Advertisement

Space Science Reviews

, Volume 146, Issue 1–4, pp 75–103 | Cite as

The Interstellar Boundary Explorer High Energy (IBEX-Hi) Neutral Atom Imager

  • H. O. Funsten
  • F. Allegrini
  • P. Bochsler
  • G. Dunn
  • S. Ellis
  • D. Everett
  • M. J. Fagan
  • S. A. Fuselier
  • M. Granoff
  • M. Gruntman
  • A. A. Guthrie
  • J. Hanley
  • R. W. Harper
  • D. Heirtzler
  • P. Janzen
  • K. H. Kihara
  • B. King
  • H. Kucharek
  • M. P. Manzo
  • M. Maple
  • K. Mashburn
  • D. J. McComas
  • E. Moebius
  • J. Nolin
  • D. Piazza
  • S. Pope
  • D. B. Reisenfeld
  • B. Rodriguez
  • E. C. Roelof
  • L. Saul
  • S. Turco
  • P. Valek
  • S. Weidner
  • P. Wurz
  • S. Zaffke
Article

Abstract

The IBEX-Hi Neutral Atom Imager of the Interstellar Boundary Explorer (IBEX) mission is designed to measure energetic neutral atoms (ENAs) originating from the interaction region between the heliosphere and the local interstellar medium (LISM). These ENAs are plasma ions that have been heated in the interaction region and neutralized by charge exchange with the cold neutral atoms of the LISM that freely flow through the interaction region. IBEX-Hi is a single pixel ENA imager that covers the ENA spectral range from 0.38 to 6 keV and shares significant energy overlap and overall design philosophy with the IBEX-Lo sensor. Because of the anticipated low flux of these ENAs at 1 AU, the sensor has a large geometric factor and incorporates numerous techniques to minimize noise and backgrounds. The IBEX-Hi sensor has a field-of-view (FOV) of 6.5°×6.5° FWHM, and a 6.5°×360° swath of the sky is imaged over each spacecraft spin. IBEX-Hi utilizes an ultrathin carbon foil to ionize ENAs in order to measure their energy by subsequent electrostatic analysis. A multiple coincidence detection scheme using channel electron multiplier (CEM) detectors enables reliable detection of ENAs in the presence of substantial noise. During normal operation, the sensor steps through six energy steps every 12 spacecraft spins. Over a single IBEX orbit of about 8 days, a single 6.5°×360° swath of the sky is viewed, and re-pointing of the spin axis toward the Sun near perigee of each IBEX orbit moves the ecliptic longitude by about 8° every orbit such that a full sky map is acquired every six months. These global maps, covering the spectral range of IBEX-Hi and coupled to the IBEX-Lo maps at lower and overlapping energies, will answer fundamental questions about the structure and dynamics of the interaction region between the heliosphere and the LISM.

Keywords

Interstellar boundary Termination shock Heliopause Energetic neutral atom ENA LISM 

