Space Science Reviews

, Volume 145, Issue 3–4, pp 337–380 | Cite as

Solar Surface Magnetism and Irradiance on Time Scales from Days to the 11-Year Cycle

  • V. DomingoEmail author
  • I. Ermolli
  • P. Fox
  • C. Fröhlich
  • M. Haberreiter
  • N. Krivova
  • G. Kopp
  • W. Schmutz
  • S. K. Solanki
  • H. C. Spruit
  • Y. Unruh
  • A. Vögler
Open Access


The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance variations to solar surface magnetism. Here we review the current status of solar irradiance measurements and modelling efforts based on solar photospheric magnetic fields. Thereby we restrict ourselves to the study of solar variations from days to the solar cycle. Phenomenological models of the solar atmosphere in combination with imaging observations of solar electromagnetic radiation and measurements of the photospheric magnetic field have reached high enough quality to show that a large fraction (at least, about 80%) of the solar irradiance variability can be explained by the radiative effects of the magnetic activity present in the photosphere. Also, significant progress has been made with magnetohydrodynamic simulations of convection that allow us to relate the radiance of the photospheric magnetic structures to the observations.


Solar physics Solar irradiance Solar atmosphere Solar variations Solar magnetism Irradiance variations Solar activity 


  1. V.I. Abramenko, D.W. Longcope, Distribution of the magnetic flux in elements of the magnetic field in active regions. Astrophys. J. 619, 1160–1166 (2005) ADSCrossRefGoogle Scholar
  2. H.M. Antia, Does the Sun shrink with increasing magnetic activity? Astrophys. J. 590, 567–572 (2003) ADSCrossRefGoogle Scholar
  3. E.H. Avrett, R. Loeser, Models of the solar chromosphere and transition region from SUMER and HRTS observations: Formation of the extreme-ultraviolet spectrum of Hydrogen, Carbon, and Oxygen. Astrophys. J. Suppl. Ser. 175, 229–276 (2008). doi: 10.1086/523671 ADSCrossRefGoogle Scholar
  4. S.M. Bailey, T.N. Woods, C.A. Barth, S.C. Solomon, L.R. Canfield, R. Korde, Measurements of the solar soft X-ray irradiance by the Student Nitric Oxide Explorer: First analysis and underflight calibrations. J. Geophys. Res. 105, 27179–27194 (2000) ADSCrossRefGoogle Scholar
  5. L. Balmaceda, S.K. Solanki, N. Krivova, A cross-calibrated sunspot areas time series since 1874. Mem. Soc. Astron. Ital. 76, 929–932 (2005) ADSGoogle Scholar
  6. I. Baumann, D. Schmitt, M. Schüssler, S.K. Solanki, Evolution of the large-scale magnetic field on the solar surface: A parameter study. Astron. Astrophys. 426, 1075–1091 (2004) ADSCrossRefGoogle Scholar
  7. I. Baumann, D. Schmitt, M. Schüssler, A necessary extension of the surface flux transport model. Astron. Astrophys. 446, 307–314 (2006) ADSCrossRefGoogle Scholar
  8. D.J. Bercik, A. Nordlund, R.F. Stein, Magnetoconvection and micropores, in Local and Global Helioseismology: The Present and Future, ed. by H. Sawaya-Lacoste (European Space Agency, ESA SP-517, 2003), pp. 201–206 Google Scholar
  9. G.E. Brueckner, K.L. Edlow, L.E. Floyd, J.L. Lean, M.E. Vanhoosier, The solar ultraviolet spectral irradiance monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res. 98(17), 10695–10711 (1993) ADSCrossRefGoogle Scholar
  10. K.A. Burlov-Vasiljev, Y.B. Matvejev, I.E. Vasiljeva, Results of the solar disk-center spectral intensity measurements in the range 310–1070 nm, in Solar Analogs: Characteristics and Optimum Candidates, ed. by J.C. Hall. Second Annual Lowell Observatory Fall Workshop (1998), pp. 115–122 Google Scholar
  11. R. Cameron, A. Vögler, M. Schüssler, V. Zakharov, Simulations of solar pores, in The Dynamic Sun: Challenges for Theory and Observations, ed. by D. Danesy, S. Poedts, A. De Groof, J. Andries (European Space Agency, ESA SP-600, 2005), p. 11.1 Google Scholar
  12. M. Carlsson, R.F. Stein, Å. Nordlund, G.B. Scharmer, Observational manifestations of solar magnetoconvection: Center-to-limb variation. Astrophys. J. Lett. 610, L137–L140 (2004) ADSCrossRefGoogle Scholar
  13. G.A. Chapman, On the energy balance of solar active regions. Nature 308, 252–254 (1984) ADSCrossRefGoogle Scholar
