Space Science Reviews

, Volume 152, Issue 1–4, pp 543–564

Laboratory Dynamo Experiments

  • Gautier Verhille
  • Nicolas Plihon
  • Mickael Bourgoin
  • Philippe Odier
  • Jean-François Pinton


Since the turn of the century, experiments have produced laboratory fluid dynamos that enable a study of the effect in controlled conditions. We review here magnetic induction processes that are believed to underlie dynamo action, and we present results of these dynamo experiments. In particular, we detail progress that have been made through the study of von Kármán flows, using gallium or sodium as working fluids.


Magnetic fields Magnetohydrodynamics Dynamo Experiments Instabilities Turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. MHD dynamo experiments. Magnetohydrodynamics 38(1/2) (2002), special issue Google Scholar
  2. J.-F. Pinton, R. Moreau (eds.), The dynamo effect, experimental progress, geo and astrophysical challenges. C.R. Acad. Sci. 9(7) (2008) Google Scholar
  3. S. Aumaitre, F. Pétrélis, Modification of instability processes by multiplicative noises. Eur. J. Phys. B 51, 357 (2006) CrossRefADSGoogle Scholar
  4. S. Aumaitre, F. Pétrélis, K. Mallick, Low frequency noise controls on-off intermittency of bifurcating systems. Phys. Rev. Lett. 95, 064101 (2005) CrossRefADSGoogle Scholar
  5. S. Aumaitre, K. Mallick, F. Pétrélis, Effects of the low frequencies of noise on on-off-bifurcations. J. Stat. Phys. 123, 909 (2006) CrossRefADSMathSciNetGoogle Scholar
  6. S. Aumaître, M. Berhanu, M. Bourgoin, A. Chiffaudel, F. Daviaud, B. Dubrulle, S. Fauve, L. Marié, R. Monchaux, N. Mordant, Ph. Odier, F. Pétrélis, J.-F. Pinton, N. Plihon, F. Ravelet, R. Volk, The VKS experiment: turbulent dynamical dynamos. C.R. Acad. Sci. 9(7), 689 (2008) ADSGoogle Scholar
  7. R. Avalos-Zuniga, F. Plunian, Influence of inner and outer walls electromagnetic properties on the onset of a stationary dynamo. Eur. Phys. J. B 47(1), 127 (2005) CrossRefADSGoogle Scholar
  8. H.F. Beckley, Measurement of annular Couette flow stability at the fluid Reynolds number Re=4.4 106: the fluid dynamic precursor to a liquid sodium α ω dynamo. PhD Dissertation, New Mexico Institute of Mining and Technology, 2002 Google Scholar
  9. M. Berhanu, R. Monchaux, M. Bourgoin, M. Moulin, Ph. Odier, J.-F. Pinton, R. Volk, S. Fauve, N. Mordant, F. Pétrélis, A. Chiffaudel, F. Daviaud, B. Dubrulle, C. Gasquet, L. Marié, F. Ravelet, Magnetic field reversals in an experimental turbulent dynamo. Europhys. Lett. 77, 59007 (2007) CrossRefADSGoogle Scholar
  10. M. Bourgoin, Etudes en magnétohydrodynamique, application à l’effet dynamo. PhD Thesis, Ecole Normale Supérieure de Lyon, 2003.
