Space Science Reviews

, Volume 150, Issue 1–4, pp 209–241 | Cite as

The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission

  • David E. Smith
  • Maria T. Zuber
  • Glenn B. Jackson
  • John F. Cavanaugh
  • Gregory A. Neumann
  • Haris Riris
  • Xiaoli Sun
  • Ronald S. Zellar
  • Craig Coltharp
  • Joseph Connelly
  • Richard B. Katz
  • Igor Kleyner
  • Peter Liiva
  • Adam Matuszeski
  • Erwan M. Mazarico
  • Jan F. McGarry
  • Anne-Marie Novo-Gradac
  • Melanie N. Ott
  • Carlton Peters
  • Luis A. Ramos-Izquierdo
  • Lawrence Ramsey
  • David D. Rowlands
  • Stephen Schmidt
  • V. Stanley ScottIII
  • George B. Shaw
  • James C. Smith
  • Joseph-Paul Swinski
  • Mark H. Torrence
  • Glenn Unger
  • Anthony W. Yu
  • Thomas W. Zagwodzki
Article

Abstract

The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.

Keywords

Moon Shape Space instrumentation Topography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.B. Abshire , Geoscience Laser Altimeter System (GLAS) in the ICESat mission: On-orbit measurement performance. Geophys. Res. Lett. 43, L21S02 (2005) CrossRefGoogle Scholar
  2. H. Araki , Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science 323, 897–900 (2009) CrossRefADSGoogle Scholar
  3. B.A. Archinal, et al., U.S. Geological Survey Open File Report 2006-1367, 21 pp., 2006. pubs.usgs.gov/of/2006/1367/
  4. J.F. Cavanaugh , The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev. 131, 451–480 (2007) CrossRefADSGoogle Scholar
  5. G. Chin , Lunar Reconnaissance Orbiter overview: The instrument suite and mission. Space Sci. Rev. 129, 391–419 (2007). doi:10.10007/s11214-007-9153-y CrossRefADSGoogle Scholar
  6. A.C. Cook , Lunar polar topography derived from Clementine stereoimages. J. Geophys. Res. 105, 12,023–12,033 (2000) ADSGoogle Scholar
  7. J.O. Dickey , Lunar laser ranging: A continuing legacy of the Apollo program. Science 265, 482–490 (1994) CrossRefADSGoogle Scholar
  8. W.M. Folkner, J.G. Williams, Planetary Ephemeris DE421 for Phoenix Navigation (Jet Propulsion Laboratory, Pasadena, 2008) Google Scholar
  9. H. Frey et al., Ancient lowlands on Mars. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013832
  10. C.S. Gardner, Target signatures for laser altimeters: an analysis. Appl. Opt. 21, 448–453 (1982) CrossRefADSGoogle Scholar
  11. S. Goossens, K. Matsumoto, Lunar degree 2 potential Love number determination from satellite tracking data. Geophys. Res. Lett. 35 (2008). doi:10.1029/2007GL031960
  12. W.M. Hartmann, Lunar cratering chronology. Icarus 13, 299–301 (1970) CrossRefADSGoogle Scholar
  13. W.M. Hartmann, Moon: Origin and evolution of multi-ring basins. Moon 3, 3–78 (1971) CrossRefADSGoogle Scholar
  14. J.A. Kamalakar , Lunar ranging instrument for Chandrayaan-1. J. Earth Syst. Sci. 114, 725–731 (2005) CrossRefADSGoogle Scholar
  15. A.S. Konopliv , Recent gravity models as a result of the Lunar Prospector mission. Icarus 150, 1–18 (2001) CrossRefADSGoogle Scholar
  16. H.J. Melosh, Impact Cratering: A Geologic Process (Oxford University Press, New York, 1989). 245 pp. Google Scholar
  17. G.A. Neumann , The crossover analysis of MOLA altimetric data. J. Geophys. Res. 106, 23,753–23,768 (2001) CrossRefADSGoogle Scholar
  18. S. Nozette , The Clementine mission to the Moon: Scientific overview. Science 266, 1835–1839 (1994) CrossRefADSGoogle Scholar
  19. D.E. Pavlis et al., GEODYN Operations Manuals. Raytheon ITTS Contractor Report, Lanham, MD, 2001 Google Scholar
  20. H. Qian, Topography of the Moon from the Chang’e Laser Altimetry Data, 2008 Google Scholar
  21. W. Quaide, Rilles, ridges and domes—Clues to maria history. Icarus 4, 374–389 (1965) CrossRefADSGoogle Scholar
  22. L. Ramos-Izquierdo et al., The Lunar Orbiter Laser Altimeter (LOLA) optical subsystem, 2009 Google Scholar
  23. H. Riris et al., LOLA Calibration Report. NASA/Goddard Space Flight Center, Greenbelt, MD, 2008 Google Scholar
  24. M.S. Robinson et al., The Lunar Reconnaissance Orbiter Camera (LROC). Space Sci. Rev. (2009, this issue) Google Scholar
  25. D.D. Rowlands , The use of laser altimetry in the orbit and attitude determination of Mars Global Surveyor. Geophys. Res. Lett. 26, 1191–1194 (1999) CrossRefMathSciNetADSGoogle Scholar
  26. R.A. Schultz , Igneous dikes on Mars revealed by Mars Orbiter Laser Altimeter topography. Geol. Soc. Am. Bull. 32, 889–892 (2004) Google Scholar
  27. B.E. Schutz, Laser altimetry and LIDAR from ICESat/GLAS. IEEE Geosci. Remote Sens. 3, 1016–1019 (2001) Google Scholar
  28. D.E. Smith , Topography of the Moon from the Clementine LIDAR. J. Geophys. Res. 102, 1591–1611 (1997) CrossRefADSGoogle Scholar
  29. D.E. Smith , The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999) CrossRefADSGoogle Scholar
  30. D.E. Smith , Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23,689–23,722 (2001) ADSGoogle Scholar
  31. L. Soderblom, A model for small-impact erosion applied to the lunar surface. J. Geophys. Res. 75, 2655–2661 (1970) CrossRefADSGoogle Scholar
  32. P.D. Spudis , Ancient multiring basins on the Moon revealed by Clementine laser altimetry. Science 266, 1848–1851 (1994) CrossRefADSGoogle Scholar
  33. X. Sun et al., Radiometry measurements of Mars at 1064 nm using the Mars Orbiter Laser Altimeter. EOS Trans. Am. Geophys. Un. 82, 2001 Google Scholar
  34. U.S. Geological Survey, Color-coded topography and shaded relief map of the lunar near side and far side hemispheres. Flagstaff, AZ, 2002, pp. I-2769 Google Scholar
  35. M.A. Wieczorek, Gravity and topography of the terrestrial planets. Treatise Geophys. 10, 165–206 (2007) CrossRefGoogle Scholar
  36. M.T. Zuber , The Mars Observer Laser Altimeter investigation. J. Geophys. Res. 97, 7781–7797 (1992) CrossRefADSGoogle Scholar
  37. M.T. Zuber , The shape and internal structure of the Moon from the Clementine mission. Science 266, 1839–1843 (1994) CrossRefADSGoogle Scholar
  38. M.T. Zuber , Outstanding questions on the internal structure and thermal evolution of the Moon and future prospects from the GRAIL mission. Lunar Planet. Sci. Conf. XXXIX, #1074 (2008a) ADSGoogle Scholar
  39. M.T. Zuber , Laser altimeter observations from MESSENGER’s first Mercury flyby. Science 321, 77–79 (2008b) CrossRefADSGoogle Scholar
  40. M.T. Zuber et al., The Lunar Reconnaissance Orbiter laser ranging investigation. Space Sci. Rev. (2009, this issue) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • David E. Smith
    • 1
  • Maria T. Zuber
    • 2
  • Glenn B. Jackson
    • 3
  • John F. Cavanaugh
    • 3
  • Gregory A. Neumann
    • 1
  • Haris Riris
    • 1
  • Xiaoli Sun
    • 1
  • Ronald S. Zellar
    • 3
  • Craig Coltharp
    • 3
  • Joseph Connelly
    • 3
  • Richard B. Katz
    • 3
  • Igor Kleyner
    • 3
  • Peter Liiva
    • 5
  • Adam Matuszeski
    • 3
  • Erwan M. Mazarico
    • 1
  • Jan F. McGarry
    • 1
  • Anne-Marie Novo-Gradac
    • 3
  • Melanie N. Ott
    • 3
  • Carlton Peters
    • 3
  • Luis A. Ramos-Izquierdo
    • 3
  • Lawrence Ramsey
    • 3
  • David D. Rowlands
    • 1
  • Stephen Schmidt
    • 3
  • V. Stanley ScottIII
    • 1
  • George B. Shaw
    • 3
  • James C. Smith
    • 3
  • Joseph-Paul Swinski
    • 1
  • Mark H. Torrence
    • 4
  • Glenn Unger
    • 3
  • Anthony W. Yu
    • 3
  • Thomas W. Zagwodzki
    • 1
  1. 1.Solar System Exploration DivisionNASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Advanced Engineering Technology DirectorateNASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.Stinger Ghaffarian TechnologiesGreenbeltUSA
  5. 5.Sigma Space CorporationLanhamUSA

Personalised recommendations