Advertisement

Space Science Reviews

, Volume 147, Issue 3–4, pp 271–313 | Cite as

An Overview of Ionosphere—Thermosphere Models Available for Space Weather Purposes

  • A. BelehakiEmail author
  • I. Stanislawska
  • J. Lilensten
Article

Abstract

Our objective is to review recent advances in ionospheric and thermospheric modeling that aim at supporting space weather services. The emphasis is placed on achievements of European research groups involved in the COST Action 724. Ionospheric and thermospheric modeling on time scales ranging from a few minutes to several days is fundamental for predicting space weather effects on the Earth’s ionosphere and thermosphere. Space weather affects telecommunications, navigation and positioning systems, radars, and technology in space. We start with an overview of the physical effects of space weather on the upper atmosphere and on systems operating at this regime. Recent research on drivers and development of proxies applied to support space weather modeling efforts are presented, with emphasis on solar radiation indices, solar wind drivers and ionospheric indices. The models are discussed in groups corresponding to the physical effects they are dealing with, i.e. bottomside ionospheric effects, trans-ionospheric effects, neutral density and scale height variations, and spectacular space weather effects such as auroral emissions. Another group of models dealing with global circulation are presented here to demonstrate 3D modeling of the space environment. Where possible we present results concerning comparison of the models’ performance belonging to the same group. Finally we give an overview of European systems providing products for the specification and forecasting of space weather effects on the upper atmosphere, which have implemented operational versions of several ionospheric and thermospheric models.

Keywords

Space weather Space weather effect Ionosphere Thermosphere Space weather drivers and proxies Space weather prediction models Space weather services Ionosphere specification Ionosphere forecasting Electron density reconstruction Thermospheric drag 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aarons, Global morphology of ionospheric scintillations. Proc. IEEE 70(4), 360–378 (1982) ADSGoogle Scholar
  2. E.L. Afraimovich, O.N. Boitman, E.I. Zhovty, A.D. Kalikhman, T.G. Pirog, Dynamics and anisotropy of traveling ionospheric disturbances as deduced from transionospheric sounding data. Radio Sci. 34(2), 477–486 (1999) ADSGoogle Scholar
  3. S.I. Akasofu, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121–190 (1981) ADSGoogle Scholar
  4. D.N. Anderson, M.J. Buonsanto, M. Codrescu, D. Decker, C.G. Fesen, T.J. Fuller-Rowell, B.W. Reinisch, P.G. Richards, R.G. Roble, R.W. Schunk, J.J. Sojka, Intercomparison of physical models and observations of the ionosphere. J. Geophys. Res. 103, 2179–2192 (1998) ADSGoogle Scholar
  5. E.A. Araujo-Pradere, T.J. Fuller-Rowell, STORM: An empirical storm-time ionospheric correction model, 2, Validation, Radio Sci. 37 (2002) Google Scholar
  6. E.A. Araujo-Pradere, T.J. Fuller-Rowell, Validation of STORM response in IRI2000. J. Geophys. Res. 108(A3), 1120 (2003). doi: 10.1029/2002JA009720 Google Scholar
  7. E.A. Araujo-Pradere, T.J. Fuller-Rowell, M.V. Coderscu, STORM: An empirical storm-time ionospheric correction model, 1, Model description, Radio Sci. 37 (2002). doi: 10.1029/2001RS002467