  14. G.A. Chapman, A.M. Cookson, J.J. Dobias, Variations in total solar irradiance during solar cycle 22. J. Geophys. Res. 101, 13541–13548 (1996) ADSCrossRefGoogle Scholar
  15. W.H. Chiang, P.V. Foukal, The influence of faculae on sunspot heat blocking. Sol. Phys. 97, 9–20 (1985) ADSCrossRefGoogle Scholar
  16. R.L. Coulter, J.R. Kuhn, RISE/PSPT as an Experiment to Study Active Region Irradiance and Luminosity Evolution, in Solar Active Region Evolution: Comparing Models with Observations, ed. by K.S. Balasubramaniam, G.W. Simon. Proceedings of the Fourteenth (14th) International Summer Workshop, National Solar Observatory Sacramento Peak, Sunspot, New Mexico, USA, 30 August – 3 September 1993, Astronomical Society of the Pacific Conference Series, vol. 68 (1994) Google Scholar
  17. B. De Pontieu, M. Carlsson, R. Stein, L. Rouppe van der Voort, M. Löfdahl, M. van Noort, Å. Nordlund, G. Scharmer, Rapid temporal variability of faculae: High-resolution observations and modeling. Astrophys. J. 646, 1405–1420 (2006) ADSCrossRefGoogle Scholar
  18. G. de Toma, O.R. White, G.A. Chapman, S.R. Walton, D.G. Preminger, A.M. Cookson, Solar cycle 23: An anomalous cycle? Astrophys. J. 609, 1140–1152 (2004) ADSCrossRefGoogle Scholar
  19. W. Deinzer, G. Hensler, M. Schüssler, E. Weisshaar, Model calculations of magnetic flux tubes. I—Equations and method. II—Stationary results for solar magnetic elements. Astron. Astrophys. 139, 426–449 (1984). URL ADSGoogle Scholar
  20. S. Dewitte, D. Crommelinck, S. Mekaoui, A. Joukoff, Measurement and uncertainty of the long-term total solar irradiance trend. Sol. Phys. 224, 209–216 (2004) ADSCrossRefGoogle Scholar
  21. G.R.R.F. Donnelly, F. Cowley, Solar X-Ray Measurements From SMS-1, SMS-2, and GOES-1: Information for data users, NOAA Technical Memorandum ERL SEL-48 (1977) Google Scholar
  22. A. Egidi, B. Caccin, S. Sofia, W. Heaps, W. Hoegy, L. Twigg, High-precision measurements of the solar diameter and oblateness by the Solar Disk Sextant (SDS) experiment. Sol. Phys. 235, 407–418 (2006) ADSCrossRefGoogle Scholar
  23. I. Ermolli, F. Berrilli, A. Florio, A measure of the network radiative properties over the solar activity cycle. Astron. Astrophys. 412, 857–864 (2003) ADSCrossRefGoogle Scholar
  24. I. Ermolli, S. Criscuoli, M. Centrone, F. Giorgi, V. Penza, Photometric properties of facular features over the activity cycle. Astron. Astrophys. 465, 305–314 (2007) ADSCrossRefGoogle Scholar
  25. I. Ermolli, S.K. Solanki, A.G. Tlatov, N.A. Krivova, R.K. Ulrich, J. Singh, Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 698, 1000–1009 (2009) ADSCrossRefGoogle Scholar
  26. M. Fligge, S.K. Solanki, Inter–cycle variations of solar irradiance: Sunspot areas as a pointer. Sol. Phys. 173, 427–439 (1997) ADSCrossRefGoogle Scholar
  27. M. Fligge, S.K. Solanki, Y.C. Unruh, C. Fröhlich, C. Wehrli, A model of solar total and spectral irradiance variations. Astron. Astrophys. 335, 709–718 (1998) ADSGoogle Scholar
  28. M. Fligge, S.K. Solanki, Y.C. Unruh, Modelling irradiance variations from the surface distribution of the solar magnetic field. Astron. Astrophys. 353, 380–388 (2000) ADSGoogle Scholar
  29. L.E. Floyd, J.W. Cook, L.C. Herring, P.C. Crane, SUSIM’S 11-year observational record of the solar UV irradiance. Adv. Sp. Res. 31, 2111–2120 (2003) ADSCrossRefGoogle Scholar
  30. J. Fontenla, G. Harder, Physical modeling of spectral irradiance variations. Mem. Soc. Astron. Ital. 76, 826–833 (2005) ADSGoogle Scholar
  31. J. Fontenla, O.R. White, P.A. Fox, E.H. Avrett, R.L. Kurucz, Calculation of solar irradiances. I. Synthesis of the solar spectrum. Astrophys. J. 518, 480–499 (1999) ADSCrossRefGoogle Scholar
  32. J.M. Fontenla, E.H. Avrett, R. Loeser, Energy balance in the solar transition region. I—hydrostatic thermal models with ambipolar diffusion. Astrophys. J. 355, 700–718 (1990) ADSCrossRefGoogle Scholar
  33. J.M. Fontenla, E.H. Avrett, R. Loeser, Energy balance in the solar transition region. II—effects of pressure and energy input on hydrostatic models. Astrophys. J. 377, 712–725 (1991) ADSCrossRefGoogle Scholar