PACS

96.50.-e 96.50.Ek 96.50.Xy 96.50.Zc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Allegrini, R.F. Wimmer-Schweingruber, P. Wurz, P. Bochsler, Measurement of the ion-induced electron yields from thin carbon foils for low energy ions. Nucl. Instr. Meth. B 211, 487 (2003) CrossRefADSGoogle Scholar
  2. F. Allegrini, D.J. McComas, D.T. Young, J.-J. Berthelier, J. Covinhes, J.-M. Illiano, J.-F. Riou, H.O. Funsten, R.W. Harper, Energy loss of 1–50 keV H, He, C, N, O, Ne, Ar ions transmitted through thin carbon foils. Rev. Sci. Instrum. 77, 044501 (2006) CrossRefADSGoogle Scholar
  3. F. Allegrini, R.W. Ebert, J. Alquiza, T. Broiles, C. Dunn, D.J. McComas, I. Silva, P. Valek, J. Westlake, A mass analysis technique using coincidence measurements from the IBEX-Hi detector. Rev. Sci. Instrum. 79, 096107 (2008) CrossRefADSGoogle Scholar
  4. F. Allegrini, G.B. Crew, D. Demkee, H.O. Funsten, D.J. McComas, B. Randol, B. Rodriguez, P. Valek, S. Weidner, The IBEX background monitor. Space Sci. Rev. (2009, this issue) Google Scholar
  5. D.A. Dahl, SIMION for the personal computer in reflection. Int. J. Mass Spectrom. 200, 3 (2000) CrossRefGoogle Scholar
  6. H.O. Funsten, D.J. McComas, B.L. Barraclough, Thickness uniformity and pinhole density analysis of thin carbon foils using keV ions. Nucl. Instrum. Meth. B 66, 470 (1992) CrossRefADSGoogle Scholar
  7. H.O. Funsten, D.J. McComas, B.L. Barraclough, Ultrathin foils used for low energy neutral atom imaging of planetary magnetospheres. Opt. Eng. 32, 3090 (1993) CrossRefADSGoogle Scholar
  8. H.O. Funsten, D.J. McComas, M.A. Gruntman, Energetic neutral atom imaging of the outer heliosphere–LIC interaction region, in The Outer Heliosphere: The Next Frontiers, ed. by K. Scherer, H. Fichtner, H.-J. Fahr, E. Marsch. COSPAR Colloquia Series, vol. 11 (Pergamon, New York, 2001), pp. 237–244 CrossRefGoogle Scholar
  9. H.O. Funsten, R.W. Harper, D.J. McComas, Absolute detection efficiency of space-based ion mass spectrometers and neutral atom imagers. Rev. Sci Instrum. 76, 053301 (2005) CrossRefADSGoogle Scholar
  10. S.A. Fuselier, A.G. Ghielmetti, E. Hertzberg, A. Moore, D. Isaac, J. Hamilton, C. Tillier, E. Moebius, M. Granoff, D. Heirtzler, B. King, H. Kucharek, S. Longworth, J. Nolin, S. Turco, P. Wurz, M. Wieser, J. Scheer, L. Saul, C. Schlemm, D.J. McComas, D. Chornay, J. Lobell, T. Moore, P. Rosmarynowski, R.J. Nemanich, T. Friedmann, H. Funsten, The IBEX-Lo sensor for the IBEX mission. Space Sci. Rev. (2009, this issue) Google Scholar
  11. G. Gloeckler, J. Geiss, Composition of the local interstellar medium as diagnosed with pickup ions. Adv. Space Res. 34, 53 (2004) CrossRefADSGoogle Scholar
  12. M.A. Gruntman, A.A. Kozochkina, V.B. Leonas, Multielectron secondary emission from thin foils bombarded by accelerated beams of atoms. JETP Lett. 51, 22 (1990) ADSGoogle Scholar
  13. M.A. Gruntman, Energetic neutral atom imaging of space plasmas. Rev. Sci. Instrum. 68, 3617 (1997) CrossRefADSGoogle Scholar
  14. M.A. Gruntman, E.C. Roelof, D.G. Mitchell, H.-J. Fahr, H.O. Funsten, D.J. McComas, Energetic neutral atom imaging of the heliospheric boundary region. J. Geophys. Res. 106, 15767 (2001) CrossRefADSGoogle Scholar
  15. M.G. Henderson, G.D. Reeves, H.E. Spence, R.B. Sheldon, A.M. Jorgensen, J.B. Blake, J.F. Fennell, First energetic neutral atom images from polar. Geophys. Res. Lett. 24, 1167 (1997) CrossRefADSGoogle Scholar
  16. D.C. Jones, J.D. Bernardin, Thermal modeling and experimental verification of the interstellar boundary explorer’s high energy neutral atom imaging instrument (IBEX-Hi), 2007 AIAA InfoTech at Aerospace Conference (2007), vol. 3, pp. 2364–2375 Google Scholar