  11. M. Bourgoin, L. Marié, F. Pétrélis, C. Gasquet, A. Guigon, J.-B. Luciani, M. Moulin, F. Namer, J. Burguete, A. Chiffaudel, F. Daviaud, S. Fauve, Ph. Odier, J.-F. Pinton, Magnetohydrodynamics measurements in the von Kármán sodium experiment. Phys. Fluids 14, 3046–3058 (2002) CrossRefADSGoogle Scholar
  12. M. Bourgoin, R. Volk, P. Frick, S. Kripechenko, P. Odier, J.-F. Pinton, Induction mechanisms in von Kármán swirling flows of liquid Gallium. Magnetohydrodynamics 40(1), 13–31 (2004a) ADSGoogle Scholar
  13. M. Bourgoin, P. Odier, J.-F. Pinton, Y. Ricard, An iterative study of time independent induction effects in magnetohydrodynamics. Phys. Fluids 16(7), 2529–2547 (2004b) CrossRefADSGoogle Scholar
  14. M. Bourgoin, R. Volk, N. Plihon, P. Augier, Ph. Odier, J.-F. Pinton, A Bullard von Kármán dynamo. New J. Phys. 8, 329 (2006) CrossRefADSGoogle Scholar
  15. E.C. Bullard, The stability of a homopolar dynamo. Proc. Camb. Philos. Soc. 51, 744 (1955) CrossRefGoogle Scholar
  16. E.C. Bullard, D. Gubbins, Generation of magnetic fields by fluid motions of global scale. Geophys. Astrophys. Fluid Dyn. 8, 43 (1977) CrossRefADSGoogle Scholar
  17. F.H. Busse, Dynamo theory of planetary magnetism and laboratory experiments, in Evolution of Dynamical Structures in Complex Systems, ed. by R. Friedrich, A. Wunderlin (Springer, Berlin, 1992), pp. 359–384 Google Scholar
  18. Q.N. Chen, S.Y. Chen, G.L. Eyink, The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15(2), 361–374 (2003) CrossRefADSMathSciNetGoogle Scholar
  19. T.G. Cowling, The magnetic field of sunspots. Mon. Not. R. Astron. Soc. 94, 39 (1933) MATHADSGoogle Scholar
  20. S. Denisov, V. Noskov, A. Sukhanovskiy, P. Frick, Unsteady turbulent spiral flows in a circular channel. Fluid Dyn. 36(5), 734–742 (2001) MATHCrossRefGoogle Scholar
  21. S.A. Denisov, V.I. Noskov, R.A. Stepanov, P.G. Frick, Measurements of turbulent magnetic diffusivity in a liquid-Gallium flow. JETP Lett. 88(3), 167–171 (2008) CrossRefADSGoogle Scholar
  22. M. Dikpati, P.A. Gilman, Flux-transport dynamos with α-effect from global instability of tachocline differential rotation: a solution for magnetic parity selection in the sun. Astrophys. J. 559(1), 428–442 (2001) CrossRefADSGoogle Scholar
  23. N.L. Dudley, R.W. James, Time-dependent kinematic dynamos with stationary flows. Proc. R. Soc. Lond. Ser. A 425, 407 (1989) CrossRefADSMathSciNetGoogle Scholar
  24. P. Frick, V. Noskov, S. Denisov, S. Khripchenko, D. Sokoloff, R. Stepanov, A. Sukhanovsky, Non-stationary screw flow in a toroidal channel: way to a laboratory dynamo experiment. Magnetohydrodynamics 38, 136–155 (2002) ADSGoogle Scholar
  25. A. Gailitis, Project of a liquid sodium MHD dynamo experiment. Magnetohydrodynamics 32, 58–62 (1996) Google Scholar
  26. A. Gailitis, Ya. Freibergs, Theory of a helical MHD dynamo. Magnetohydrodynamics 12, 127–129 (1976) Google Scholar
  27. A. Gailitis, O. Lielausis, S. Dement’ev, E. Platacis, A. Cifersons, G. Gerbeth, T. Gundrum, F. Stefani, M. Christen, H. Hänel, G. Will, Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84(19), 4365 (2000) CrossRefADSGoogle Scholar
  28. A. Gailitis et al., Magnetic field saturation in the Riga dynamo experiment. Phys. Rev. Lett. 86, 3024–3027 (2001) CrossRefADSGoogle Scholar
  29. A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, F. Stefani, On back-reaction effects in the Riga dynamo experiment. Magnetohydrodynamics 38, 15–26 (2002a) ADSGoogle Scholar
  30. A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, F. Stefani, Colloquium: Laboratory experiments on hydromagnetic dynamos. Rev. Mod. Phys. 74, 973–990 (2002b) CrossRefADSGoogle Scholar