  8. A.D. Aylward, G.J. Milward, A. Lotinga, A. Dobbin, M.J. Harris, Recent advances in modeling space weather effects on the terrestrial upper and middle atmospheres. COST Action 724 Final Report, 319-326, ed. OPOCE, European Commission, 2007 Google Scholar
  9. J.R. Austen, S.J. Franke, C.H. Liu, Ionospheric imaging using computerized tomography. Radio Sci. 23, 299–307 (1988) ADSGoogle Scholar
  10. P.M. Banks, G. Kockarts, Aeronomy (Academic Press, San Diego, 1973) Google Scholar
  11. A. Belehaki, L. Kersley, Statistical validation of a technique for estimating total electron content from bottomside ionospheric profiles. Radio Sci. 41, RS5003 (2006). doi: 10.1029/2005RS003433 ADSGoogle Scholar
  12. A. Belehaki, I. Tsagouri, On the occurrence of storm-induced nighttime ionization enhancements at ionospheric middle latitudes, J. Geophys. Res. 107 (2002) Google Scholar
  13. A. Belehaki, N. Jakowski, B. Reinisch, Comparison of ionospheric ionization measurements over Athens using ground ionosonde and GPS derived TEC values. Radio Sci. 38(6), 1105 (2003). doi: 10.1029/2003RS002868 ADSGoogle Scholar
  14. A. Belehaki, P. Marinov, I. Kutiev, N. Jakowski, S. Stankov, Comparison of the topside ionosphere scale height determined by topside sounders model and bottomside Digisonde profiles. Adv. Space Res. 37(5), 963–966 (2006a) ADSGoogle Scholar
  15. A. Belehaki, Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, M. Hatzopoulos, Monitoring and forecasting the ionosphere over Europe: The DIAS project. Space Weather 4, S12002 (2006b). doi: 10.1029/2006SW000270 ADSGoogle Scholar
  16. A. Belehaki, Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, M. Hatzopoulos, Ionospheric specification and forecasting based on observations from European ionosondes participating in DIAS project. Acta Geophys. 55(3), 398–409 (2007). doi: 10.2478/s11600-007-0010-x ADSGoogle Scholar
  17. A. Belehaki, J. Watermann, J. Lilensten, A. Glover, M. Hapgood, M. Messerotti, R. van der Linden, H. Lundstedt, COST Action ES0803: Development of space weather products and services in Europe. Space Weather (2008, in press) Google Scholar
  18. D. Bilitza, Solar-terrestrial models and application software. Planet Space Sci. 40, 541 (1992) ADSGoogle Scholar
  19. D. Bilitza, International reference ionosphere 2000. Radio Sci. 36(2), 261–276 (2001) ADSGoogle Scholar
  20. P.A. Bradley, Indices of ionospheric response to solar-cycle epoch. Adv. Space Res. 13, (3)25–(3)28 (1993) ADSGoogle Scholar
  21. P.A. Bradley, PRIME (Prediction Regional Ionospheric Modelling over Europe), COST Action 238 Final Report, Commission of the European Communities, Brussels, 1995 Google Scholar
  22. P.A. Bradley, G. Juchnikowski, H. Rothkaehl, I. Stanislawska, Instantaneous maps of the European middle and high-latitude ionosphere for HF propagation assessments. Adv. Space Res. 22(6), 861–864 (1998) ADSGoogle Scholar
  23. J. Bremer, The influence of the IMF structure on the ionospheric F-region. J. Atmos. Terr. Phys. 50(9), 831–838 (1988) ADSGoogle Scholar
  24. S. Bruinsma, G. Thuillier, F. Barlier, The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties. J. Atmos. Sol.-Terr. Phys. 65, 1053–1070 (2003) ADSGoogle Scholar
  25. M.J. Buonsanto, Ionospheric storms—a review. Space Sci. Rev. 88, 563 (1999) ADSGoogle Scholar
  26. D. Buresova, J. Lastovicka, G. De Franceschi, Manifestation of strong geomagnetic storms in the ionosphere above Europe, in Space Weather Research Towards Applications in Europe, ed. by J. Lilensten. Astrophysics and Space Science Library, vol. 344 (2007), pp. 185–202 Google Scholar