  34. J.M. Fontenla, E.H. Avrett, R. Loeser, Energy balance in the solar transition region. III—Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319–345 (1993) ADSCrossRefGoogle Scholar
  35. J.M. Fontenla, J. Harder, G. Rottman, T.N. Woods, G.M. Lawrence, S. Davis, The signature of solar activity in the infrared spectral irradiance. Astrophys. J. Lett. 605, L85–L88 (2004) ADSCrossRefGoogle Scholar
  36. J.M. Fontenla, E. Avrett, G. Thuillier, J. Harder, Semiempirical models of the solar atmosphere. I. The quiet- and active Sun photosphere at moderate resolution. Astrophys. J. 639, 441–458 (2006) ADSCrossRefGoogle Scholar
  37. J.M. Fontenla, K.S. Balasubramaniam, J. Harder, Semiempirical models of the solar atmosphere. II. The quiet-Sun low chromosphere at moderate resolution. Astrophys. J. 667, 1243–1257 (2007). doi: 10.1086/520319 ADSCrossRefGoogle Scholar
  38. P. Foukal, L.A. Fowler, M. Livshits, A thermal model of sunspot influence on solar luminosity. Astrophys. J. 267, 863–871 (1983) ADSCrossRefGoogle Scholar
  39. P. Foukal, L. Bertello, W.C. Livingston, A.A. Pevtsov, J. Singh, A.G. Tlatov, R.K. Ulrich, A Century of solar Ca ii measurements and their implication for solar UV driving of climate. Sol. Phys. 255, 229–238 (2009). doi: 10.1007/s11207-009-9330-0 ADSCrossRefGoogle Scholar
  40. P.V. Foukal, L.A. Fowler, A photometric study of heat flow at the solar photosphere. Astrophys. J. 281, 442–454 (1984) ADSCrossRefGoogle Scholar
  41. L.A. Fowler, P.V. Foukal, T.L. Duvall Jr., Sunspot bright rings and the thermal diffusivity of solar convection. Sol. Phys. 84, 33–44 (1983) ADSCrossRefGoogle Scholar
  42. C. Fröhlich, Observations of irradiance variability. Space Sci. Rev. 94, 15–24 (2000) ADSCrossRefGoogle Scholar
  43. C. Fröhlich, Total solar irradiance: The PMOD-composite (2005). A description of the construction and the newest version of the composite can be found at
  44. C. Fröhlich, Solar irradiance variability since 1978. Space Sci. Rev. 125, 53–65 (2006) ADSCrossRefGoogle Scholar
  45. C. Fröhlich, Solar Radiometry, ISSI Scientific Reports, vol. 10, ESA Publication Division, Noordwijk, The Netherlands, chap 32. (2009a, in press) Google Scholar
  46. C. Fröhlich, Total solar irradiance variability: What have we learned about its variability from the record of the last three solar cycles? in Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, October 23–27, 2007, ed. by T. Tsuda, R. Fujii, K. Shibata, M. Geller (Terra Publishing, Tokyo, 2009b), pp. 217–230. URL: Google Scholar
  47. C. Fröhlich, J. Lean, The sun’s total irradiance: Cycles and trends in the past two decades and associated climate change uncertainties. Geophys. Res. Lett. 25, 4377–4380 (1998a) ADSCrossRefGoogle Scholar
  48. C. Fröhlich, J. Lean, Total solar irradiance variations: The construction of a composite and its comparison with models, in IAU Symposium 185: New Eyes to See Inside the Sun and Stars, ed. by F.L. Deubner, J. Christensen-Dalsgaard, D. Kurtz (Kluwer Academic, Dordrecht, 1998b), pp. 89–102 Google Scholar
  49. C. Fröhlich, J. Lean, Solar radiative output and its variability: Evidence and mechanisms. Astron. Astrophys. Rev. 12, 273–320 (2004) ADSCrossRefGoogle Scholar
  50. C. Fröhlich, D. Crommelynck, C. Wehrli, M. Anklin, S. Dewitte, A. Fichot, W. Finsterle, A. Jiménez, A. Chevalier, H.J. Roth, In-flight performances of VIRGO solar irradiance instruments on SOHO. Sol. Phys. 175, 267–286 (1997) ADSCrossRefGoogle Scholar
  51. F. Giorgi, I. Ermolli, M. Centrone, E. Marchei, Calibration of the Arcetri solar archive images. Mem. Soc. Astron. Ital. 76, 977 (2005) ADSGoogle Scholar
  52. D.F. Gray, W.C. Livingston, Monitoring the solar temperature: Empirical calibration of the temperature sensitivity of Ci lambda 5380. Astrophys. J. 474, 798–801 (1997a) ADSCrossRefGoogle Scholar
  53. D.F. Gray, W.C. Livingston, Monitoring the solar temperature: Spectroscopic temperature variations of the Sun. Astrophys. J. 474, 802–809 (1997b) ADSCrossRefGoogle Scholar