  17. R. Korde, C. Prince, D. Cunningham, R.E. Vest, E. Gullikson, Present status of radiometric quality silicon photodiodes. Metrologia 40, S145 (2003) CrossRefADSGoogle Scholar
  18. A.A. Kozochkina, V.B. Leonas, V.E. Fine, Statistics of heavy particle-induced electron emission from a foil, in Ionization of Solids by Heavy Particles, ed. by R.A. Baragiola (Plenum, New York, 1993), pp. 223–237 Google Scholar
  19. D.J. McComas, F. Allegrini, C.J. Pollock, H.O. Funsten, S. Ritzau, G. Gloeckler, Ultra-thin (∼10 nm) carbon foils in space instrumentation. Rev. Sci. Instrum. 75, 4863 (2004) CrossRefADSGoogle Scholar
  20. D.J. McComas, F. Allegrini, L. Bartolone, P. Bochsler, M. Bzowski, M. Collier, H. Fahr, H. Fichtner, P. Frisch, H. Funsten, S. Fuselier, G. Gloeckler, M. Gruntman, V. Izmodenov, P. Knappenberger, M. Lee, S. Livi, D. Mitchell, E. Möbius, T. Moore, S. Pope, D. Reisenfeld, E. Roelof, H. Runge, J. Scherrer, N. Schwadron, R. Tyler, M. Wieser, M. Witte, P. Wurz, G. Zank, The Interstellar Boundary Explorer (IBEX): Update at the End of Phase B, AIP Conference Proceedings, vol. 858, Physics of the Inner Heliosheath: Voyager Observations, Theory, and Future Prospects (2006), pp. 241–250 Google Scholar
  21. D.J. McComas, F. Allegrini, J. Baldonado, B. Blake, P.C. Brandt, J. Burch, J. Clemmons, W. Crain, D. Delapp, R. DeMajistre, D. Everett, H. Fahr, L. Friesen, H. Funsten, J. Goldstein, M. Gruntman, R. Harbaugh, R. Harper, H. Henkel, C. Holmlund, G. Lay, D. Mabry, D. Mitchell, U. Nass, C. Pollock, S. Pope, M. Reno, S. Ritzau, E. Roelof, E. Scime, M. Sivjee, R. Skoug, T.S. Sotirelis, M. Thomsen, C. Urdiales, P. Valek, K. Viherkanto, S. Weidner, T. Ylikorpi, M. Young, J. Zoennchen, The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA mission-of-opportunity. Space Sci. Rev. 142, 157 (2009a) CrossRefADSGoogle Scholar
  22. D.J. McComas, F. Allegrini, P. Bochsler, M. Bzowski, M. Collier, H. Fahr, H. Fichtner, P. Frisch, H. Funsten, S. Fuselier, G. Gloeckler, M. Gruntman, V. Izmodenov, P. Knappenberger, M. Lee, S. Livi, D. Mitchell, E. Möbius, T. Moore, S. Pope, D. Reisenfeld, E. Roelof, J. Scherrer, N. Schwadron, R. Tyler, M. Wieser, M. Witte, P. Wurz, G. Zank, IBEX–Interstellar boundary explorer. Space Sci. Rev. (2009b, this issue) Google Scholar
  23. D.G. Mitchell, S.E. Jaskulek, C.E. Schlemm, E.P. Keath, R.E. Thompson, B.E. Tossman, J.D. Boldt, J.R. Hayes, G.B. Andrews, N. Paschalidis, D.C. Hamilton, R.A. Lundgren, E.O. Tums, P. Wilson, H.D. Voss, D. Prentice, K.C. Hsieh, C.C. Curtis, F.R. Powell, High energy neutral atom (HENA) imager for the IMAGE mission. Space Sci. Rev. 91, 67 (2000) CrossRefADSGoogle Scholar
  24. H. Moestue, The electric field and geometrical factor of an annular curved plate electrostatic analyzer. Rev. Sci. Instrum. 44, 1709 (1973) CrossRefADSGoogle Scholar
  25. T.E. Moore, D.J. Chornay, M.R. Collier, F.A. Herrero, J. Johnson, M.A. Johnson, J.W. Keller, J.F. Laudadio, J.F. Lobell, K.W. Ogilvie, P. Rozmarynowski, S.A. Fuselier, A.G. Ghielmetti, E. Hertzberg, D.C. Hamilton, R. Lundgren, P. Wilson, P. Walpole, T.M. Stephen, B.L. Peko, B. Van Zyl, P. Wurz, J.M. Quinn, G.R. Wilson, The low-energy neutral atom imager for IMAGE. Space Sci. Rev. 91, 155 (2000) CrossRefADSGoogle Scholar
  26. G. Paschmann, E.G. Shelley, C.R. Chappell, R.D. Sharp, L.F. Smith, Rev. Sci. Instrum. 41, 1706 (1970) CrossRefADSGoogle Scholar