  27. Lj.R. Cander, Toward forecasting and mapping ionospheric space weather under the COST actions. Adv. Space Res. 31(4), 957–964 (2003) ADSGoogle Scholar
  28. Lj.R. Cander, Ionospheric research and space weather services. J. Atmos. Sol.-Terr. Phys. (2008). doi: 10.1016/jastp.2008.05.010 Google Scholar
  29. G. Crowley, J. Schoendorf, G. Roble, F.A. Marcos, Cellular structures in the high-latitude thermosphere. J. Geophys. Res. 101, 211–224 (1996) ADSGoogle Scholar
  30. R.E. Daniell Jr., L.D. Brown, D.N. Anderson, M.W. Fox, P.H. Doherty, D.T. Decker, J.J. Sojka, R.W. Schunk, Parameterized ionospheric model: A global ionospheric parameterization based on first principle models. Radio Sci. 30(5), 1499–1510 (1995) ADSGoogle Scholar
  31. Y. Deng, A.D. Richmond, A.J. Ridley, H.-L. Liu, Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophys. Res. Lett. 35, L01104 (2008). doi: 10.1029/2007GL032182 Google Scholar
  32. R.F. Donnelly, D.F. Heath, J.L. Lean, G.J. Rottman, Differences in the temporal variations of solar UV flux, 10.7-cm solar radio flux, sunspot number, and Ca-K plage data caused by solar rotation and active region evolution. J. Geophys. Res. 88, 9883–9888 (1983) ADSGoogle Scholar
  33. R.F. Donnelly, T.P. Repoff, J.W. Harvey, D.F. Heath, Temporal characteristics of the solar UV flux and He I line at 1083 nm. J. Geophys. Res. 90, 6267–6273 (1986) ADSGoogle Scholar
  34. T. Dudok de Wit, J. Aboudarham, P.-O. Amblard, F. Auchère, J. Lilensten, M. Kretzschmar, Which solar EUV proxies are best for reconstructing the solar EUV irradiance? Adv. Spac. Res. 42(4), 903–911 (2008) ADSGoogle Scholar
  35. G. Earle, M.C. Kelley, Spectral studies of the sources of ionospheric electric fields. J. Geophys. Res. 92, 213 (1987) ADSGoogle Scholar
  36. D.T. Farley, Incoherent scatter radar probing, in Modern Ionospheric Science, ed. by H. Kohl, R. Ruster, K. Schlegel (Eur. Geophys. Soc., Katlenhurg-Lindau, 1996), pp. 415–439 Google Scholar
  37. L. Floyd, J. Newmark, J. Cook, L. Herring, D. McMullin, Solar EUV and UV spectral irradiances and solar indices. J. Atmos. Sol.-Terr. Phys. 67, 3–15 (2005) ADSGoogle Scholar
  38. C.A. Franklin, M.A. Maclean, The design of swept-frequency topside Sounders. Proc. IEEE 57, 897–929 (1969) Google Scholar
  39. T.J. Fuller-Rowell, D. Rees, A three-dimensional time dependent global model of the thermosphere. J. Atmos. Sci. 27(11), 2545–2567 (1980) ADSGoogle Scholar
  40. T.J. Fuller-Rowell, M.V. Codrescu, E. Araujo-Pradere, Capturing the Storm-Time F-Region Ionospheric Response in an Empirical Model. AGU Geophysical Monograph, vol. 125 (2001), pp. 393–402 Google Scholar
  41. D.L. Gallagher, P.D. Craven, R.H. Comfort, An empirical model of the earth’s plasmasphere. Adv. Space Res. 8(8), 15–24 (1988) ADSGoogle Scholar
  42. W.D. Gonzalez, A.L.C. Gonzalez, Energy transfer by magnetopause reconnection and the substorm parameter ε. Planet. Space Sci. 32, 1007–1012 (1984) ADSGoogle Scholar
  43. W.D. Gonzalez, F.S. Mozer, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J. Geophys. Res. 79, 41864194 (1974) ADSGoogle Scholar
  44. W.D. Gonzalez, B.T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst<−100 nT). Planet. Space Sci. 35, 1101 (1987) ADSGoogle Scholar
  45. W.D. Gonzalez, B.T. Tsurutani, A.L. Gonzalez, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529–562 (1999) ADSGoogle Scholar
  46. C.A. Gonzales, M.C. Kelley, B.G. Fejer, J.F. Vickrey, R.F. Woodman, Equatorial electric fields during magnetically disturbed conditions. 2. Implications of simultaneous auroral and equatorial measurements. J. Geophys. Res. 84, 5803 (1979) ADSGoogle Scholar