  54. R.O. Gray, C.J. Corbally, The calibration of MK spectral classes using spectral synthesis. 1: The effective temperature calibration of dwarf stars. Astron. J. 107, 742–746 (1994) ADSCrossRefGoogle Scholar
  55. U. Grossmann-Doerth, M. Knoelker, M. Schuessler, S.K. Solanki, The deep layers of solar magnetic elements. Astron. Astrophys. 285, 648–654 (1994) ADSGoogle Scholar
  56. M. Haberreiter, I. Hubeny, E. Rozanov, I. Rüedi, W. Schmutz, T. Wenzler, Towards a spherical code for the evaluation of solar UV-bands that influence the chemical composition in the stratosphere, in Proceedings of the SOHO 11 Symposium on From Solar Min to Max: Half a Solar Cycle with SOHO, ed. by A. Wilson. ESA SP, vol. 508 (ESA Publications Division, Noordwijk, 2002), p. 209 Google Scholar
  57. M. Haberreiter, N.A. Krivova, W. Schmutz, T. Wenzler, Reconstruction of the solar UV irradiance back to 1974. Adv. Space Res. 35, 365–369 (2005) ADSCrossRefGoogle Scholar
  58. M. Haberreiter, W. Schmutz, I. Hubeny, NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions. Astron. Astrophys. 492, 833 (2008a). 0810.3471 ADSCrossRefGoogle Scholar
  59. M. Haberreiter, W. Schmutz, A.G. Kosovichev, Solving the discrepancy between the seismic and photospheric solar radius. Astrophys. J. Lett. 675, L53–L56 (2008b). doi: 10.1086/529492, 0711.2392 ADSCrossRefGoogle Scholar
  60. J. Harder, J. Fontenla, O. White, G. Rottman, T. Woods, Solar spectral irradiance variability comparisons of the SORCE SIM instrument with monitors of solar activity and spectral synthesis. Mem. Soc. Astron. Ital. 76, 735–742 (2005a) ADSGoogle Scholar
  61. J. Harder, G. Lawrence, J. Fontenla, G. Rottman, T. Woods, The spectral irradiance monitor: Scientific requirements, instrument design, and operation modes. Sol. Phys. 230, 141–167 (2005b) ADSCrossRefGoogle Scholar
  62. K.L. Harvey, O.R. White, Spectral irradiances and magnetic structures. Astron. Soc. Pacific Conf. Ser. 140, 247–252 (1998) ADSGoogle Scholar
  63. D.F. Heath, B.M. Schlesinger, The Mg-280 nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986) ADSCrossRefGoogle Scholar
  64. D.V. Hoyt, H.L. Kyle, J.R. Hickey, R.H. Maschhoff, The NIMBUS-7 solar total irradiance: A new algorithm for its derivation. J. Geophys. Res. 97, 51–63 (1992) ADSCrossRefGoogle Scholar
  65. H.S. Hudson, Observed variability of the solar luminosity. Annu. Rev. Astron. Astrophys. 26, 473–507 (1988) ADSCrossRefGoogle Scholar
  66. H.S. Hudson, R.C. Willson, SMM experiment: Initial observations by the active cavity radiometer. Adv. Space Res. 1(13), 285–288 (1981) ADSCrossRefGoogle Scholar
  67. H.S. Hudson, S. Silva, M. Woodard, R.C. Willson, The effects of sunspots on solar irradiance. Sol. Phys. 76, 211–218 (1982) ADSGoogle Scholar
  68. H.P. Jones, T.L. Duvall, J.W. Harvey, C.T. Mahaffey, J.D. Schwitters, J.E. Simmons, The NASA/NSO spectromagnetograph. Sol. Phys. 139, 211–232 (1992) ADSCrossRefGoogle Scholar
  69. C.U. Keller, M. Schüssler, A. Vögler, V. Zakharov, On the origin of solar faculae. Astrophys. J. 607, L59–L62 (2004) ADSCrossRefGoogle Scholar
  70. O. Kjeldseth-Moe, P. Maltby, A model for the penumbra of sunspots. Sol. Phys. 8, 275 (1969) ADSCrossRefGoogle Scholar
  71. G. Kopp, G. Lawrence, The Total Irradiance Monitor (TIM): Instrument design. Sol. Phys. 230, 91–109 (2005) ADSCrossRefGoogle Scholar
  72. N.A. Krivova, S.K. Solanki, Modelling of irradiance variations through atmosphere models. Mem. Soc. Astron. Ital. 76, 834–841 (2005) ADSGoogle Scholar
  73. N.A. Krivova, S.K. Solanki, Models of solar irradiance variations: Current status. J. Astrophys. Astron. 29, 151–158 (2008). doi: 10.1007/s12036-008-0018-x ADSCrossRefGoogle Scholar
  74. N.A. Krivova, S.K. Solanki, M. Fligge, Y.C. Unruh, Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause? Astron. Astrophys. 399, L1–L4 (2003) ADSCrossRefGoogle Scholar
  75. N.A. Krivova, S.K. Solanki, L. Floyd, Reconstruction of solar UV irradiance in cycle 23. Astron. Astrophys. 452, 631–639 (2006) ADSCrossRefGoogle Scholar
  76. N.A. Krivova, L. Balmaceda, S.K. Solanki, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335–346 (2007). doi: 10.1051/0004-6361:20066725 ADSCrossRefGoogle Scholar
