Space Science Reviews

, Volume 149, Issue 1–4, pp 3–29 | Cite as

Coronal Seismology by Means of Kink Oscillation Overtones

  • J. Andries
  • T. Van Doorsselaere
  • B. Roberts
  • G. Verth
  • E. Verwichte
  • R. Erdélyi
Article

Abstract

The detection of overtones of coronal loop kink oscillations has been an important advance in the development of coronal seismology. It has significantly increased the potential of coronal seismology and has thus initiated important theoretical and observational improvements. New detections of overtones have been made and a reduction of the error bars has been obtained. The efforts of theoreticians to extend eigenmode studies to more general coronal loop models is no longer a matter of checking the robustness of the model but now also allows for the estimation of certain equilibrium parameters. The frequencies of the detected (longitudinal) overtones are in particular sensitive to changes in the equilibrium properties along the loop, especially the density and the magnetic field expansion. Also, attempts have been made to use the limited longitudinal resolution in combination with the theoretical eigenmodes as an additional seismological tool.

Keywords

Magnetohydrodynamics (MHD) Waves Sun-corona Sun-magnetic fields Sun-oscillations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965) Google Scholar
  2. J. Andries, M. Goossens, Phys. Plasmas 14, 052101 (2007). doi:10.1063/1.2714513 CrossRefADSGoogle Scholar
  3. J. Andries, I. Arregui, M. Goossens, Astrophys. J. 624, L57–L60 (2005). doi:10.1086/430347 CrossRefADSGoogle Scholar
  4. J. Andries, I. Arregui, M. Goossens, Astron. Astrophys. 497, 265–272 (2009). doi:10.1051/0004-6361/200811481 CrossRefADSGoogle Scholar
  5. J. Andries, M. Goossens, J. Hollweg, I. Arregui, T. Van Doorsselaere, Astron. Astrophys. 430, 1109–1118 (2005). doi:10.1051/0004-6361:20041832 CrossRefADSGoogle Scholar
  6. I. Arregui, T. Van Doorsselaere, J. Andries, M. Goossens, D. Kimpe, Astron. Astrophys. 441, 361–370 (2005). doi:10.1051/0004-6361:20053039 CrossRefADSGoogle Scholar
  7. I. Arregui, T. Van Doorsselaere, J. Andries, M. Goossens, Philos. Trans. R. Soc. A 364, 529–532 (2006). doi:10.1098/rsta.2005.1714 CrossRefADSGoogle Scholar
  8. M.J. Aschwanden, J. Terradas, Astrophys. J. 686(2), L127–L130 (2008). doi:10.1086/592963 CrossRefADSGoogle Scholar
  9. M.J. Aschwanden, L. Fletcher, C.J. Schrijver, D. Alexander, Astrophys. J. 520(2), 880–894 (1999). doi: 10.1086/307502 CrossRefADSGoogle Scholar
  10. M.J. Aschwanden, B. de Pontieu, C.J. Schrijver, A.M. Title, Solar Phys. 206(1), 99–132 (2002). doi: 10.1023/A:1014916701283 CrossRefADSGoogle Scholar