  47. R.A. Greenwald, The role of coherent radars in ionospheric and magnetospheric research, in Modern Ionospheric Science, ed. by H. Kohl, R. Ruster, K. Schlegel, Eur. Geophys. Soc. (Katlenburg-Lindau, 1996), pp. 391–414 Google Scholar
  48. P. Guio, J. Lilensten, Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines. Ann. Geophys. 17, 903–912 (1999) ADSGoogle Scholar
  49. T.L. Gulyaeva, I. Stanislawska, Derivation of a planetary ionospheric storm index. Ann. Geophys. (2008, accepted) Google Scholar
  50. L.A. Hajkowicz, Types of ionospheric scintillations in southern mid-latitudes during the last sunspot maximum. J. Atmos. Sol.-Terr. Phys. 56(3), 391–399 (1994) ADSGoogle Scholar
  51. R. Hanbaba, Improved quality of service in ionospheric telecommunication systems planning and operation. COST Action 251 Final Report, Space Research Centre, Warsaw, 1999, pp. 102–103 Google Scholar
  52. M.J. Harris, N.F. Arnold, A.D. Aylward, A study into the Effect of the Diurnal Tide on the structure of the background mesosphere and thermosphere using the new Coupled Middle Atmosphere and Thermosphere (CMAT) General Circulation Model. Ann. Geophys. 20, 225–235 (2002) ADSGoogle Scholar
  53. J.W. Harvey, W.C. Livingston, Variability of the solar 10830 He I triplet, in IAU Symposium 154: Infrared Solar Physics, ed. by D.M. Rabin, J.T. Je_eries, C. Lindsey (Kluwer, Dordrecht, 1994), pp. 59–64 Google Scholar
  54. B.M. Heath, D.F. Schlesinger, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986) ADSGoogle Scholar
  55. A.E. Hedin, Correlations between thermospheric density and temperature, solar EUV flux, and 10.7-cm flux variations. J. Geophys. Res. 89, 9828–9834 (1984) ADSGoogle Scholar
  56. A.E. Hedin, MSIS-86 thermospheric model. J. Geophys. Res. 92, 4649–4662 (1987) ADSGoogle Scholar
  57. A.E. Hedin, Extension of the MSIS thermospheric model into the middle and lower atmosphere. J. Geophys. Res. 96, 1159 (1991) ADSGoogle Scholar
  58. A.E. Hedin , Revised global model of thermosphere winds using satellite and ground-based observations. J. Geophys. Res. 96, 7657–7688 (1991) ADSGoogle Scholar
  59. A.E. Hedin, E.L. Fleming, A.H. Manson, F.J. Schmidlin, S.K. Avery, R.R. Clark, S.J. Franke, G.J. Fraser, T. Tsuda, F. Vial, R.A. Vincent, Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys. 58, 1421–1447 (1996) ADSGoogle Scholar
  60. G. Hochegger, B. Nava, S.M. Radicella, R. Leitinger, A family of ionospheric models for different uses. Phys. Chem. Earth 25(4), 307–310 (2000) Google Scholar
  61. K. Hocke, K. Schlegel, A review of atmospheric gravity waves and traveling ionospheric disturbances. Ann. Geophys. 14, 917–940 (1996) ADSGoogle Scholar
  62. Z. Houminer, J.A. Bennett, P.L. Dyson, Real-time ionospheric model updating. IE Aust. IREE Aust. 13(2), 99–104 (1993) Google Scholar
  63. ITU-R, ‘HF Propagation Prediction method’, Recommendation ITU-R, International Telecommunication Union, Geneva, 1994, p. 533 Google Scholar
  64. N. Jakowski, S.M. Stankov, D. Klaehn, Operational space weather service for GNSS precise positioning. Ann. Geophys. 23, 3071–3079 (2005a) ADSGoogle Scholar
  65. N. Jakowski, K. Tsybulya, S.M. Stankov, A. Wehrenpfennig, About the potential of GPS radio occultation measurements for exploring the ionosphere, in Earth Observations with CHAMP—Results from Three Years in Orbit, ed. by C. Reigber, H. Luehr, P. Schwintzer, J. Wickert (Springer, Berlin, 2005b), pp. 441–446 Google Scholar