  27. C.J. Pollock, K. Asamura, J. Baldonado, M.M. Balkey, P. Barker, J. Burch, E.J. Korpela, J. Cravens, G. Dirks, M.-C. Fok, H.O. Funsten, M. Grande, M. Gruntman, J. Hanley, J.-M. Jahn, M. Jenkins, M. Lampton, M. Marckwordt, D.J. McComas, T. Mukai, G. Penegor, S. Pope, S. Ritzau, M.L. Schattenburg, E. Scime, R. Skoug, W. Spurgeon, T. Stecklein, S. Storms, C. Urdiales, P. Valek, J.T.M. van Beek, S.E. Weidner, M. Wüest, M.K. Young, C. Zinsmeyer, Medium Energy Neutral Atom (MENA) imager for the IMAGE mission. Space Sci. Rev. 91, 113 (2000) CrossRefADSGoogle Scholar
  28. F.H. Read, N.J. Bowring, P.D. Bullivant, R.R.A. Ward, Penetration of electrostatic fields and potentials through meshes, grids, or gauzes. Rev. Sci. Instrum. 69, 2000 (1998) CrossRefADSGoogle Scholar
  29. S.M. Ritzau, R.A. Baragiola, Electron emission from carbon foils induced by keV ions. Phys. Rev. B 58, 2529 (1998) CrossRefADSGoogle Scholar
  30. E.C. Roelof, D.G. Mitchell, D.J. Williams, Energetic neutral atoms (E≈50 keV) from the ring current: IMP 7/8 and ISEE 1. J. Geophys. Res. 90, 991 (1985) CrossRefGoogle Scholar
  31. E.G. Shelley, A.G. Ghielmetti, H. Balsiger, R.K. Black, J.A. Bowles, R.P. Bowman, O. Bratschi, J.L. Burch, C.W. Carlson, A.J. Coker, J.F. Drake, J. Fischer, J. Geiss, A. Johnstone, D.L. Kloza, O.W. Lennartsson, A.L. Magoncelli, G. Paschmann, W.K. Peterson, H. Rosenbauer, T.C. Sanders, M. Steinacher, D.M. Walton, B.A. Whalen, D.T. Young, The toroidal imaging mass-angle spectrograph (TIMAS) for the Polar mission. Space Sci. Rev. 71, 497 (1995) CrossRefADSGoogle Scholar
  32. O.L. Vaisberg et al., Complex plasma analyzer SKA-1, in Interball: Mission and Payload, ed. by A.A. Galeev (Russian Space Agency–French Space Agency, 1995), pp. 170–177 Google Scholar
  33. P. Wurz, A. Galli, S. Barabash, A. Grigoriev, Energetic Neutral Atoms from the Heliosheath. Astrophys. J. 683, 248 (2008) CrossRefADSGoogle Scholar
  34. P. Wurz, J. Scheer, L. Saul, S.A. Fuselier, A.G. Ghielmetti, E. Hertzberg, E. Möbius, H. Kucharek, H.O. Funsten, P. Janzen, R. Harper, M. Wieser, P.C. Brandt, E. Roelof, D. McComas, F. Allegrini, IBEX Backgrounds and signal to noise ratio. Space Sci. Rev. (2009, this issue) Google Scholar
  35. J.F. Ziegler, J.P. Biersack, U. Littmark, Stopping and Range of Ions in Solids, vol. 1 (Pergamon, New York, 1985) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • H. O. Funsten
    • 1
  • F. Allegrini
    • 2
  • P. Bochsler
    • 3
  • G. Dunn
    • 2
  • S. Ellis
    • 4
  • D. Everett
    • 2
  • M. J. Fagan
    • 1
  • S. A. Fuselier
    • 5
  • M. Granoff
    • 4
  • M. Gruntman
    • 6
  • A. A. Guthrie
    • 1
  • J. Hanley
    • 2
  • R. W. Harper
    • 1
  • D. Heirtzler
    • 4
  • P. Janzen
    • 7
  • K. H. Kihara
    • 1
  • B. King
    • 4
  • H. Kucharek
    • 4
  • M. P. Manzo
    • 1
  • M. Maple
    • 2
  • K. Mashburn
    • 2
  • D. J. McComas
    • 2
  • E. Moebius
    • 4
  • J. Nolin
    • 4
  • D. Piazza
    • 3
  • S. Pope
    • 2
  • D. B. Reisenfeld
    • 7
  • B. Rodriguez
    • 2
  • E. C. Roelof
    • 8
  • L. Saul
    • 3
  • S. Turco
    • 4
  • P. Valek
    • 2
  • S. Weidner
    • 2
  • P. Wurz
    • 3
  • S. Zaffke
    • 4
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Southwest Research InstituteSan AntonioUSA
  3. 3.Physikalisches InstitutUniversity of BernBernSwitzerland
  4. 4.University of New HampshireDurhamUSA
  5. 5.Lockheed Martin Advanced Technology CenterPalo AltoUSA
  6. 6.Astronautics and Space Technology Division, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  7. 7.Department of Physics & AstronomyUniversity of MontanaMissoulaUSA
  8. 8.Applied Physics LaboratoryLaurelUSA

Personalised recommendations