  11. M.J. Aschwanden, L.F. Burlaga, M.L. Kaiser, C.K. Ng, D.V. Reames, M.J. Reiner, T.I. Gombosi, N. Lugaz, W. Manchester, I.I. Roussev, T.H. Zurbuchen, C.J. Farrugia, A.B. Galvin, M.A. Lee, J.A. Linker, Z. Mikić, P. Riley, D. Alexander, A.W. Sandman, J.W. Cook, R.A. Howard, D. Odstrčil, V.J. Pizzo, J. Kóta, P.C. Liewer, J.G. Luhmann, B. Inhester, R.W. Schwenn, S.K. Solanki, V.M. Vasyliunas, T. Wiegelmann, L. Blush, P. Bochsler, I.H. Cairns, P.A. Robinson, V. Bothmer, K. Kecskemety, A. Llebaria, M. Maksimovic, M. Scholer, R.F. Wimmer-Schweingruber, Space Sci. Rew. 136(1–4), 565–604 (2008). doi:10.1007/s11214-006-9027-8 CrossRefADSGoogle Scholar
  12. M. Aschwanden, R. Nightingale, J. Andries, M. Goossens, T. Van Doorsselaere, Astrophys. J. 598, 1375–1386 (2003). doi:10.1086/379104 CrossRefADSGoogle Scholar
  13. P.S. Cally, Solar Phys. 103(2), 277–298 (1986). doi:10.1007/BF00147830 CrossRefADSGoogle Scholar
  14. F.C. Cooper, V.M. Nakariakov, D. Tsiklauri, Astron. Astrophys. 397(2), 765–770 (2003). doi:10.1051/0004-6361:20021556 CrossRefADSGoogle Scholar
  15. I. De Moortel, C.S. Brady, Astrophys. J. 664(2), 1210–1213 (2007). doi:10.1086/518830 CrossRefADSGoogle Scholar
  16. C.E. DeForest, Astrophys. J. 661(1), 532–542 (2007). doi:10.1086/515561 CrossRefADSGoogle Scholar
  17. A.J. Díaz, G.R. Donnelly, B. Roberts, Astron. Astrophys. 476(1), 359–368 (2007). doi:10.1051/0004-6361:20078385 MATHCrossRefADSGoogle Scholar
  18. A.J. Díaz, R. Oliver, J.L. Ballester, Astrophys. J. 580(1), 550–565 (2002). doi:10.1086/343039 CrossRefADSGoogle Scholar
  19. A.J. Díaz, R. Oliver, J.L. Ballester, Astrophys. J. 645(1), 766–775 (2006). doi:10.1086/504145 CrossRefADSGoogle Scholar
  20. A.J. Díaz, R. Oliver, J.L. Ballester, B. Roberts, Astron. Astrophys. 424(3), 1055–1064 (2004). doi:10.1051/0004-6361:20035707 CrossRefADSGoogle Scholar
  21. G.R. Donnelly, A.J. Díaz, B. Roberts, Astron. Astrophys. 457(2), 707–715 (2006). doi:10.1051/0004-6361:20065524 CrossRefADSGoogle Scholar
  22. G.R. Donnelly, A.J. Díaz, B. Roberts, Astron. Astrophys. 471(3), 999–1009 (2007). doi:10.1051/0004-6361:20066094 CrossRefADSGoogle Scholar
  23. M.V. Dymova, M.S. Ruderman, Solar Phys. 229(1), 79–94 (2005). doi:10.1007/s11207-005-5002-x CrossRefADSGoogle Scholar
  24. M.V. Dymova, M.S. Ruderman, Astron. Astrophys. 459(1), 241–244 (2006). doi:10.1051/0004-6361:20065929 CrossRefADSGoogle Scholar
  25. M.V. Dymova, M.S. Ruderman, Astron. Astrophys. 457(3), 1059–1070 (2006). doi:10.1051/0004-6361:20065051 MATHCrossRefADSGoogle Scholar
  26. P.M. Edwin, B. Roberts, Solar Phys. 88, 179–191 (1983). doi:10.1007/BF00196186 CrossRefADSGoogle Scholar
  27. R. Erdélyi, R.J. Morton, Astron. Astrophys. 494(2), 295–309 (2009). doi:10.1051/0004-6361:200810318 MATHCrossRefADSGoogle Scholar