  66. N. Jakowski, N. Stankov, S.M. Schuster, S. Klein, On developing a new ionospheric perturbation index for space weather operations. Adv. Space Res. 28, 11 (2006) Google Scholar
  67. J.R. Kan, L.C. Lee, S.-I. Akasofu, The energy coupling function and the power generated by the solar wind-magnetosphere dynamics. Planet, Space Sci. 28, 823 (1980) ADSGoogle Scholar
  68. A.T. Karpachev, G.F. Deminova, S.A. Pulinets, Ionospheric changes in response to IMF variations. J. Atmos. Terr. Phys. 57(12), 1415–1432 (1995) ADSGoogle Scholar
  69. M.C. Kelley, B.C. Fejer, C.A. Gonzales, An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 6, 301 (1979) ADSGoogle Scholar
  70. K. Koutroumbas, A. Belehaki, One-step ahead prediction of foF2 using time series forecasting techniques. Ann. Geophys. 23, 3035–3042 (2005) ADSCrossRefGoogle Scholar
  71. K. Koutroumbas, I. Tsagouri, A. Belehaki, Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe. Ann. Geophys. (2008) Google Scholar
  72. I. Kutiev, P. Marinov, Topside sounder model of scale height and transition height characteristics of the ionosphere. Adv. Space Res. 39, 759–766 (2007). doi: 10.1016/j.asr.2006.06.013 ADSGoogle Scholar
  73. I. Kutiev, P. Marinov, S. Watanabe, Model of topside ionosphere scale height based on topside sounder data. Adv. Space Res. 37(5), 943–950 (2006) ADSGoogle Scholar
  74. I. Kutiev, P. Marinov, A. Belehaki, B. Reinisch, N. Jakowski, Reconstruction of the topside density profile by using the topside sounder model profiler and digisonde data. Adv. Space Res. (2009). doi: 10.1016/j.asr.2008.08.017 Google Scholar
  75. J. Lastovicka, Monitoring and forecasting of ionospheric space weather-effects of geomagnetic storms. J. Atmos. Sol.-Terr. Phys. 64, 697–705 (2002) ADSGoogle Scholar
  76. J. Lastovicka, R.A. Akmaev, G. Beig, J. Bremer, J.T. Emmert, Global change in the upper atmosphere. Science 314(5803), 1253 (2006) Google Scholar
  77. C. Lathuillère, W.A. Gault, B. Lamballais, Y.J. Rochon, B.H. Solheim, Doppler temperatures from O1D airglow in the daytime thermosphere as observed by the Wind Imaging Interferometer (WINDII) on the UARS satellite. Ann. Geophys. 20, 203–212 (2002) ADSGoogle Scholar
  78. J.L. Lean, O.R. White, W.C. Livingston, R.F. Donnelly, A. Skumanich, A three-component model of the variability of the solar ultraviolet flux: 145-200 nm. J. Geophys. Res. 87, 10307–10317 (1982) ADSGoogle Scholar
  79. R. Leitinger, Ionospheric electron content, in The Upper Atmosphere-Data Analysis and Interpretation, ed. by W. Dieminger, G.K. Hartmann, R. Leitinger (Springer, New York, 1996), pp. 660–672 Google Scholar
  80. R. Leitinger, S. Radicella, B. Nova, Electron density models for assessments studies – new developments. Acta Geodetica Hung. 37(2–3), 183–193 (2002) Google Scholar
  81. M.F. Levy, M.I. Dick, P. Spalla, C. Scotto, I. Kutiev, P. Muhtarov, Results of COST 251 testing of mappings and models, COST251TD(98)021, September 1998 Google Scholar
  82. J. Lilensten, P.L. Blelly, The TEC and F2 parameters as tracers of the ionosphere and thermosphere. J. Atmos. Sol.-Terr. Phys. 64, 775–793 (2002) ADSGoogle Scholar
  83. C.H. Lin, A.D. Richmond, R.A. Heelis, G.J. Bailey, G. Lu, J.Y. Liu, H.C. Yeh, S.-Y. Su, Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. J. Geophys. Res. 110(14), A12312 (2005). doi: 10.1029/2005JA011304 ADSGoogle Scholar
  84. D. Lummerzheim, J. Lilensten, Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations. Ann. Geophys. 12, 1039–1051 (1994) ADSGoogle Scholar
