, J. Wickert (Springer, Berlin, 2005), pp. 293–298 CrossRefGoogle Scholar
  39. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Magnetic field observations near Mercury: Preliminary results from Mariner 10. Science 185, 131–135 (1974) CrossRefADSGoogle Scholar
  40. N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Tøffner-Clausen, S. Choi, CHAOS—a model of Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006). doi:10.1111/j.1365-246X.2006.02959.x CrossRefADSGoogle Scholar
  41. N. Olsen, Ionospheric F region currents at middle and low latitudes estimated from Magsat data. J. Geophys. Res. 102(A3), 4563–4576 (1997) CrossRefADSGoogle Scholar
  42. C. Paty, R. Winglee, Multi-fluid MHD simulations of Ganymede’s magnetosphere. Geophys. Res. Lett. 31 (2004). doi:10.1029/2004GL021220
  43. C. Paty, R. Winglee, The role of ion cyclotron motion at Ganymede: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett. 33 (2006). doi:10.1029/2005GL025273
  44. C. Paty, W. Paterson, R. Winglee, Ion energization in Ganymede’s magnetosphere: Using multifluid simulations to interpret ion energy spectrograms. J. Geophys. Res. 113 (2008). doi:10.1029/2007JA012848
  45. C.T. Russell, R.J. Walker, Flux transfer events at Mercury. J. Geophys. Res. 90, 11067–11072 (1985) CrossRefADSGoogle Scholar
  46. T.J. Sabaka, N. Olsen, M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 159, 521–547 (2004). doi:10.1111/j.1365-246X.2004.02421.x CrossRefADSGoogle Scholar
  47. T.J. Sabaka, N. Olsen, Enhancing comprehensive inversions using the Swarm constellation. Earth Planets Space 58, 371–395 (2006) ADSGoogle Scholar
  48. J. Saur, F.M. Neubauer, K.H. Glassmeier, Induced magnetic field in solar system bodies. Space Sci. Rev. (2009, this issue) Google Scholar
  49. N. Schilling, F.M. Neubauer, J. Saur, Time-varying interaction of Europa with the Jovian magnetosphere: Constraints on the conductivity of Europa’s subsurface ocean. Icarus 192(1), 41–55 (2007). doi:10.1016/j.icarus.2007.06.024 CrossRefADSGoogle Scholar
  50. A. Schmidt, Der magnetische Zustand der Erde zur Epoche 1885.0. Archiv der deutschen Seewarte, 21–75 (1898) Google Scholar
  51. A. Schmidt, Mitteilungen äber eine neue Berechnung des erdmagnetischen Potentials. Abh. K. Bayrisch. Akad. Wiss. 19(1), 1–66 (1895) Google Scholar
  52. J. Scuffham, A. Balogh, A new model of Mercury’s magnetospheric magnetic field. Adv. Space Res. 38, 616–626 (2006). doi:10.1016/j.asr.2005.08.052 CrossRefADSGoogle Scholar
  53. G. Siscoe, L. Christopher, Variations in the solar wind stand-off distance at Mercury. Geophys. Res. Lett. 2, 158–160 (1975) CrossRefADSGoogle Scholar
  54. J.A. Slavin, M.H. Acuña, B.J. Anderson, D.N. Baker, M. Benna, G. Gloeckler, R.E. Gold, G.C. Ho, R.M. Killen, H. Korth, S.M. Krimigis, R.L. McNutt, L.R. Nittler, J.M. Raines, D. Schriver, S.C. Solomon, R.D. Starr, P. Trávníček, T.H. Zurbuchen, Mercury’s magnetosphere after MESSENGER’s first flyby. Science 321, 85 (2008). doi:10.1126/science.1159040 CrossRefADSGoogle Scholar
  55. S.M. Stone, T.P. Armstrong, Three-dimensional magnetopause and tail current model of the magnetosphere of Ganymede. J. Geophys. Res. 106(A10), 21263–21275 (2001) CrossRefADSGoogle Scholar
  56. N.A. Tsyganenko, A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 37, 5–20 (1989). doi:10.1016/0032-0633(89)90066-4 CrossRefADSGoogle Scholar
  57. N.A. Tsyganenko, Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. J. Geophys. Res. 100, 5599–5612 (1995). doi:10.1029/94JA03193 CrossRefADSGoogle Scholar
  58. N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. J. Geophys. Res. 107(A8), 12-1 (2002a) Google Scholar
  59. N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations. J. Geophys. Res. 107(A8), 10-1 (2002b) Google Scholar
  60. N.A. Tsyganenko, M.I. Sitnov, Magnetospheric configurations from a high-resolution data-based magnetic field model. J. Geophys. Res. 112(A11), 6225 (2007). doi:10.1029/2007JA012260 CrossRefGoogle Scholar
  61. H. Uno, C.L. Johnson, B.J. Anderson, H. Korth, S.C. Solomon, Modeling Mercury’s internal magnetic field with smooth inversions. Earth Planet. Sci. Lett. (2009) doi:10.1016/j.epsl.2009.02.032 Google Scholar
  62. Y.C. Whang, Magnetospheric magnetic field of Mercury. J. Geophys. Res. 82, 1024–1030 (1977). doi:10.1029/JA082i007p01024 CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.DTU Space and Niels Bohr Institute of Copenhagen UniversityCopenhagen ØDenmark
  2. 2.Institut für Geophysik und extraterrestrische PhysikTU BraunschweigBraunschweigGermany
  3. 3.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  4. 4.Department of Earth and Space Sciences and Institute of Geophysics and Planetary PhysicsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations