Advertisement

Space Science Reviews

, Volume 148, Issue 1–4, pp 501–522 | Cite as

What Determines the Nature of Gravity? A Phenomenological Approach

  • Claus LämmerzahlEmail author
Article

Abstract

The gravitational field can only be explored through the motion of test objects. To achieve this one first has to set up the correct equations of motion. Initially these equations are based on Newton’s laws. Corresponding experiments that support Newton’s laws are described. Furthermore, the basic characteristics of the motion of test objects in gravitational fields are described. This leads to the notion of Einstein’s Equivalence Principle which has as consequence a metric theory of gravity. One particular metric theory is General Relativity based on Einstein’s field equations with its particular predictions for effects like periastron advance, light deflection, etc. An overview over the experimental confirmation of General Relativity, in particular those presented at this workshop, is given. This workshop summary ends with open problems. We also describe some of the strategies for the experimental search for a quantum gravity theory.

Keywords

General relativity Special relativity Newton’s axioms Experimental relativity Equivalence principle Solar system tests Quantum gravity phenomenology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abramovici, Z. Vager, Phys. Rev. D 34, 3240 (1986) CrossRefADSGoogle Scholar
  2. J. Alspector, G. Kalbfleisch, N. Baggett, E. Fowler, B. Barish, A. Bodek, D. Buchholz, F. Sciulli, E. Siskind, L. Stutte, H. Fisk, G. Krafczyk, D. Nease, O. Fackler, Phys. Rev. Lett. 36, 837 (1976) CrossRefADSGoogle Scholar
  3. G. Amelino-Camelia, Phys. Rev. D 62, 0240151 (2000) CrossRefGoogle Scholar
  4. G. Amelino-Camelia, C. Lämmerzahl, Class. Quantum Grav. 21, 899 (2004) zbMATHCrossRefADSGoogle Scholar
  5. G. Amelino-Camelia, C. Lämmerzahl, A. Macias, H. Müller, In Gravitation and Cosmology, ed. by A. Macias, C. Lämmerzahl, D. Nunez. AIP Conference Proceedings, vol. 758 (Melville, New York, 2005), p. 30 Google Scholar
  6. J. Anderson, P. Laing, E. Lau, A. Liu, M. Nieto, S. Turyshev, Phys. Rev. D 65, 082004 (2002) CrossRefADSGoogle Scholar
  7. J. Anderson, J. Campbell, J. Ekelund, J. Ellis, J. Jordan, Phys. Rev. Lett. 100, 091102 (2008) CrossRefADSGoogle Scholar
  8. N. Ashby, T. Heavner, T. Parker, A. Radnaev, Y. Dudin, Phys. Rev. Lett. 98, 070802 (2007) CrossRefADSGoogle Scholar
  9. J. Audretsch, J. Phys. A 14, 411 (1981) CrossRefADSGoogle Scholar
  10. S. Baeßler, B. Heckel, E. Adelberger, J. Gundlach, U. Schmidt, H. Swanson, Phys. Rev. Lett. 83, 3585 (1999) CrossRefADSGoogle Scholar
  11. H. Balasin, D. Grumiller, Significant reduction of galactic dark matter by general relativity, 2006. arXiv:astro-ph/0602519
  12. D. Bartlett, D. vanBuren, Phys. Rev. Lett. 57, 21 (1986) CrossRefADSGoogle Scholar
  13. J. Bekenstein, Phys. Rev. D 70, 083509 (2004) CrossRefADSGoogle Scholar
  14. J. Bell, T. Damour, Class. Quantum Grav. 13, 3121 (1996) zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003) CrossRefADSGoogle Scholar
  16. L. Blanchet, Living Rev. Relativ. 9(4) (2006). http://www.livingreviews.org/lrr-2006-4
  17. L. Blanchet, A. Buonanno, G. Faye, Higher-order spin effects in the dynamics of compact binaries II. Radiation field, 2006. arXiv:gr-qc/0605140
  18. H. Bondi, Rev. Mod. Phys. 29, 423 (1957) zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. K. Brecher, Phys. Rev. Lett. 39, 1051 (1977) CrossRefADSGoogle Scholar
  20. A. Brillet, J. Hall, Phys. Rev. Lett. 42, 549 (1979) CrossRefADSGoogle Scholar
  21. B. Brown, G. Masek, T. Maung, E. Miller, H. Ruderman, W. Vernon, Phys. Rev. 30, 763 (1973) ADSGoogle Scholar
  22. T. Buchert, Gen. Relativ. Grav. 40, 467 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. T. Buchert, J. Ehlers, Astron. Astrophys. 320, 1 (1997) ADSGoogle Scholar
  24. T. Chupp, R. Hoara, R. Loveman, E. Oteiza, J. Richardson, M. Wagshul, Phys. Rev. Lett. 63, 1541 (1989) CrossRefADSGoogle Scholar
  25. I. Ciufolini, Gen. Relativ. Grav. 36, 2257 (2004) zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. F. Cooperstock, S. Tieu, General relativity resolves galactic rotation without exotic dark matter, 2005. arXiv:astro-ph/0507619
  27. T. Damour, G. Schäfer, Phys. Rev. Lett. 66, 2549 (1991) CrossRefADSGoogle Scholar
  28. T. Damour, F. Piazza, G. Veneziano, Phys. Rev. Lett. 89, 081601 (2002a) CrossRefADSGoogle Scholar
  29. T. Damour, F. Piazza, G. Veneziano, Phys. Rev. D 66, 046007 (2002b) CrossRefMathSciNetADSGoogle Scholar
  30. A. de Oliveira-Costa, M. Tegmark, M. Devlin, L. Page, A. Miller, C. Netterfield, Y. Xu, Phys. Rev. D 71, 043004 (2005) CrossRefADSGoogle Scholar
  31. T. Dent, Varying “constants” in astrophysics and cosmology and ... in Proceedings of SUSY06 (2006, to appear). arXiv:hep-ph/0610376
  32. B. DeWitt, R. Brehme, Ann. Phys. (NY) 9, 220 (1960) CrossRefMathSciNetADSGoogle Scholar
  33. H. Dittus, C. Lämmerzahl, H. Selig, Gen. Relativ. Grav. 36, 571 (2004) zbMATHCrossRefADSGoogle Scholar
  34. D. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000) zbMATHCrossRefMathSciNetADSGoogle Scholar
  35. J. Ehlers, Gen. Relativ. Grav. 38, 1059 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  36. G. Faye, L. Blanchet, A. Buonanno, Phys. Rev. D 74, 104033 (2006) CrossRefMathSciNetADSGoogle Scholar
  37. T.M. Fortier, N. Ashby, J. Bergquist, M. Delaney, S. Diddams, T. Heavner, L. Hollberg, W. Itano, S. Jefferts, K. Kim, F. Levi, L. Lorini, W. Oskay, T. Parker, J. Shirley, J. Stalnaker, Phys. Rev. Lett. 98, 070801 (2007) CrossRefADSGoogle Scholar
  38. E. Göklü, C. Lämmerzahl, Class. Quantum Grav. 25, 105012 (2008) CrossRefADSGoogle Scholar
  39. Z. Guiragossian, G. Rothbart, M. Yearian, R. Gearhart, J. Murray, Phys. Rev. Lett. 34, 335 (1975) CrossRefADSGoogle Scholar
  40. J. Gundlach, S. Schlamminger, C. Spitzer, K.Y. Choi, B. Woodahl, J. Coy, E. Fischbach, Phys. Rev. Lett. 98, 150801 (2007) CrossRefADSGoogle Scholar
  41. K. Greisen, End of the cosmic ray spectrum? Phys. Rev. Lett. 16, 748 (1966) CrossRefADSGoogle Scholar
  42. M. Haugan, Ann. Phys. 118, 156 (1979) CrossRefADSGoogle Scholar
  43. F. Hehl, Phys. Lett. A 36, 225 (1971) CrossRefMathSciNetADSGoogle Scholar
  44. F. Hehl, B. Mashhoon, (2008). arXiv:0812.1059v3[gr-qc]
  45. C. Hogan, Phys. Rev. D 78, 087501 (2008a) CrossRefMathSciNetADSGoogle Scholar
  46. C. Hogan, Phys. Rev. D 77, 104031 (2008b) CrossRefMathSciNetADSGoogle Scholar
  47. C.H. Hsieh, P.Y. Jen, K.L. Ko, K.Y. Li, W.T. Ni, S.S. Pan, Y.H. Shih, R.J. Tyan, Mod. Phys. Lett. 4, 1597 (1989) CrossRefADSGoogle Scholar
  48. A. Ignatiev, Phys. Rev. Lett. 98, 101101 (2007) CrossRefMathSciNetADSGoogle Scholar
  49. M.T. Jaekel, S. Reynaud, Mod. Phys. Lett. A 20, 1047 (2005) CrossRefADSGoogle Scholar
  50. M.T. Jaekel, S. Reynaud, In Lasers, Clocks and Drag-Free, ed. by H. Dittus, C. Lämmerzahl, S. Turyshev (Springer, Berlin, 2007), p. 193 Google Scholar
  51. G. Kalbfleisch, N. Baggett, E. Fowler, J. Alspector, Phys. Rev. Lett. 43, 1361 (1979) CrossRefADSGoogle Scholar
  52. V. Kostelecky, Phys. Rev. 69, 105009 (2004) Google Scholar
  53. A. Kostelecky, M. Mewes, Phys. Rev. D 66, 056005 (2002) CrossRefADSGoogle Scholar
  54. M. Kramer, I. Stairs, R. Manchester, M. MacLaughlin, A. Lyre, R. Ferdman, M. Burgag, D. Lorimer, A. Possenti, N. D’Amico, J. Sarkission, B. Joshi, P. Freire, F. Camilo, Ann. Phys. (Leipzig) 15, 34 (2006a) CrossRefADSGoogle Scholar
  55. M. Kramer, I. Stairs, R. Manchester, M. MacLaughlin, A. Lyre, R. Ferdman, M. Burgag, D. Lorimer, A. Possenti, N. D’Amico, J. Sarkission, G. Hobbs, J. Reynolds, P. Freire, F. Camilo, Science 314, 97 (2006b) CrossRefADSGoogle Scholar
  56. G. Krasinsky, V. Brumberg, Celest. Mech. Dyn. Astron. 90, 267 (2004) zbMATHCrossRefMathSciNetADSGoogle Scholar
  57. L. Kreuzer, Phys. Rev. 169, 1007 (1968) CrossRefADSGoogle Scholar
  58. C. Lämmerzahl, V. Perlick, Confronting Finsler gravity with experiment, 2009. Preprint Univ. Bremen Google Scholar
  59. C. Lämmerzahl, P. Rademaker, Gravity, equivalence principle and clocks, 2009. arXiv:0904.4779 [gr-gc]. Preprint, University of Bremen
  60. C. Lämmerzahl, C. Ciufolini, H. Dittus, L. Iorio, H. Müller, A. Peters, E. Samain, S. Scheithauer, S. Schiller, Gen. Relativ. Grav. 36, 2373 (2004) zbMATHCrossRefADSGoogle Scholar
  61. C. Lämmerzahl, A. Macias, H. Müller, Phys. Rev. A 75, 052104 (2007a) CrossRefADSGoogle Scholar
  62. C. Lämmerzahl, O. Preuss, H. Dittus, in Lasers, Clocks, and Drag-Free Exploration of Relativistic Gravity in Space, ed. by H. Dittus, C. Lämmerzahl, S. Turyshev (Springer, Berlin, 2007b), p. 75 Google Scholar
  63. C. Lämmerzahl, D. Lorek, H. Dittus, Gen. Relativ. Grav. 41 (2009) Google Scholar
  64. N. Li, D. Schwarz (2007). arXiv:gr-gc/0702043v3 [gr-gc]
  65. N. Li, M. Seikel, D.J. Schwarz, Is dark energy an effect of averaging? 2008. arXiv.org:0801.3420
  66. N. Lockerbie, J. Mester, R. Torii, S. Vitale, P. Worden, In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space, ed. by C. Lämmerzahl, C. Everitt, F. Hehl (Springer, Berlin, 2001), p. 213 CrossRefGoogle Scholar
  67. M. Longo, Phys. Rev. D 36, 3276 (1987) CrossRefADSGoogle Scholar
  68. D. Lorek, C. Lämmerzahl, In Proceedings of the 11th Marcel Grossmann Meeting, ed. by R. Jantzen, H. Kleinert, R. Ruffini (World Scientific, Singapore, 2008), p. 2618 Google Scholar
  69. A. Lue, Phys. Rep. 423, 1 (2005) CrossRefMathSciNetADSGoogle Scholar
  70. L. Maleki, SPACETIME–a midex proposal, 2001. JPL Google Scholar
  71. B. Mashhoon, F. Gronwald, H. Lichtenegger, In Gyroscopes, Clock, Interferometers, ...: Testing Relativistic Gravity in Space, ed. by C. Lämmerzahl, C. Everitt, F. Hehl. LNP, vol. 562 (Springer, Berlin, 2001), p. 83 CrossRefGoogle Scholar
  72. M. Milgrom, New Astron. Rev. 46, 741 (2002) CrossRefADSGoogle Scholar
  73. J. Moody, F. Wilczek, Phys. Rev. D 30, 130 (1984) CrossRefADSGoogle Scholar
  74. H. Müller, C. Braxmaier, S. Herrmann, A. Peters, C. Lämmerzahl, Phys. Rev. D 67, 056006 (2003) CrossRefADSGoogle Scholar
  75. H. Müller, P. Stanwix, M. Tobar, E. Ivanov, P. Wolf, S. Herrmann, A. Senger, E. Kovalchik, A. Peters, Phys. Rev. Lett. 99, 050401 (2007) CrossRefGoogle Scholar
  76. H. Müller, S.W. Chiow, S. Herrmann, S. Chu, K.Y. Chung, Phys. Rev. Lett. 100, 031101 (2008) CrossRefADSGoogle Scholar
  77. Y. Ng, Mod. Phys. Lett. A 18, 1073 (2003) CrossRefADSGoogle Scholar
  78. J. Overduin, W. Priester, Naturwiss 88, 229 (2001) CrossRefADSGoogle Scholar
  79. P. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003) CrossRefMathSciNetADSGoogle Scholar
  80. S. Perlmutter, G. Aldering, G. Goldhaber et al., Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  81. E. Pitjeva, Astron. Lett. 31, 340 (2005) CrossRefADSGoogle Scholar
  82. R. Reasenberg, I. Shapiro, P. MacNeil, R. Goldstein, J. Breidenthal, J. Brenkle, D. Cain, T. Kaufman, T. Komarek, A. Zygielbaum, Astrophys. J. Lett. 234, 219 (1979) CrossRefADSGoogle Scholar
  83. A. Riess, A. Filippenko, P. Challis, et al., Astron. J. 116, 1009 (1998) CrossRefADSGoogle Scholar
  84. B. Rievers, C. Lämmerzahl, M. List, S. Bremer (2008). Preprint, Univercity of Bremen Google Scholar
  85. R. Sanders, Astron. Astrophys. 136, 21 (1984) ADSGoogle Scholar
  86. R. Sanders, S. McGough, Ann. Rev. Astron. Astrophys. 40, 263 (2002) CrossRefADSGoogle Scholar
  87. B. Schaefer, Phys. Rev. Lett. 82, 4964 (1999) CrossRefADSGoogle Scholar
  88. G. Schäfer, R. Sauerbrey, Probing black-hole physics in the laboratory using high intensity femtosecond lasers, 1998. arXiv:astro-ph/9805106
  89. S. Schiller, C. Lämmerzahl, H. Müller, C. Braxmaier, S. Herrmann, A. Peters, Phys. Rev. D 69, 027504 (2004) CrossRefADSGoogle Scholar
  90. R. Schoedel, A. Eckart, T. Alexander, D. Merritt, R. Genzel, A. Sternberg, L. Meyer, F. Kul, J. Moultaka, T. Ott, C. Straubmeier, Astron. Astroph. 469, 125 (2007) CrossRefADSGoogle Scholar
  91. R. Schützhold, G. Schaller, D. Habs, Phys. Rev. Lett. 97, 121302 (2006) CrossRefADSGoogle Scholar
  92. D. Schwarz, G. Starkman, D. Huterer, C. Copi, Phys. Rev. Lett. 93, 221301 (2004) CrossRefADSGoogle Scholar
  93. S. Shapiro, J. Davis, D. Lebach, J. Gregory, Phys. Rev. Lett. 92, 121101 (2004) CrossRefADSGoogle Scholar
  94. D.N. Spergel, R. Bean, O. Dore, M.R. Nolta, C.L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page, H.V. Peiris, L. Verde, M. Halpern, R.S. Hill, A. Kogut, M. Limon, S.S. Meyer, N. Odegard, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, Astroph. J. 170, 377 (2007) CrossRefADSGoogle Scholar
  95. E. Standish, in Transits of Venus: New Views of the Solar System and Galaxy, Proceedings IAU Colloquium No. 196, ed. by D. Kurtz (Cambridge University Press, Cambridge, 2005), p. 163 Google Scholar
  96. E. Standish, in Gravitation and Cosmology, ed. by A. Macias, C. Lämmerzahl, A. Camacho. AIP Conference Proceedings, vol. 977 (Melville, New York, 2008), p. 254 Google Scholar
  97. J. Steinhoff, G. Schäfer, S. Hergt, Phys. Rev. D 77, 104018 (2008) CrossRefMathSciNetADSGoogle Scholar
  98. L. Stodolsky, Phys. Lett. B 201, 353 (1988) CrossRefADSGoogle Scholar
  99. T. Sumner, Living Rev. Relativ. 5, 2002–420112005 (2002) Google Scholar
  100. M. Tegmark, et al., Phys. Rev. D 69, 103501 (2004) CrossRefADSGoogle Scholar
  101. P. Touboul, Comptes Rendus de l’Acad. Sci. Série IV: Phys. Astrophys. 2, 1271 (2001) Google Scholar
  102. M.J. Valtonen, H.J. Lehto, K. Nilsson, J. Heidt, L. Takalo, A. Sillanpää, C. Villforth, M. Kidger, G. Poyner, T. Pursimo, S. Zola, J.H. Wu, X. Zhou, K. Sadakane, M. Drozdz, D. Koziel, D. Marchev, W. Ogloza, C. Porowski, M. Siwak, G. Stachowski, M. Winiarski, V.P. Hentunen, M. Nissinen, A. Liakos, S. Dogru, Nature 452, 851 (2008) CrossRefADSGoogle Scholar
  103. C. van de Bruck, W. Priester, in Dark Matter in Astrophysics and Particle Physics 1998: Proceedings of the Second International Conference on Dark Matter in Astrophysics and Particle, ed. by H. Klapdor-Kleingrothaus (Inst. of Physics, London, 1998) Google Scholar
  104. R. Vessot, M. Levine, E. Mattison, E. Blomberg, T. Hoffmann, G. Nystrom, B. Farrel, R. Decher, P. Eby, C. Baughter, J. Watts, D. Teuber, F. Wills, Phys. Rev. Lett. 45, 2081 (1980) CrossRefADSGoogle Scholar
  105. R. Walsworth, in Special Relativity, ed. by J. Ehlers, C. Lämmerzahl (Springer, Berlin, 2006), p. 493 CrossRefGoogle Scholar
  106. C. Wetterich, Phys. Lett. B 561, 10 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  107. C. Will, Theory and Experiment in Gravitational Physics (revised edition) (Cambridge University Press, Cambridge, 1993) Google Scholar
  108. P. Wolf, C.J. Borde, A. Clairon, L. Duchayne, A. Landragin, P. Lemonde, G. Santarelli, W. Ertmer, E. Rasel, F.S. Cataliotti, M. Inguscio, G.M. Tino, P. Gill, H. Klein, S. Reynaud, C. Salomon, E. Peik, O. Bertolami, P. Gil, J. Paramos, C. Jentsch, U. Johann, A. Rathke, P. Bouyer, L. Cacciapuoti, D. Izzo, P. de Natale, B. Christophe, P. Touboul, S.G. Turyshev, J.D. Anderson, M.E. Tobar, F. Schmidt-Kaler, J. Vigue, A. Madej, L. Marmet, M.C. Angonin, P. Delva, P. Tourrenc, G. Metris, H. Muller, R. Walsworth, Z.H. Lu, L. Wang, K. Bongs, A. Toncelli, M. Tonelli, H. Dittus, C. Lämmerzahl, G. Galzerano, P. Laporta, J. Laskar, A. Fienga, F. Roques, K. Sengstock, Exp. Astron. 23 (2008) Google Scholar
  109. G.T. Zatsepin, V.A. Kuzmin, Upper limit of the spectrum of cosmic rays. JETP Lett. 4, 78 (1966) ADSGoogle Scholar
  110. F. Zwicky, Helv. Phys. Acta 6, 110 (1933) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.ZARMUniversity of BremenBremenGermany

Personalised recommendations