  85. P. Marinov, I. Kutiev, S. Watanabe, Empirical model of O+–H+ transition height based on topside sounder data. Adv. Space Res. 34(9), 2021–2025 (2004) ADSGoogle Scholar
  86. L.A. McKinnell, A.W.V. Poole, Ionospheric variability and electron density profile studies with neural networks. Adv. Space Res. 27(1), 83–90 (2001) ADSGoogle Scholar
  87. A.V. Mikhailov, Ionospheric Index MF2n for monthly median foF2 modeling and long-term prediction over European area. Phys. Chem. Earth (C) 24(4), 329–332 (1999) Google Scholar
  88. A.V. Mikhailov, V.V. Mikhailov, A new ionospheric index MF2. Adv. Space Res. 25(4), 93–97 (1995) ADSGoogle Scholar
  89. A.V. Mikhailov, V.H. Depuev, A.H. Depueva, Short-term foF2 forecast: Present day state of art, in Space Weather: Research Towards Applications in Europe. Astrophysics and Space Science Library, vol. 344, (2007), pp. 169–184 Google Scholar
  90. G. Millward, R.J. Moffett, S. Quegan, T.J. Fuller-Rowell, A coupled thermosphere-ionosphere-plasmasphere model (CTIP), in Solar Terrestrial Energy Program (STEP) Handbook, ed. by R.W. Schunk (1996) Google Scholar
  91. G. Millward, A. Richmond, N. Maruyama, A. Maute, A new model of the Earth’s ionosphere and plasmasphere, center for integrated space weather modeling. web publication (2005). web.bu.edu/cism/Publications/posters/Millward_CISM_SV2005_14.pdf
  92. P. Muhtarov, I. Kutiev, Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data. Radio Sci. 34(2), 459–464 (1999) ADSGoogle Scholar
  93. P. Muhtarov, I. Kutiev, L. Cander, Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters. Inverse Probl. 18, 49–65 (2002) zbMATHADSGoogle Scholar
  94. A.C. Nicholas, J.M. Picone, S.E. Thonnard, R.R. Meier, K.F. Dymond, D.P. Drob, A methodology for using optimal MSIS parameters retrieved from SSULI data to compute satellite drag on LEO objects. J. Atmos. Sol.-Terr. Phys. 1317–1326 (2000) Google Scholar
  95. A. Nishida, Geomagnetic Dp2 fluctuations and associated magnetospheric phenomena. J. Geophys. Res. 73, 1795 (1968) ADSGoogle Scholar
  96. D.J. Pawlowski, A.J. Ridley, Modeling the thermospheric response to solar flares. J. Geophys. Res. 113, A10309 (2008). doi: 10.1029/2008JA013182 ADSGoogle Scholar
  97. P. Perrault, S.-I. Akasofu, A study of geomagnetic storms. Geophys. J. R. Astr. Soc. 54, 547 (1978) ADSGoogle Scholar
  98. R.F. Pfaff, In-situ measurement techniques for ionospheric research, in Modern Ionospheric Science, ed. by H. Kohl, R. Ruster, K. Schlegel (Eur. Geophys. Soc., Katlenburg-Lindau, 1996), pp. 459–551 Google Scholar
  99. R.A. Phinney, D.L. Anderson, On the radio occultation method for studying planetary atmospheres. J. Geophys. Res. 73(5), 1819–1827 (1968) ADSGoogle Scholar
  100. X. Pi, Ch. Wang, G. Rosen, G. Hajj, B. Wilson, Y. Sahai, E.R. de Paula, M.A. Abdu, Forecasting Equatorial Spread-F Using a Global Assimilative Ionospheric Model: EGS-AGU-EUG 2003, Nice, France, April 06–11, 2003 Google Scholar
  101. J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. (Space Phys.) 107(A12), SIA 15-1. doi: 10.1029/2002JA009430
  102. G.W. Prölss, Ionospheric F-region storms, in Handbook of Atmospheric Electrodynamics, vol. II (CRC, Boca Raton, 1995), pp. 195–248 Google Scholar
  103. G.W. Prölss, Space weather effects in the upper atmosphere: Low and middle latitudes. Lect. Notes Phys. 656, 193–214 (2005) Google Scholar
  104. S.M. Radicella, R. Leitinger, The evolution of the DGR approach to model electron density profiles. Adv. Space Res. 27(1), 35–40 (2001) ADSGoogle Scholar
  105. B.W. Reinisch, Modern ionosondes, in Modern Ionospheric Science, ed. by H. Kohl, R. Rüster, K. Schlegel (Eur. Geophys. Soc., Katlenburg-Lindau, 1996), pp. 410–458 Google Scholar
  106. B.W. Reinisch, X. Huang, Deducing topside profiles and total electron content from bottomside ionograms. Adv. Space Res. 27, 23–30 (2001) ADSGoogle Scholar
  107. B.W. Reinisch, D.M. Haines, R.F. Benson, J.L. Green, G.S. Sales, W.W.L. Taylor, Radio sounding in space: Magnetosphere and topside ionosphere. J. Atmos. Sol.-Terr. Phys. 63, 87–98 (2001) ADSGoogle Scholar
  108. A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601–604 (1992) ADSGoogle Scholar
  109. A.J. Ridley, Y. Deng, G. Toth, The global ionosphere-thermosphere model. J. Atmos. Sol.-Terr. Phys. 68, 839–864 (2006) ADSGoogle Scholar
  110. R.G. Roble, E.C. Ridley, A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett. 21(6), 417–420 (1994) ADSGoogle Scholar
  111. L. Scherliess, B.G. Fejer, Satellite studies of mid- and low-latitude ionospheric disturbance zonal plasma drifts. Geophys. Res. Lett. 25(9), 1503 (1998) ADSGoogle Scholar
  112. R.W. Schunk, L. Scherliess, J.J. Sojka, Recent approaches to modeling ionospheric weather. Adv. Space Res. 31(4), 819–828 (2003) ADSGoogle Scholar
  113. R.W. Schunk, L. Scherliess, J.J. Sojka, D.C. Thompson, D.N. Anderson, M. Codresc, C. Minter, T.J. Fuller-Rowell, R.A. Heelis, M. Hairston, B.M. Howe, Global Assimilation of Ionospheric Measurements (GAIM). Radio Sci. 39(1–11), RS1S02 (2004). doi: 10.1029/2002RS002794 Google Scholar
  114. J.J. Sojka, C. Donald, D.C. Thompson, R.W. Schunk, J.V. Eccles, J.J. Makela, M.C. Kelley, S.A. González, N. Aponte, T.W. Bullett, Ionospheric data assimilation: recovery of strong mid-latitudinal density gradients. J. Atmos. Sol.-Terr. Phys. 65(10), 1087–1097 (2003) ADSGoogle Scholar
  115. S.C. Solomon, Auroral particle transport using Monte Carlo and hybrid methods. J. Geophys. Res. 106(A1), 107–116 (2001) ADSGoogle Scholar
  116. I.M. Stanislawska, G. Prölss, Correlation between the energy supplied by reconnection and the magnetospheric energy consumption. Planet. Space Sci. 33, 1091–1093 (1985) ADSGoogle Scholar
  117. I. Stanislawska, G. Juchnikowski, R. Hanbaba, H. Rothkaehl, G. Sole, Z. Zbyszynski, COST251 Recommended instantaneous mapping model of ionosphere characteristics—PLES. Phys. Chem. Earth (C) 25(4), 291–294 (2000) Google Scholar
  118. I. Stanisławska, G. Juchnikowski, Z. Zbyszyński, Generation of instantaneous maps of ionospheric characteristics. Radio Sci. 36(5), 1073–1081 (2001) ADSGoogle Scholar
  119. I. Stanislawska, Z. Zbyszynski, Forecasting of the ionospheric quiet and disturbed foF2 values at a single location. Radio Sci. 36(5), 1065–1071 (2001) ADSGoogle Scholar
  120. I. Stanislawska, Z. Zbyszynski, Forecasting of the ionospheric characteristics during quiet and disturbed conditions. Ann. Geophys. 45(1), 169–175 (2002) Google Scholar
  121. I. Stanislawska, H. Rothkaehl, D. Bureshova, Limited-area electron concentration height profile instantaneous maps. Adv. Space Res. 33(6), 874–877 (2004a) ADSGoogle Scholar
  122. I. Stanislawska, D. Bureshova, H. Rothkaehl, Stormy ionosphere mapping over Europe. Adv. Space Res. 33(6), 917–919 (2004b) ADSGoogle Scholar
  123. S.M. Stankov, P. Marinov, I. Kutiev, Comparison of NeQuick, PIM, and TSM model results for the topside ionospheric plasma scale and transition heights. Adv. Space Res. 39, 767–773 (2007) ADSGoogle Scholar
  124. R.J. Thompson, D.G. Cole, G. Patterson, P.J. Wilkinson, Space weather services in Australia, Proceedings of the ESA Workshop on Space Weather, 11–13 November 1998, ESTEC, The Netherlands. http://esa-spaceweather.net/spweather/workshops/proceedings_w1/POSTER4/thompson8.pdf
  125. G. Thuillier, S. Bruinsma, The Mg II index for upper atmosphere modelling. Ann. Geophys. 19, 219–228 (2001) ADSCrossRefGoogle Scholar
  126. I. Tsagouri, A. Belehaki, A new empirical model of middle latitude ionospheric response for space weather applications. Adv. Space Res. 37, 420–425 (2006) ADSGoogle Scholar
  127. I. Tsagouri, A. Belehaki, An upgrade of the solar wind driven empirical model for the middle latitude ionospheric storm time response. J. Atmos. Sol.-Terr. Phys. 70(16), 2061–2076 (2008) Google Scholar
  128. I. Tsagouri, A. Belehaki, G. Moraitis, H. Mavromihalaki, Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms. Geophys. Res. Lett. 27(21), 3579–3582 (2000) ADSGoogle Scholar
  129. B.T. Tsurutani, W.D. Gonzalez, The future of geomagnetic storm predictions: implications from recent solar and interplanetary observations. J. Atmos. Sol.-Terr. Phys. 57, 1369 (1995) ADSGoogle Scholar
  130. Y. Tulunay, E. Tulunay, E.T. Senalp, The neural network technique – 1: A general exposition. Adv. Space Res. 33, 983–987 (2004a) ADSGoogle Scholar
  131. Y. Tulunay, E. Tulunay, E.T. Senalp, The neural network technique – 2: An ionospheric example illustrating its application. Adv. Space Res. 33, 988–992 (2004b) ADSGoogle Scholar
  132. R. Viereck, L.C. Puga, D. McMullin, D. Judge, M. Weber, W.K. Tobiska, The Mg II index: a proxy for solar EUV. Geophys. Res. Lett. 28, 1343–1346 (2001) ADSGoogle Scholar
  133. M. Watanabe, N. Sato, R.A. Greenwald, M. Pinnock, M.R. Hairston, R.L. Raiden, D.J. McEwen, The ionospheric response to interplanetary magnetic field variations: Evidence for rapid global change and the role of preconditioning in the magnetosphere. J. Geophys. Res. 105, 22955 (2000) ADSGoogle Scholar
  134. P. Wintoft, L.R. Cander, Twenty-four hour predictions of foF2 using time delay neural networks. Radio Sci. 35(2), 395–408 (2000a) ADSGoogle Scholar
  135. P. Wintoft, L. Cander, Ionospheric foF2 storm forecasting using neural networks. Phys. Chem. Earth 25(4), 267–273 (2000b) Google Scholar
  136. O. Witasse, J. Lilensten, C. Lathuillere, P.L. Blelly, Modeling the OI 630.0 and 557.7 nm thermospheric dayglow during EISCAT-WINDII coordinated measurements. J. Geophys. Res. 104, 24639–24655 (1999) ADSGoogle Scholar
  137. B. Zolesi, Lj.R. Cander, COST271 Action “Effects of the upper atmosphere on terrestrial and Earth-space communications”. Final report. Ann. Geophys. 47(2/3), (2004) Google Scholar
  138. B. Zolesi, Lj.R. Cander, G. De Franceschi, Simplified ionospheric regional model for telecommunication applications. Radio Sci. 28(4), 603–612 (1993) ADSGoogle Scholar
  139. B. Zolesi, Lj.R. Cander, G. De Franceschi, On the potential applicability of the simplified ionospheric regional model to different midlatitude areas. Radio Sci. 31(3), 547–552 (1996) ADSGoogle Scholar
  140. B. Zolesi, A. Belehaki, I. Tsagouri, Lj.R. Cander, Real-time updating of the simplified ionospheric regional model for operational applications. Radio Sci. 39, RS2011 (2004) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute for Space Applications and Remote SensingNational Observatory of AthensPalaia PenteliGreece
  2. 2.Space Research CenterPolish Academy of SciencesWarsawPoland
  3. 3.Laboratoire de Planétologie de GrenobleCNRS/UJF/OSUG, Batiment D de PhysiqueGrenoble Cedex 9France

Personalised recommendations