  77. J.R. Kuhn, R.I. Bush, M. Emilio, P.H. Scherrer, On the constancy of the solar diameter. II. Astrophys. J. 613, 1241–1252 (2004) ADSCrossRefGoogle Scholar
  78. R. Kurucz, New opacity calculations, in Stellar Atmospheres: Beyond Classical Models, ed. by L. Crivellari, I. Hubeny, D. Hummer. NATO ASI Ser. C, vol. 341 (Kluwer Academic, Dordrecht, 1991), pp. 441–448 Google Scholar
  79. R. Kurucz, The solar spectrum, in Solar Interior and Atmosphere, ed. by A. Cox, W. Livingston, M. Matthews (University of Arizona Press, Tucson, 1991), pp. 663–669 Google Scholar
  80. R. Kurucz, ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid. ATLAS9 Stellar Atmosphere Programs and 2 km/s Grid Kurucz CD-ROM No. 13 (Cambridge: Smithsonian Astrophysical Observatory, 1993) Google Scholar
  81. J. Lean, Evolution of the Sun’s spectral irradiance since the maunder minimum. Geophys. Res. Lett. 27, 2425–2428 (2000) ADSCrossRefGoogle Scholar
  82. J.L. Lean, G.J. Rottman, H.L. Kyle, T.N. Woods, J.R. Hickey, L.C. Puga, Detection and parameterization of variations in solar mid and near ultraviolet radiation (200 to 400 nm). J. Geophys. Res. 102, 29939–29946 (1997) ADSCrossRefGoogle Scholar
  83. J.L. Lean, J. Cook, W. Marquette, A. Johannesson, Magnetic sources of the solar irradiance cycle. Astrophys. J. 492, 390–401 (1998) ADSCrossRefGoogle Scholar
  84. R.B. Lee III, B.R. Barkstrom, R.D. Cess, Characteristics of the earth radiation budget experiment solar monitors. Appl. Opt. 26, 3090–3096 (1987) ADSCrossRefGoogle Scholar
  85. R.B. Lee III, M.A. Gibson, R.S. Wilson, S. Thomas, Long-term total solar irradiance variability during sunspot cycle 22. J. Geophys. Res. 100, 1667–1675 (1995) ADSCrossRefGoogle Scholar
  86. P. Lemaire, P. Gouttebroze, J.C. Vial, G.E. Artzner, Physical properties of the solar chromosphere deduced from optically thick lines. I—Observations, data reduction, and modelling of an average plage. Astron. Astrophys. 103, 160–176 (1981) ADSGoogle Scholar
  87. B.W. Lites, G.B. Scharmer, T.E. Berger, A.M. Title, Three-dimensional structure of the active region photosphere as revealed by high angular resolution. Sol. Phys. 221, 65–84 (2004) ADSCrossRefGoogle Scholar
  88. W. Livingston, L. Wallace, The Sun’s immutable basal quiet atmosphere. Sol. Phys. 212, 227–237 (2003) ADSCrossRefGoogle Scholar
  89. W. Livingston, J. Harvey, O. Malanushenko, L. Webster, Sunspot Magnetic Fields Measured up to 6000 Gauss, in Solar Active Regions and 3D Magnetic Structure. 26th Meeting of the IAU, Joint Discussion 3, 16–17 August, 2006, Prague, Czech Republic, JD03, #54 3 (2006) Google Scholar
  90. W.C. Livingston, J. Harvey, C. Slaughter, D. Trumbo, Solar magnetograph employing integrated diode arrays. Appl. Opt. 15, 40–52 (1976) ADSCrossRefGoogle Scholar
  91. P. Maltby, E.H. Avrett, M. Carlsson, O. Kjeldseth-Moe, R.L. Kurucz, R. Loeser, A new sunspot umbral model and its variation with the solar cycle. Astrophys. J. 306, 284–303 (1986) ADSCrossRefGoogle Scholar
  92. S.K. Mathew, V. Martínez Pillet, S.K. Solanki, N.A. Krivova, Properties of sunspots in cycle 23. I. Dependence of brightness on sunspot size and cycle phase. Astron. Astrophys. 465, 291–304 (2007). arXiv:astro-ph/0701401 ADSCrossRefGoogle Scholar
  93. R.G.W.E. McClintock, T. Woods, Solar-Stellar Irradiance Comparison Experiment II (SOLSTICE II): Instrument concept and design. Sol. Phys. 230, 225–258 (2005) ADSCrossRefGoogle Scholar
  94. N. Meunier, Statistical properties of magnetic structures: Their dependence on scale and solar activity. Astron. Astrophys. 405, 1107–1120 (2003) ADSCrossRefGoogle Scholar
  95. H. Neckel, D. Labs, The solar irradiance between 3300 and 12500å. Sol. Phys. 90, 205–258 (1984) ADSCrossRefGoogle Scholar
  96. F. Noël, On solar radius variations observed with astrolabes. Sol. Phys. 232, 127–141 (2005) ADSCrossRefGoogle Scholar
  97. A. Nordlund, H.C. Spruit, H.G. Ludwig, R. Trampedach, Is stellar granulation turbulence? Astron. Astrophys. 328, 229–234 (1997) ADSGoogle Scholar
  98. A. Ortiz, Solar cycle evolution of the contrast of small photospheric magnetic elements. Adv. Space Res. 35, 350–360 (2005) ADSCrossRefGoogle Scholar