  28. R. Erdélyi, G. Verth, Astron. Astrophys. 462(2), 743–751 (2007). doi:10.1051/0004-6361:20065693 CrossRefADSGoogle Scholar
  29. G.A. Gary, Solar Phys. 174(1/2), 241–263 (1997). doi:10.1023/A:1004978630098 CrossRefADSGoogle Scholar
  30. J.P. Goedbloed, S. Poedts, Principles of magnetohydrodynamics (Cambridge University Press, Cambridge, 2004). ISBN 0521626072 Google Scholar
  31. M. Goossens, J. Andries, I. Arregui, Philos. Trans. R. Soc. A 364, 433–445 (2006). doi:10.1098/rsta.2005.1708 CrossRefADSGoogle Scholar
  32. M. Goossens, J. Andries, M. Aschwanden, Astron. Astrophys. 394, L39–L42 (2002). doi:10.1051/0004-6361:20021378 CrossRefADSGoogle Scholar
  33. D.B. Jess, M. Mathioudakis, R. Erdélyi, G. Verth, R.T.J. McAteer, F.P. Keenan, Astrophys. J. 680(2), 1523–1531 (2008). doi:10.1086/587735 CrossRefADSGoogle Scholar
  34. J.A. Klimchuk, S.K. Antiochos, D. Norton, Astrophys. J. 542(1), 504–512 (2000). doi:10.1086/309527 CrossRefADSGoogle Scholar
  35. J. Klimchuk, Solar Phys. 193(1/2), 53–75 (2000). doi:10.1023/A:1005210127703 CrossRefADSGoogle Scholar
  36. J. Lighthill, Waves in fluids (Cambridge University Press, Cambridge, 1978) MATHGoogle Scholar
  37. H. Lin, J.R. Kuhn, R. Coulter, Astrophys. J. 613(2), L177–L180 (2004). doi:10.1086/425217 CrossRefADSGoogle Scholar
  38. M.C. López Fuentes, P. Démoulin, J.A. Klimchuk, Astrophys. J. 673(1), 586–597 (2008). doi:10.1086/523928 CrossRefADSGoogle Scholar
  39. M.C. López Fuentes, J.A. Klimchuk, P. Démoulin, Astrophys. J. 639(1), 459–474 (2006). doi:10.1086/499155 CrossRefADSGoogle Scholar
  40. A.N. McClymont, Z. Mikic, Astrophys. J. 422, 899–905 (1994). doi:10.1086/173781 CrossRefADSGoogle Scholar
  41. M.P. McEwan, A.J. Díaz, Solar Phys. 246, 243–257 (2007). doi:10.1007/s11207-007-0395-3 CrossRefADSGoogle Scholar
  42. M.P. McEwan, A.J. Díaz, B. Roberts, Astron. Astrophys. 481(3), 819–825 (2008). doi:10.1051/0004-6361:20078016 MATHCrossRefADSGoogle Scholar
  43. M.P. McEwan, G.R. Donnelly, A.J. Díaz, B. Roberts, Astron. Astrophys. 460(3), 893–899 (2006). doi:10.1051/0004-6361:20065313 MATHCrossRefADSGoogle Scholar
  44. V.F. Melnikov, V.E. Reznikova, K. Shibasaki, V.M. Nakariakov, Astron. Astrophys. 439, 727–736 (2005). doi:10.1051/0004-6361:20052774 CrossRefADSGoogle Scholar
  45. R.J. Morton, R. Erdélyi, Astron. Astrophys. (2009). doi:10.1051/0004-6361/200811405 Google Scholar
  46. V.M. Nakariakov, L. Ofman, Astron. Astrophys. 372(3), L53–L56 (2001). doi:10.1051/0004-6361:20010607 CrossRefADSGoogle Scholar
  47. V.M. Nakariakov, V.F. Melnikov, V.E. Reznikova, Astron. Astrophys. 412(1), L7–L10 (2003). doi:10.1051/0004-6361:20031660 CrossRefADSGoogle Scholar
  48. V.M. Nakariakov, L. Ofman, E.E. Deluca, B. Roberts, J.M. Davila, Science 285(5429), 862–864 (1999). doi:10.1126/science.285.5429.862 CrossRefADSGoogle Scholar
