Space Science Reviews

, Volume 145, Issue 3–4, pp 285–335 | Cite as

Time-Dependent Nuclear Decay Parameters: New Evidence for New Forces?

  • E. FischbachEmail author
  • J. B. Buncher
  • J. T. Gruenwald
  • J. H. Jenkins
  • D. E. Krause
  • J. J. Mattes
  • J. R. Newport


This paper presents an overview of recent research dealing with the question of whether nuclear decay rates (or half-lives) are time-independent constants of nature, as opposed to being parameters which can be altered by an external perturbation. If the latter is the case, this may imply the existence of some new interaction(s) which would be responsible for any observed time variation. Interest in this question has been renewed recently by evidence for a correlation between nuclear decay rates and Earth–Sun distance, and by the observation of a dip in the decay rate for 54Mn coincident in time with the solar flare of 2006 December 13. We discuss these observations in detail, along with other hints in the literature for time-varying decay parameters, in the framework of a general phenomenology that we develop. One consequence of this phenomenology is that it is possible for different experimental groups to infer discrepant (yet technically correct) results for a half-life depending on where and how their data were taken and analyzed. A considerable amount of attention is devoted to possible mechanisms which might give rise to the reported effects, including fluctuations in the flux of solar neutrinos, and possible variations in the magnitudes of fundamental parameters, such as the fine structure constant and the electron-to-proton mass ratio. We also discuss ongoing and future experiments, along with some implications of our work for cancer treatments, 14C dating, and for the possibility of detecting the relic neutrino background.


Solar physics: Particle emission Solar physics: Flare Nuclear reactions: Fluctuation phenomena 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E.G. Adelberger, E. Fischbach, D.E. Krause, R.D. Newman, Constraining the couplings of massive pseudoscalars using gravity and optical experiments. Phys. Rev. D 68(6), 062002 (2003). doi: 10.1103/PhysRevD.68.062002 CrossRefADSGoogle Scholar
  2. D.E. Alburger, G. Harbottle, E.F. Norton, Half-life of 32Si. Earth Planet. Sci. Lett. 78, 168–176 (1986) CrossRefADSGoogle Scholar
  3. C. Amsler et al., Particle data group. Phys. Lett. B 667(1) (2008) Google Scholar
  4. J. Anderson, G. Spangler, Serial statistics: is radioactive decay random? J. Phys. Chem. 77(26) (1973) Google Scholar
  5. J.D. Barrow, D.J. Shaw, Varying alpha: New constraints from seasonal variations. Phys. Rev. D 78(6), 067304 (2008). arXiv:0806.4317v1 [hep-ph] CrossRefADSGoogle Scholar
  6. Y.A. Baurov , Experimental investigation of changes in β-decay rate of 60Co and 137Cs. Mod. Phys. Lett. A 16, 2089–2101 (2001) CrossRefADSGoogle Scholar
  7. Y.A. Baurov , Experimental investigation of changes in beta-decay count rate of radioactive elements. Phys. At. Nucl. 70(11), 1825–1835 (2007) CrossRefGoogle Scholar
  8. H. Becquerel, On the invisible rays emitted by phosphorescent bodies. Comptes Rendus 122, 501–503 (1896) Google Scholar
  9. F. Begemann, K. Ludwig, G. Lugmair, K. Min, L. Nyquist, P. Patchett, P. Renne, C.Y. Shih, I. Villa, R. Walker, Call for an improved set of decay constants for geochronological use. Geochim. Cosmochim. Acta 65(1), 111–121 (2001) CrossRefADSGoogle Scholar
  10. V. Berestetskii, E. Lifshitz, L. Pitaevskii, Relativistic Quantum Theory, Part 2 (Pergamon, Oxford, 1979), pp. 402–408 Google Scholar
  11. R. Bernabei , First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008) CrossRefGoogle Scholar
  12. H. Bethe, Possible explanation of the solar neutrino puzzle. Phys. Rev. Lett. 56(12), 1305–1308 (1986) CrossRefADSGoogle Scholar
  13. N. Bogoliubov, D. Shirkov, Introduction To The Theory of Quantized Fields (Wiley, New York, 1959), pp. 260–262 Google Scholar
  14. G.W. Bruhn, Does radioactivity correlate with the annual orbit of Earth around Sun? Aperion 9(2), 28–40 (2002) Google Scholar
  15. V. Chisté, M. Be, C. Dulieu, Evaluation of decay data of radium-226 and its daughters, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007, Nice, France, ed. by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray. (EDP Sciences, France, 2008). doi: 10.1051/ndata:07122. Google Scholar
  16. T.C. Chiu, R. Fairbanks, L. Cao, R. Mortlock, Analysis of the atmospheric 14C record spanning the past 50,000 years derived from high-precision 230Th/234U/238U, 231Pa/235U and 14C dates on fossil corals. Quart. Sci. Rev. 26, 18–36 (2007) CrossRefADSGoogle Scholar
  17. P. Christmas, R.A. Mercer, M.J. Woods, S.M. Judge, 210Bi and the apparent half-life of a sealed 226Ra source. Int. J. Appl. Radiat. Isot. 34(11), 1555 (1983) CrossRefGoogle Scholar
  18. P.S. Cooper, Searching for modifications to the exponential radioactive decay law with the Cassini spacecraft. Astropart. Phys. 31(4), 267–269 (2009). arXiv:0809.4248v1 [astro-ph] CrossRefADSGoogle Scholar
  19. A. Derbin , Comment on the paper “realization of discrete states during fluctuations in macroscopic processes”. Phys. Usp. 43(2), 199–202 (2000) CrossRefADSGoogle Scholar
  20. G. Duda, G. Gelmini, S. Nussinov, Expected signals in relic neutrino detectors. Phys. Rev. D 64, 122001 (2001) CrossRefADSGoogle Scholar
  21. K.J. Ellis, The effective half-life of a broad beam 238PuBe total body neutron irradiator. Phys. Med. Biol. 35(8), 1079–1088 (1990) CrossRefGoogle Scholar
  22. G.T. Emery, Perturbation of nuclear decay rates. Ann. Rev. Nucl. Phys. 22, 165–202 (1972) CrossRefADSGoogle Scholar
  23. E.D. Falkenberg, Radioactive decay caused by neutrinos? Aperion 8(2), 32–45 (2001) Google Scholar
  24. E.D. Falkenberg, Reply to “Does radioactivity correlate with the annual orbit of Earth around Sun?” by G.W. Bruhn. Aperion 9(2), 41–43 (2002) Google Scholar
  25. L. Fassio-Canuto, Neutron beta decay in a strong magnetic field. Phys. Rev. 187(5), 2141 (1969) CrossRefADSGoogle Scholar
  26. E. Fischbach, C. Talmadge, The Search for Non-Newtonian Gravity (Springer, New York, 1999) zbMATHGoogle Scholar
  27. E. Fischbach, D.E. Krause, New limits on the couplings of light pseudoscalars from equivalence principle experiments. Phys. Rev. Lett. 82(24), 4753–4756 (1999a). doi: 10.1103/PhysRevLett.82.4753 CrossRefADSGoogle Scholar
  28. E. Fischbach, D.E. Krause, Constraints on light pseudoscalars implied by tests of the gravitational inverse-square law. Phys. Rev. Lett. 83(18), 3593–3596 (1999b). doi: 10.1103/PhysRevLett.83.3593 CrossRefADSGoogle Scholar
  29. E. Fischbach et al., Possibility of a Self-induced Contribution to Nuclear Decays, 2009 ANS Proceedings (2009, in preparation) Google Scholar
  30. V.V. Flambaum, E.V. Shuryak, How changing physical constants and violation of local position invariance may occur? in AIP Conf. Proc., vol. 995, 2008, pp. 1–11 Google Scholar
  31. H. Frauenfelder, E.M. Henley, Subatomic Physics, 1st edn. (Prentice-Hall, New Jersey, 1974) Google Scholar
  32. M. Fukugita, T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, Berlin, 2003), p. 181 Google Scholar
  33. W. Furry, On bound states and scattering in positron theory. Phys. Rev. 81(1), 115–124 (1951) zbMATHCrossRefADSMathSciNetGoogle Scholar
  34. G. Gelmini, P. Gondolo, Weakly interacting massive particle annual modulation with opposite phase in late-infall halo models. Phys. Rev. D 64, 023504 (2001) CrossRefADSGoogle Scholar
  35. D. Griffiths, Introduction to Elementary Particles (Wiley, New York, 1987) CrossRefGoogle Scholar
  36. H.P. Hahn, H.J. Born, J. Kim, Survey on the rate of perturbation of nuclear decay. Radiochim. Acta 23, 23–37 (1976) Google Scholar
  37. G. Harbottle, C. Koehler, R. Withnell, A differential counter for the determination of small differences in decay rates. Rev. Sci. Inst. 44(1), 55–59 (1973) CrossRefADSGoogle Scholar
  38. P.E. Hodgson, E. Gadioli, E.G. Erba, Introductory Nuclear Physics (Clarendon, Oxford, 1997), p. 375 Google Scholar
  39. R. Horvat, Recent results of the neutrino mass squared measurements and the coherent neutrino–cold-dark-matter interaction. Phys. Rev. D 57(8), 5236 (1998) CrossRefADSMathSciNetGoogle Scholar
  40. J. Jenkins, E. Fischbach, Perturbation of nuclear decay rates during the solar flare of 13 December 2006. arXiv:0808.3156v1 [astro-ph] (2008)
  41. J. Jenkins et al., Evidence for correlations between nuclear decay rates and Earth–Sun distance. arXiv:0808.3283v1 [astro-ph] (2008)
  42. V.R. Khalilov, Electroweak nucleon decays in a superstrong magnetic field. Theor. Math. Phys. 145(1), 1462 (2005) CrossRefMathSciNetGoogle Scholar
  43. A. Kogut , Dipole anisotropy in the COBE differential microwave radiometers first-year sky maps. Apstrophys. J. 419, 1–6 (1993) CrossRefADSGoogle Scholar
  44. B.F. Kostenko, M.Z. Yuriev, Possibility of a modification of life time of radioactive elements by magnetic monopoles. Ann. Found. L. de Broglie 33(1–2), 93–106 (2008). arXiv:0709.1052v1 hep-ph Google Scholar
  45. E.A. Kushnirenko, I.B. Pogozhev, Comment on the paper by S.E. Shnoll et al. Phys. Usp. 43(2), 203–204 (2000) CrossRefADSGoogle Scholar
  46. R. Lindstrom et al., Does the Half-Life of a Radioactive Sample Depend on Its Shape? 2009 ANS Proceedings (2009, in preparation) Google Scholar
  47. V. Lobashev , Direct search for mass of neutrino and anomaly in the tritium beta-spectrum. Phys. Lett. B 460, 227–235 (1999) CrossRefADSGoogle Scholar
  48. V. Lyul’ka, Elementary particle decays in the field of an intense electromagnetic wave. Sov. Phys.-JETP 42(3), 408–412 (1975) ADSGoogle Scholar
  49. F. Mandl, G. Shaw, Quantum Field Theory–Revised Edition (Wiley, New York, 1993), pp. 159–165 Google Scholar
  50. J.J. Matese, R.F. O’Connell, Neutron beta decay in a uniform constant magnetic field. Phys. Rev. 180(5), 1289 (1969) CrossRefADSGoogle Scholar
  51. J. Nieves, Neutrinos in a medium. Phys. Rev. D. 40(3), 866–872 (1989) CrossRefADSGoogle Scholar
  52. A. Nikishov, V. Ritus, Quantum processes in the field of a plane electromagnetic wave and in a constant field. Sov. Phys.-JETP 19(5), 1191–1199 (1964) MathSciNetGoogle Scholar
  53. NOAA, NOAA Space Environment Center, SEC PRF 1634, 2006 Google Scholar
  54. E. Norman , Influence of physical and chemical environments on the decay rates of 7Be and 40K. Phys. Lett. B 519, 15–22 (2001) CrossRefADSGoogle Scholar
  55. E.B. Norman , Evidence against correlations between nuclear decay rates and Earth–Sun distance. Astropart. Phys. 31, 135–137 (2009) CrossRefADSGoogle Scholar
  56. S.F. Odenwald, J.L. Green, Bracing for a solar superstorm. Sci. Am. 299(2) (2008) Google Scholar
  57. B. Odom, D. Hanneke, B. D’Urso, G. Gabrielse, New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006) CrossRefADSGoogle Scholar
  58. T. Ohtsuki, H. Yuki, M. Muto, J. Kasagi, K. Ohno, Enhanced electron-capture decay rate of 7Be encapsulated in C60 cages. Phys. Rev. Lett. 93, 112501 (2004) CrossRefADSGoogle Scholar
  59. A.G. Parkhomov, Bursts of count rate of beta radioactive sources during long-term measurements. Int. J. Pure Appl. Phys. 1, 119–128 (2005) Google Scholar
  60. S. Pommé, Problems with the uncertainty budget of half-life measurements. Am. Chem. Soc. Symp. Ser. 945, 282–292 (2007) Google Scholar
  61. S. Pommé, J. Camps, R. Van Ammel, J. Paepen, Protocol for uncertainty assessment of half-lives. J. Rad. Nucl. Chem. 276(2), 335–339 (2008) CrossRefGoogle Scholar
  62. H.R. Reiss, Nuclear beta decay induced by intense electromagnetic fields: Basic theory. Phys. Rev. C 27(3), 1199 (1983) CrossRefADSGoogle Scholar
  63. V. Ritus, Effect of an electromagnetic field on decays of elementary particles. Sov. Phys.-JETP 29(3), 532–541 (1969) ADSGoogle Scholar
  64. T. Rosenband , Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808 (2008) CrossRefADSGoogle Scholar
  65. E. Rutherford, Radioactive Substances and Their Radiations (Cambridge University Press, New York, 1913) Google Scholar
  66. E. Rutherford, J. Chadwick, C. Ellis, Radiations from Radioactive Substances (Cambridge University Press, Cambridge, 1930), p. 167 zbMATHGoogle Scholar
  67. A.J. Sanders, Implications for C-14 dating of the Jenkins-Fischbach effect and possible fluctuation of the solar fusion rate (2008). arXiv:0808.3986v2 [astro-ph]
  68. H. Schrader, Private communication, 2008 Google Scholar
  69. D.J. Shaw, Detecting seasonal changes in the fundamental constants (2007). arXiv:gr-qc/0702090v1
  70. S.E. Shnoll , Realization of discrete states during fluctuations in macroscopic processes. Phys. Usp. 41, 1025–1035 (1998) CrossRefADSGoogle Scholar
  71. S.E. Shnoll , Regular variation of the fine structure of statistical distributions as a consequence of cosmophysical agents. Phys. Usp. 43(2), 205–209 (2000) CrossRefADSGoogle Scholar
  72. H. Siegert, H. Schrader, U. Schötzig, Half-life measurements of europium radionuclides and the long-term stability of detectors. Appl. Radiat. Isot. 49(9–11), 1397 (1998) CrossRefGoogle Scholar
  73. M. Silverman, W. Strange, C. Silverman, T. Lipscombe, On the run: Unexpected outcomes of random events. Phys. Teach. 37, 218–225 (1999) CrossRefADSGoogle Scholar
  74. M. Silverman, W. Strange, C. Silverman, T. Lipscombe, Tests for randomness of spontaneous quantum decay. Phys. Rev. A 61(042106) (2000) Google Scholar
  75. L. Stodolsky, Speculation on detection of the “neutrino sea”. Phys. Rev. Lett. 34(2), 110–112 (1975) CrossRefADSGoogle Scholar
  76. W. Stoeffl, D.J. Decman, Anomalous structure in the beta decay of gaseous molecular tritium. Phys. Rev. Lett. 75(18), 3237 (1995) CrossRefADSGoogle Scholar
  77. P.A. Sturrock, Solar neutrino variability and its implications for solar physics and neutrino physics. Astrophys. J. 688, 53 (2008) CrossRefADSGoogle Scholar
  78. J. Taylor, An Introduction to Error Analysis (University Science Books, Sausalito, 1997) Google Scholar
  79. I.M. Ternov , β-decay polarization effects in an intense electromagnetic field. Sov. J. Nucl. Phys. 28(6), 747 (1978) Google Scholar
  80. I.M. Ternov , Polarization effects and electron spectrum in the nuclear β decay in the field of an intense electromagnetic wave. Sov. J. Nucl. Phys. 39(5), 710 (1984) Google Scholar
  81. S.J. Tu, E. Fischbach, Geometric random inner products: A family of tests for random number generators. Phys. Rev. E 67, 016113 (2003) CrossRefADSMathSciNetGoogle Scholar
  82. S.J. Tu, E. Fischbach, A study on the randomness of the digits of π. Int. J. Mod. Phys. C 16(2), 281–294 (2005) zbMATHCrossRefADSGoogle Scholar
  83. J. Uzan, The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75, 403–455 (2003) CrossRefADSMathSciNetGoogle Scholar
  84. F. Wissman, Variation observed in environmental radiation at ground level. Rad. Prot. Dos. 118, 3–10 (2006) CrossRefGoogle Scholar
  85. C.S. Wu, S.A. Moszkowski, Beta Decay (Interscience, New York, 1966) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. Fischbach
    • 1
    Email author
  • J. B. Buncher
    • 1
  • J. T. Gruenwald
    • 1
  • J. H. Jenkins
    • 1
  • D. E. Krause
    • 2
  • J. J. Mattes
    • 1
  • J. R. Newport
    • 1
  1. 1.Physics DepartmentPurdue UniversityWest LafayetteUSA
  2. 2.Physics DepartmentWabash CollegeCrawfordswilleUSA

Personalised recommendations