  99. A. Ortiz, S.K. Solanki, V. Domingo, M. Fligge, B. Sanahuja, On the intensity contrast of solar photospheric faculae and network elements. Astron. Astrophys. 388, 1036–1047 (2002) ADSCrossRefGoogle Scholar
  100. J.A. Pagaran, M. Weber, J.P. Burrows, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. (2009, in press) Google Scholar
  101. V. Penza, B. Caccin, I. Ermolli, M. Centrone, M.T. Gomez, Modeling solar irradiance variations through PSPT images and semiempirical models, in ESA SP-535: Solar Variability as an Input to the Earth’s Environment, ed. by A. Wilson (2003), pp. 299–302 Google Scholar
  102. V. Penza, B. Caccin, I. Ermolli, M. Centrone, Comparison of model calculations and photometric observations of bright “magnetic” regions. Astron. Astrophys. 413, 1115–1123 (2004) ADSCrossRefGoogle Scholar
  103. V. Penza, E. Pietropaolo, W. Livingston, Modeling the cyclic modulation of photospheric lines. Astron. Astrophys. 454, 349–358 (2006) ADSCrossRefGoogle Scholar
  104. S. Platnick, J.M. Fontenla, Model calculations of solar spectral irradiance in the 3.7-μm band for Earth remote sensing applications. J. Appl. Meteorol. Climatol. 47, 124 (2008). doi: 10.1175/2007JAMC1571.1 ADSCrossRefGoogle Scholar
  105. D.G. Preminger, S.R. Walton, G.A. Chapman, Photometric quantities for solar irradiance modeling. J. Geophys. Res. (Space Phys.) 107, 1354 (2002) (6.1–6.6) ADSCrossRefGoogle Scholar
  106. M.P. Rast, P.A. Fox, H. Lin, B. Lites, R.W. Meisner, O.R. White, Bright rings around sunspots. Nature 401, 678–680 (1999) ADSCrossRefGoogle Scholar
  107. C.S. Rosenthal, J. Christensen-Dalsgaard, Å. Nordlund, R.F. Stein, R. Trampedach, Convective contributions to the frequencies of solar oscillations. Astron. Astrophys. 351, 689–700 (1999) ADSGoogle Scholar
  108. N. Scafetta, R.C. Willson, ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys. Res. Lett. 36, 5701 (2009). doi: 10.1029/2008GL036307 CrossRefGoogle Scholar
  109. P.H. Scherrer, R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T.D. Tarbell, A. Title, C.J. Wolfson, I. Zayer, MDI Engineering Team, The solar oscillations investigation—Michelson Doppler imager. Sol. Phys. 162, 129–188 (1995) ADSCrossRefGoogle Scholar
  110. G. Schmidtke, R. Brunner, D. Eberhard, B. Halford, U. Klocke, M. Knothe, W. Konz, W.J. Riedel, H. Wolf, SOL ACES: Auto-calibrating EUV/UV spectrometers for measurements onboard the international space station. Adv. Space Res. 37, 273–282 (2006a). doi: 10.1016/j.asr.2005.01.112 ADSCrossRefGoogle Scholar
  111. G. Schmidtke, C. Fröhlich, G. Thuillier, ISS-SOLAR: Total (TSI) and spectral (SSI) irradiance measurements. Adv. Space Res. 37, 255–264 (2006b). doi: 10.1016/j.asr.2005.01.009 ADSCrossRefGoogle Scholar
  112. M. Schöll, W. Schmutz, Reconstructing the spectral solar irradiance: The active area expansion. PMOD/WRC Annual Report 2007 p. 28 (2008) Google Scholar
  113. C.J. Schrijver, M.L. DeRosa, A.M. Title, Asterospheric magnetic fields and winds of cool stars. Astrophys. J. 590, 493–501 (2003) ADSCrossRefGoogle Scholar
  114. M. Schüssler, A. Vögler, Magnetoconvection in a sunspot umbra. Astrophys. J. Lett. 641, L73–L76 (2006). astro-ph/0603078 ADSCrossRefGoogle Scholar
  115. M. Schüssler, S. Shelyag, S. Berdyugina, A. Vögler, S.K. Solanki, Why solar magnetic flux concentrations are bright in molecular bands. Astrophys. J. 597, L173–L176 (2003) ADSCrossRefGoogle Scholar
  116. S. Shelyag, M. Schüssler, S.K. Solanki, S.V. Berdyugina, A. Vögler, G-band spectral synthesis and diagnostics of simulated solar magneto-convection. Astron. Astrophys. 427, 335–343 (2004) ADSCrossRefGoogle Scholar
  117. J. Skupin, S. Noël, M.W. Wuttke, M. Gottwald, H. Bovensmann, M. Weber, J.P. Burrows, SCIAMACHY solar irradiance observation in the spectral range from 240 to 2380 nm. Adv. Space Res. 35, 370–375 (2005) ADSCrossRefGoogle Scholar
  118. S. Sofia, Global variability of the Sun. Mem. Soc. Astron. Ital. 69, 531–537 (1998) ADSGoogle Scholar
  119. S. Sofia, Variations of total solar irradiance produced by structural changes of the solar interior. EOS Trans. 85, 217–221 (2004) ADSGoogle Scholar