  31. A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, F. Stefani, The Riga dynamo experiment. Surv. Geophys. 24(3), 247–267 (2003) CrossRefADSGoogle Scholar
  32. A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, F. Stefan, Riga dynamo experiment and its theoretical background. Phys. Plasmas 11(5), 2838 (2004) CrossRefADSMathSciNetGoogle Scholar
  33. C. Gissinger, A. Iskakov, S. Fauve, E. Dormy, Effect of magnetic boundary conditions on the dynamo threshold of von Karman swirling flows. Europhys. Lett. 82(2), 29001 (2008) CrossRefADSGoogle Scholar
  34. D.H. Kelley, S.A. Triana, D.S. Zimmerman, A. Tilgner, D.P. Lathrop, Inertial waves driven by differential rotation in a planetary geometry. GAFD 101(5–6), 469–487 (2007) CrossRefGoogle Scholar
  35. F. Krause, K.-H. Rädler, Mean Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, New York, 1980) MATHGoogle Scholar
  36. C. Kutzner, U.R. Christensen, Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys. J. Int. 157(3), 1105–118 (2004) CrossRefADSGoogle Scholar
  37. R. Laguerre, C. Nore, A. Ribeiro, J. Leorat, J.L. Guermond, F. Plunian, Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment. Phys. Rev. Lett. 101(10), 104501 (2008), correction in Phys. Rev. Lett. 101(21), 219902 (2008) CrossRefADSGoogle Scholar
  38. F.J. Lowes, I. Wilkinson, Geomagnetic dynamo: a laboratory model. Nature 198, 1158–1160 (1963) CrossRefADSGoogle Scholar
  39. F.J. Lowes, I. Wilkinson, Geomagnetic dynamo: an improved laboratory model. Nature 219, 717–718 (1968) CrossRefADSGoogle Scholar
  40. L. Marié, J. Burguete, F. Daviaud, J. Léorat, Numerical study of homogeneous dynamo based on experimental von Kármán type flows. Eur. Phys. J. B 33, 469–485 (2003) CrossRefADSGoogle Scholar
  41. L. Marié, Transport de moment cinétique et de champ magnétique par un écoulement tourbillonnaire turbulent: influence de la rotation. PhD thesis, Université de Paris 7, 2003.
  42. A. Martin, P. Odier, J.-F. Pinton, S. Fauve, Effective permeability in a binary flow of liquid gallium and iron beads. Eur. Phys. J. B 18, 337–341 (2000) CrossRefADSGoogle Scholar
  43. H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978) Google Scholar
  44. R. Monchaux, Mécanique statistique et effet dynamo dans un écoulement de von Kármán turbulent. PhD thesis Université Diderot, Paris 7, 2007.
  45. R. Monchaux, F. Ravelet, B. Dubrulle, F. Daviaud, Properties of steady states in turbulent axisymmetric flows. Phys. Rev. Lett. 96(12), 124502 (2006) CrossRefADSGoogle Scholar
  46. R. Monchaux, M. Berhanu, M. Bourgoin, M. Moulin, Ph. Odier, J.-F. Pinton, R. Volk, S. Fauve, N. Mordant, F. Pétrélis, A. Chiffaudel, F. Daviaud, B. Dubrulle, C. Gasquet, L. Marié, F. Ravelet, Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98, 044502 (2007) CrossRefADSGoogle Scholar
  47. R. Monchaux, M. Berhanu, S. Aumaître, A. Chiffaudel, F. Daviaud, B. Dubrulle, F. Ravelet, M. Bourgoin, Ph. Odier, J.-F. Pinton, N. Plihon, R. Volk, S. Fauve, N. Mordant, F. Pétrélis, Chaotic dynamos generated by a turbulent flow of liquid sodium. Phys. Rev. Lett. 101, 074502 (2008) CrossRefADSGoogle Scholar
  48. R. Monchaux, M. Berhanu, S. Aumaître, A. Chiffaudel, F. Daviaud, B. Dubrulle, L. Marié, F. Ravelet, S. Fauve, N. Mordant, F. Pétrélis, M. Bourgoin, P. Odier, J.-F. Pinton, N. Plihon, R. Volk, The VKS experiment: turbulent dynamical dynamos. Phys. Fluids 21, 035108 (2009) CrossRefADSGoogle Scholar
  49. N. Mordant, J.-F. Pinton, F. Chilla, Characterization of turbulence in a closed flow. J. Phys. II (France) 7(11), 1729 (1998) CrossRefGoogle Scholar
  50. V. Morin, Instabilités et bifurcations associées à la modélisation de la géodynamo. PhD thesis, Université Diderot, Paris 7, 2004.
  51. U. Müller, R. Stieglitz, S. Horanyi, Experiments at a two-scale dynamo test facility. J. Fluid Mech. 552, 419 (2006) MATHCrossRefADSGoogle Scholar
  52. U. Müller, R. Steiglitz, F.H. Busse, A. Tilgner, The Karlsruhe two-scale dynamo experiment. C.R. Phys. 9, 729–740 (2008) CrossRefADSGoogle Scholar
  53. V. Noskov, R. Stepanov, S. Denisov, P. Frick, G. Verhille, N. Plihon, J.-F. Pinton, Dynamics of a turbulent spin-down flow inside a torus. Phys. Fluids 21, 045108 (2009) CrossRefADSGoogle Scholar
  54. Ph. Nozières, Reversals of the Earth’s magnetic field: an attempt at a relaxation model. Phys. Earth Planet. Inter. 17, 55–74 (1978) CrossRefADSGoogle Scholar
  55. P. Odier et al., Advection of a magnetic field by a turbulent swirling flow. Phys. Rev. E 58(6), 7397–7401 (1998) CrossRefADSGoogle Scholar
  56. P. Odier, J.-F. Pinton, S. Fauve, Magnetic induction by coherent vortex motion. Eur. Phys. J. B 16, 373 (2000) CrossRefADSGoogle Scholar
  57. E.N. Parker, Hydromagnetic dynamo models. Astrophys. J. 122, 293 (1955) CrossRefADSMathSciNetGoogle Scholar
  58. N.L. Peffley, A.B. Cawthorne, D.P. Lathrop, Toward a self-generating magnetic dynamo: The role of turbulence. Phys. Rev. E 61(5), 5287 (2000) CrossRefADSGoogle Scholar
  59. F. Pétrélis, S. Fauve, Saturation of the magnetic field above the dynamo threshold. Eur. Phys. J. B 22, 273–276 (2001) CrossRefADSGoogle Scholar
  60. F. Pétrélis, S. Fauve, Chaotic dynamics of the magnetic field generated by dynamo action in a turbulent flow. J. Phys., Condens. Matter 20, 494203 (2008) CrossRefGoogle Scholar
  61. F. Pétrélis, M. Bourgoin, L. Marié, A. Chiffaudel, S. Fauve, F. Daviaud, P. Odier, J.-F. Pinton, Non linear induction in a swirling flow of liquid sodium. Phys. Rev. Lett. 90(17), 174501 (2003) CrossRefADSGoogle Scholar
  62. F. Pétrélis, N. Mordant, S. Fauve, On the magnetic fields generated by experimental dynamos. Geophys. Astrophys. Fluid Dyn. 101(3–4), 289 (2007) CrossRefADSMathSciNetGoogle Scholar
  63. J.-F. Pinton, F. Plaza, L. Danaila, P. Le Gal, F. Anselmet, On velocity and passive scalar scaling laws in a turbulent swirling flow. Physica D 122(1–4), 187 (1998) CrossRefADSGoogle Scholar
  64. Yu.B. Ponomarenko, Theory of the hydromagnetic generator. J. Appl. Mech. Tech. Phys. 14, 775–779 (1973) CrossRefADSGoogle Scholar
  65. K.-H. Rädler, M. Rheinhardt, E. Apstein, On the mean-field theory of the Karlsruhe dynamo experiment I. Kinematic theory. Magnetohydrodynamics 38, 41–71 (2002) ADSGoogle Scholar
  66. K.H. Rädler, R. Stepanov, Mean electromotive force due to turbulence of a conducting fluid in the presence of mean flow. Phys. Rev. E 73(5), 056311 (2006) CrossRefADSGoogle Scholar
  67. F. Ravelet, A. Chiffaudel, F. Daviaud, J. Léorat, Toward an experimental von Kármán dynamo: Numerical studies for an optimized design. Phys. Fluids 17, 117104 (2005) CrossRefADSMathSciNetGoogle Scholar
  68. F. Ravelet, R. Volk, A. Chiffaudel, F. Daviaud, B. Dubrulle, R. Monchaux, M. Bourgoin, P. Odier, J.-F. Pinton, M. Berhanu, S. Fauve, N. Mordant, F. Petrelis, Magnetic induction in a turbulent flow of liquid sodium: mean behaviour and slow fluctuations. arXiv:0704.2565 (2007)
  69. F. Ravelet, A. Chiffaudel, F. Daviaud, Supercritical transition to turbulence in an inertially driven von Karman closed flow. J. Fluid Mech. 601, 339 (2008) MATHCrossRefADSGoogle Scholar
  70. A.B. Reighard, M.R. Brown, Turbulent conductivity measurements in a spherical liquid sodium flow. Phys. Rev. Lett. 86(13), 2794 (2001) CrossRefADSGoogle Scholar
  71. G.O. Roberts, Dynamo action of fluid motions with two-dimensional periodicity. Philos. Trans. R. Soc. Lond. A 271, 411–454 (1972) MATHCrossRefADSGoogle Scholar
  72. A.A. Schekochihin, E.L. Haugen, A. Brandenburg, C. Cowley, J.L. Maron, J.C. McWilliiam, The onset of small scale turbulent dynamo at low magnetic Prandtl numbers. Astrophys. J. 625, 115 (2004) CrossRefGoogle Scholar
  73. D. Schmitt, T. Alboussiere, D. Brito, P. Cardin, N. Gagniere, D. Jault, H.-C. Nataf, Rotating spherical Couette flow in a dipolar magnetic field: experimental study of magneto-inertial waves. J. Fluid Mech. 604, 175–197 (2008) MATHCrossRefADSGoogle Scholar
  74. C. Simand, F. Chillà, J.-F. Pinton, Study of inhomogeneous turbulence in the closed flow between corotating disks. Europhys. Lett. 49, 336 (2000) CrossRefADSGoogle Scholar
  75. D. Sisan et al., Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93(11), 114502 (2004) CrossRefADSGoogle Scholar
  76. E.J. Spence, M.D. Nornberg, C.M. Jacobson, R.D. Kendrick, C.B. Forest, Observation of a turbulence-induced large scale magnetic field. Phys. Rev. Lett. 96, 055002 (2006) CrossRefADSGoogle Scholar
  77. E.J. Spence, K. Reuter, C.B. Forest, A spherical plasma dynamo experiment. arXiv:0901.3406 (2009)
  78. M. Steenbeck et al., Experimental discovery of the electromotive force along the external magnetic field induced by a flow of liquid metal (α-effect). Sov. Phys. Dokl. 13, 443 (1968) ADSGoogle Scholar
  79. F. Stefani, M. Xu, G. Gerbeth, F. Ravelet, A. Chiffaudel, F. Daviaud, J. Léorat, Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment. Eur. J. Mech. B, Fluids 25(6), 894 (2006) MATHCrossRefADSGoogle Scholar
  80. F. Stefani, T. Gundrum, G. Gerbeth, G. Rüdiger, J. Szklarski, R. Hollerbach, Experiments on the magnetorotational instability in helical magnetic fields. New J. Phys. 9, 295 (2007) CrossRefADSGoogle Scholar