  49. E. O’Shea, A.K. Srivastava, J.G. Doyle, D. Banerjee, Astron. Astrophys. 473(2), 13–16 (2007). doi:10.1051/0004-6361:20078122 CrossRefGoogle Scholar
  50. B. Roberts, A.R. Webb, Solar Phys. 56(1), 5–35 (1978). doi:10.1007/BF00152630 CrossRefADSGoogle Scholar
  51. B. Roberts, A.R. Webb, Solar Phys. 64(1), 77–92 (1979). doi:10.1007/BF00151117 CrossRefADSGoogle Scholar
  52. B. Roberts, P.M. Edwin, A.O. Benz, Astrophys. J. 279, 857–865 (1984). doi:10.1086/161956 CrossRefADSGoogle Scholar
  53. M.S. Ruderman, Astron. Astrophys. 409(1), 287–297 (2003). doi:10.1051/0004-6361:20031079 CrossRefADSGoogle Scholar
  54. M.S. Ruderman, R. Erdélyi, Space Sci. Rev. (2009). doi:10.1007/s11214-009-9535-u Google Scholar
  55. M.S. Ruderman, B. Roberts, Astrophys. J. 577(1), 475–486 (2002). doi:10.1086/342130 CrossRefADSGoogle Scholar
  56. M.S. Ruderman, G. Verth, R. Erdélyi, Astrophys. J. 686(1), 694–700 (2008). doi:10.1086/591444 CrossRefADSGoogle Scholar
  57. D.D. Ryutov, M.P. Ryutova, Sov. Phys. JETP 43, 491 (1976) ADSGoogle Scholar
  58. H. Safari, S. Nasiri, Y. Sobouti, Astron. Astrophys. 470(3), 1111–1116 (2007). doi:10.1051/0004-6361:20065997 MATHCrossRefADSGoogle Scholar
  59. J.D. Scargle, Astrophys. J. Suppl. Ser. 45, 1–71 (1981). doi:10.1086/190706 CrossRefMathSciNetADSGoogle Scholar
  60. C.J. Schrijver, A.M. Title, T.E. Berger, L. Fletcher, N.E. Hurlburt, R.W. Nightingale, R.A. Shine, T.D. Tarbell, J. Wolfson, L. Golub, J.A. Bookbinder, E.E. Deluca, R.A. McMullen, H.P. Warren, C.C. Kankelborg, B.N. Handy, B. de Pontieu, Solar Phys. 187(2), 261–302 (1999). doi:10.1023/A:1005194519642 CrossRefADSGoogle Scholar
  61. C.J. Schrijver, M.J. Aschwanden, A.M. Title, Solar Phys. 206(1), 69–98 (2002). doi:10.1023/A:1014957715396 CrossRefADSGoogle Scholar
  62. M. Selwa, S.K. Solanki, K. Murawski, T.J. Wang, U. Shumlak, Astron. Astrophys. 454(2), 653–661 (2006). doi:10.1051/0004-6361:20054286 CrossRefADSGoogle Scholar
  63. H.C. Spruit, Solar Phys. 75, 3–17 (1982). doi:10.1007/BF00153456 CrossRefADSGoogle Scholar
  64. A.K. Srivastava, T.V. Zaqarashvili, W. Uddin, B.N. Dwivedi, P. Kumar, Mon. Not. R. Astron. Soc. Lett. 388(4), 1899–1903 (2008). doi:10.1111/j.1365-2966.2008.13532.x CrossRefADSGoogle Scholar
  65. J. Terradas, J. Andries, M. Goossens, Astron. Astrophys. 469, 1135–1143 (2007). doi:10.1051/0004-6361:20077404 CrossRefADSGoogle Scholar
  66. J. Terradas, R. Oliver, J.L. Ballester, Astrophys. J. 614(1), 435–447 (2004). doi:10.1086/423332 CrossRefADSGoogle Scholar
  67. J. Terradas, R. Oliver, J.L. Ballester, Astrophys. J. 650, L91–L94 (2006). doi:10.1086/508569 CrossRefADSGoogle Scholar
  68. C. Torrence, G.P. Compo, Bull. Am. Meteorol. Soc. 79, 61–78 (1998). doi:10.1175/1520-0477(1998)079 CrossRefADSGoogle Scholar
  69. T. Van Doorsselaere, J. Andries, S. Poedts, Astron. Astrophys. 471, 311–314 (2007). doi:10.1051/0004-6361:20066658 CrossRefADSGoogle Scholar
  70. T. Van Doorsselaere, V. Nakariakov, E. Verwichte, Astron. Astrophys. 473(3), 959–966 (2007). doi:10.1051/0004-6361:20077783 CrossRefADSGoogle Scholar
  71. T. Van Doorsselaere, A. Debosscher, J. Andries, S. Poedts, Astron. Astrophys. 424, 1065–1074 (2004). doi:10.1051/0004-6361:20041239 CrossRefADSGoogle Scholar
  72. T. Van Doorsselaere, E. Verwichte, J. Terradas, Space Sci. Rev. (2009). doi:10.1007/s11214-009-9530-9 MATHGoogle Scholar
  73. G. Verth, R. Erdélyi, Astron. Astrophys. 486(3), 1015–1022 (2008). doi:10.1051/0004-6361:200809626 MATHCrossRefADSGoogle Scholar
  74. G. Verth, R. Erdélyi, D.B. Jess, Astrophys. J. 687(1), L45–L48 (2008). doi:10.1086/593184. http://www.journals.uchicago.edu/doi/abs/10.1086/593184 CrossRefADSGoogle Scholar
  75. G. Verth, T. Van Doorsselaere, R. Erdélyi, M. Goossens, Astron. Astrophys. 475(1), 341–348 (2007). doi:10.1051/0004-6361:20078086 CrossRefADSGoogle Scholar
  76. E. Verwichte, V.M. Nakariakov, L. Ofman, E.E. Deluca, Solar Phys. 223, 77–94 (2004). doi:10.1007/s11207-004-0807-6 CrossRefADSGoogle Scholar
  77. E. Verwichte, M.J. Aschwanden, T. Van Doorsselaere, C. Foullon, V.M. Nakariakov, Astrophys. J. 698, 397–404 (2009). doi:10.1088/0004-637X/698/1/397 CrossRefADSGoogle Scholar
  78. T.J. Wang, S.K. Solanki, M. Selwa, Astron. Astrophys. 489(3), 1307–1317 (2008). doi:10.1051/0004-6361:200810230 CrossRefADSGoogle Scholar
  79. J. Watko, J.A. Klimchuk, Solar Phys. 193(1/2), 77–92 (2000). doi:10.1023/A:1005209528612 CrossRefADSGoogle Scholar
  80. D.G. Wentzel, Astron. Astrophys. 76, 20–23 (1979) MATHADSGoogle Scholar
  81. P.R. Wilson, Astron. Astrophys. 71, 9–13 (1979) MATHADSGoogle Scholar
  82. P.R. Wilson, Astron. Astrophys. 87, 121–125 (1980) ADSGoogle Scholar
  83. V.V. Zaitsev, A.V. Stepanov, Issled. Geomagn. Aeron. Fiz. Solntsa 3 (1975) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. Andries
    • 1
    • 4
  • T. Van Doorsselaere
    • 2
  • B. Roberts
    • 3
  • G. Verth
    • 4
  • E. Verwichte
    • 2
  • R. Erdélyi
    • 5
  1. 1.Centre for Stellar and Planetary Astrophysics, School of Mathematical SciencesMonash UniversityVictoriaAustralia
  2. 2.Centre for Fusion, Space and Astrophysics, Physics DepartmentUniversity of WarwickCoventryUK
  3. 3.School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsScotland
  4. 4.Centrum voor Plasma AstrofysicaKatholieke Universiteit LeuvenLeuvenBelgium
  5. 5.Solar Physics and Space Plasma Research CentreUniversity of SheffieldSheffieldUK

Personalised recommendations