  120. S.K. Solanki, Velocities in solar magnetic fluxtubes. Astron. Astrophys. 168, 311–329 (1986) ADSGoogle Scholar
  121. S.K. Solanki, Small-scale solar magnetic fields: An overview. Space Sci. Rev. 63, 1–188 (1993) ADSCrossRefGoogle Scholar
  122. S.K. Solanki, Sunspots: An overview. Astron. Astrophys. Rev. 11, 153–286 (2003). doi: 10.1007/s00159-003-0018-4 ADSCrossRefGoogle Scholar
  123. S.K. Solanki, N.A. Krivova, Solar irradiance variations: From current measurements to long-term estimates. Sol. Phys. 224, 197–208 (2004) ADSCrossRefGoogle Scholar
  124. S.K. Solanki, J.O. Stenflo, Properties of solar magnetic fluxtubes as revealed by Fe I lines. Astron. Astrophys. 140, 185–198 (1984) ADSGoogle Scholar
  125. S.K. Solanki, A.D. Seleznyov, N.A. Krivova, Solar irradiance fluctuations on short timescales. ESA SP 535, 285–588 (2003) ADSGoogle Scholar
  126. S.K. Solanki, N.A. Krivova, T. Wenzler, Irradiance models. Adv. Space Res. 35, 376–383 (2005) ADSCrossRefGoogle Scholar
  127. S.K. Solanki, B. Inhester, M. Schüssler, The solar magnetic field. Rep. Prog. Phys. 69, 563–668 (2006) ADSCrossRefGoogle Scholar
  128. H. Spruit, Theory of luminosity and radius variations, in Sun in Time, ed. by C. Sonnet, M.S. Giampapa, M.S. Matthews (University of Arizona Press, Tucson, 1991), pp. 118–158 Google Scholar
  129. H.C. Spruit, Pressure equilibrium and energy balance of small photospheric fluxtubes. Sol. Phys. 50, 269–295 (1976) ADSCrossRefGoogle Scholar
  130. H.C. Spruit, Heat flow near obstacles in the solar convection zone. Sol. Phys. 55, 3–34 (1977) ADSCrossRefGoogle Scholar
  131. H.C. Spruit, The flow of heat near a starspot. Astron. Astrophys. 108, 356–360 (1982) ADSGoogle Scholar
  132. H.C. Spruit, C. Zwaan, The size dependence of contrasts and numbers of small magnetic flux tubes in an active region. Sol. Phys. 70, 207–228 (1981). doi: 10.1007/BF00151329 ADSCrossRefGoogle Scholar
  133. R.F. Stein, Å. Nordlund, Solar small-scale magnetoconvection. Astrophys. J. 642, 1246–1255 (2006) ADSCrossRefGoogle Scholar
  134. O. Steiner, Radiative properties of magnetic elements. II. Center to limb variation of the appearance of photospheric faculae. Astron. Astrophys. 430, 691–700 (2005) ADSCrossRefGoogle Scholar
  135. K.F. Tapping, B. Detracey, The origin of the 10.7 cm flux. Sol. Phys. 127, 321–332 (1990) ADSCrossRefGoogle Scholar
  136. G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P.C. Simon, H. Mandel, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the atlas and Eureca missions. Sol. Phys. 214, 1–22 (2003). doi: 10.1023/A:1024048429145 ADSCrossRefGoogle Scholar
  137. A. Tritschler, W. Schmidt, Sunspot photometry with phase diversity. II. Fine-structure characteristics. Astron. Astrophys. 388, 1048–1061 (2002) ADSCrossRefGoogle Scholar
  138. Y.C. Unruh, S.K. Solanki, M. Fligge, The spectral dependence of facular contrast and solar irradiance variations. Astron. Astrophys. 345, 635–642 (1999) ADSGoogle Scholar
  139. Y.C. Unruh, N.A. Krivova, S.K. Solanki, J.W. Harder, G. Kopp, Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales. Astron. Astrophys. 486, 311–323 (2008). doi: 10.1051/0004-6361:20078421, 0802.4178 ADSCrossRefGoogle Scholar
  140. Y.C. Unruh, S.K. Solanki, M. Schüssler, A. Vögler, D. Garcia-Alvarez, Towards long-term solar irradiance modelling: Network contrasts from magneto-convection simulations, in Proceedings of the 15th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. AIP Conference Proceedings, vol. 1094 (2009), pp. 768–771 Google Scholar
  141. J.E. Vernazza, E.H. Avrett, R. Loeser, Structure of the solar chromosphere. III—Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. Ser. 45, 635–725 (1981) ADSCrossRefGoogle Scholar
  142. R.A. Viereck, L.E. Floyd, P.C. Crane, T.N. Woods, B.G. Knapp, G. Rottman, M. Weber, L.C. Puga, M.T. DeLand, A composite Mg II index spanning from 1978 to 2003. Space Weather 2, S10005 (2004) ADSCrossRefGoogle Scholar
  143. A. Vögler, Three-dimensional simulations of magneto–convection in the solar photosphere, PhD thesis, University of Göttingen, Germany (2003).