  81. F. Stefani, A. Gailitis, G. Gerbeth, Magnetohydrodynamic experiments on cosmic magnetic fields. Z. Angew. Math. Mech. 88, 930 (2008) MATHCrossRefMathSciNetGoogle Scholar
  82. R. Stepanov, R. Volk, S. Denisov, P. Frick, V. Noskov, J.-F. Pinton, Induction, helicity and alpha effect in a toroidal screw flow of liquid gallium. Phys. Rev. E 73, 046310 (2006) CrossRefADSGoogle Scholar
  83. D. Sweet, E. Ott, J.M. Finn, T.M. Antonsen Jr., D.P. Lathrop, Blowout bifurcations and the onset of magnetic activity in turbulent dynamos. Phys. Rev. E 63, 066211 (2001) CrossRefADSGoogle Scholar
  84. A. Tilgner, A kinematic dynamo with a small scale velocity field. Phys. Lett. A 226, 75–79 (1997) CrossRefADSGoogle Scholar
  85. A. Tilgner, Numerical simulation of the onset of dynamo action in an experimental two-scale dynamo. Phys. Fluids 14, 4092–4094 (2002) CrossRefADSGoogle Scholar
  86. A. Tilgner, F.H. Busse, Simulation of the bifurcation diagram of the Karlsruhe dynamo. Magnetohydrodynamics 38, 35–40 (2002) ADSGoogle Scholar
  87. E.P. Velikhov, Magneto-rotational instability in differentially rotating liquid metals. Phys. Lett. A. 356, 216–221 (2006) CrossRefADSGoogle Scholar
  88. G. Verhille, N. Plihon, G. Fanjat, R. Volk, M. Bourgoin, J.-F. Pinton, Large scale fluctuations and dynamics of the Bullard-von Kármán dynamo. Geophys. Astrophys. Fluid Dyn. (2009, submitted) Google Scholar
  89. R. Volk, R. Monchaux, M. Berhanu, F. Ravelet, A. Chiffaudel, F. Daviaud, B. Dubrulle, S. Fauve, N. Mordant, Ph. Odier, F. Pétrélis, J.-F. Pinton, Transport of magnetic field by a turbulent flow of liquid sodium. Phys. Rev. Lett. 97, 074501 (2006a) CrossRefADSGoogle Scholar
  90. R. Volk, Ph. Odier, J.-F. Pinton, Fluctuation of magnetic induction in von Karman swirling flows. Phys. Fluids 18(8), 085105 (2006b) CrossRefADSMathSciNetGoogle Scholar
  91. N.O. Weiss, The expulsion of magnetic flux by eddies. Proc. R. Soc. Lond., Ser. A 293, 310 (1966) CrossRefADSGoogle Scholar
  92. M. Xu, F. Stefani, G. Gerbeth, The integral equation approach to kinematic dynamo theory and its application to dynamo experiments in cylindrical geometry. J. Comput. Phys. 227(17), 8130 (2008) MATHCrossRefADSMathSciNetGoogle Scholar
  93. P.J. Zandbergen, D. Dijkstra, Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19, 465 (1987), and references therein CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gautier Verhille
    • 1
  • Nicolas Plihon
    • 1
  • Mickael Bourgoin
    • 1
    • 2
  • Philippe Odier
    • 1
  • Jean-François Pinton
    • 1
  1. 1.Laboratoire de Physique de l’École Normale Supérieure de LyonCNRS & Université de LyonLyonFrance
  2. 2.Laboratoire des Ecoulements Geophysiques et IndustrielsCNRS/UJF/INPG UMR5519GrenobleFrance

Personalised recommendations