  144. A. Vögler, On the effect of photospheric magnetic fields on solar surface brightness: Results of radiative MHD simulations. Mem. Soc. Astron. Ital. 76, 842–849 (2005) Google Scholar
  145. A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, T. Linde, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005) ADSCrossRefGoogle Scholar
  146. S.R. Walton, D.G. Preminger, G.A. Chapman, A statistical analysis of the characteristics of sunspots and faculae. Sol. Phys. 213, 301–317 (2003a) ADSCrossRefGoogle Scholar
  147. S.R. Walton, D.G. Preminger, G.A. Chapman, The contribution of faculae and network to long-term changes in the total solar irradiance. Astrophys. J. 590, 1088–1094 (2003b) ADSCrossRefGoogle Scholar
  148. T. Wenzler, Reconstruction of Solar Irradiance Variations in Cycles 21–23 based on Surface Magnetic Fields, PhD thesis, ETH Nr 16199, Eidgenössische Technische Hochschule, Zürich (2005) Google Scholar
  149. T. Wenzler, S.K. Solanki, N.A. Krivova, D.M. Fluri, Comparison between KPVT/SPM and SoHO/MDI magnetograms with an application to solar irradiance reconstructions. Astron. Astrophys. 427, 1031–1043 (2004) ADSCrossRefGoogle Scholar
  150. T. Wenzler, S.K. Solanki, N.A. Krivova, Can surface magnetic fields reproduce solar irradiance variations in cycles 22 and 23? Astron. Astrophys. 432, 1057–1061 (2005) ADSCrossRefGoogle Scholar
  151. T. Wenzler, S.K. Solanki, N.A. Krivova, C. Fröhlich, Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astron. Astrophys. 460, 583–595 (2006). doi: 10.1051/0004-6361:20065752 ADSCrossRefGoogle Scholar
  152. O.R. White, P.A. Fox, R. Meisner, M.P. Rast, E. Yasukawa, D. Koon, C. Rice, H. Lin, J. Kuhn, R. Coulter, Data from the precision solar photometric telescope (Pspt) in Hawaii from March 1998 to March 1999. Space Sci. Rev. 94, 75–82 (2000) ADSCrossRefGoogle Scholar
  153. R.C. Willson, Irradiance observations from SMM, UARS and ATLAS experiments, in The Sun as a Variable Star, Solar and Stellar Irradiance Variations, ed. by J. Pap, C. Fröhlich, H.S. Hudson, S. Solanki (Cambridge University Press, Cambridge, 1994), pp. 54–62 Google Scholar
  154. R.C. Willson, Total solar irradiance trend during solar cycles 21 and 22. Science 277, 1963–1965 (1997), see also comment by R. Kerr on page 1923 of the same issue of Science CrossRefGoogle Scholar
  155. R.C. Willson, The ACRIMSAT/ACRIM III experiment: Extending the precision, long-term total solar irradiance climate database. Earth Obs. 13, 14–17 (2001) Google Scholar
  156. R.C. Willson, H.S. Hudson, Solar luminosity variations in solar cycle 21 332, 810–812 (1988) Google Scholar
  157. R.C. Willson, A.V. Mordvinov, Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30, 1199 (2003) ADSCrossRefGoogle Scholar
  158. R.C. Willson, S. Gulkis, M. Janssen, H.S. Hudson, G.A. Chapman, Observations of solar irradiance variability. Science 211, 700–702 (1981) ADSCrossRefGoogle Scholar
  159. P.R. Wilson, Theories of sunspot structure and evolution, in Physics of Sunspots, ed. by L. Cram, J. Thomas (Sacramento Peak Obs, Sunspot, 1982), pp. 83–97 Google Scholar
  160. T.N. Woods, G.J. Rottman, Solar Ultraviolet Variability Over Time Periods of Aeronomic Interest, Atmospheres in the Solar System: Comparative Aeronomy (2002), p. 221 Google Scholar
  161. T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lymanα irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res. 105(A12), 27195–27216 (2000) ADSCrossRefGoogle Scholar
  162. T.N. Woods, F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, D.L. Woodraska, Solar EUV Experiment (SEE): Mission overview and first results. J. Geophys. Res. (Space Phys.) 110, A01312 (2005a) CrossRefGoogle Scholar
  163. T.N. Woods et al., XUV Photometer System (XPS): Overview and calibrations. Sol. Phys. 230, 345–374 (2005b) ADSMathSciNetCrossRefGoogle Scholar
  164. T.N. Woods, G. Kopp, P.C. Chamberlin, Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares. J. Geophys. Res. (Space Phys.) 111 (2006). doi: 10.1029/2005JA011507
  165. H.J. Zahid, H.S. Hudson, C. Fröhlich, Total solar irradiance variation during rapid sunspot growth. Sol. Phys. 222, 1–15 (2004) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • V. Domingo
    • 1
    Email author
  • I. Ermolli
    • 2
  • P. Fox
    • 3
  • C. Fröhlich
    • 4
  • M. Haberreiter
    • 5
  • N. Krivova
    • 6
  • G. Kopp
    • 5
  • W. Schmutz
    • 4
  • S. K. Solanki
    • 6
    • 7
  • H. C. Spruit
    • 8
  • Y. Unruh
    • 9
  • A. Vögler
    • 10
  1. 1.Grupo de Astronomía y Ciencias del Espacio, Laboratorio de Procesado de ImágenesUniversidad de ValenciaPaterna (Valencia)Spain
  2. 2.INAF Osservatorio Astronomico di RomaMonte Porzio CatoneItaly
  3. 3.HAO/NCARBoulderUSA
  4. 4.Physikalisch-Meteorologisches Observatorium DavosWorld Radiation CenterDavos DorfSwitzerland
  5. 5.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  6. 6.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  7. 7.School of Space ResearchKyung Hee UniversityYonginKorea
  8. 8.Max-Planck-Institut für AstrophysikGarchingGermany
  9. 9.Astrophysics Group, Blackett LaboratoryImperial College of Science, Technology and MedicineLondonUK
  10. 10.Astronomical Institute UtrechtUtrechtThe Netherlands

Personalised recommendations