Space Science Reviews

, Volume 146, Issue 1–4, pp 149–172 | Cite as

Diagnosing the Neutral Interstellar Gas Flow at 1 AU with IBEX-Lo

  • E. Möbius
  • H. Kucharek
  • G. Clark
  • M. O’Neill
  • L. Petersen
  • M. Bzowski
  • L. Saul
  • P. Wurz
  • S. A. Fuselier
  • V. V. Izmodenov
  • D. J. McComas
  • H. R. Müller
  • D. B. Alexashov
Article

Abstract

Every year in fall and spring the Interstellar Boundary Explorer (IBEX) will observe directly the interstellar gas flow at 1 AU over periods of several months. The IBEX-Lo sensor employs a powerful triple time-of-flight mass spectrometer. It can distinguish and image the O and He flow distributions in the northern fall and spring, making use of sensor viewing perpendicular to the Sun-pointing spin axis. To effectively image the narrow flow distributions IBEX-Lo has a high angular resolution quadrant in its collimator. This quadrant is employed selectively for the interstellar gas flow viewing in the spring by electrostatically shutting off the remainder of the aperture. The operational scenarios, the expected data, and the necessary modeling to extract the interstellar parameters and the conditions in the heliospheric boundary are described.

The combination of two key interstellar species will facilitate a direct comparison of the pristine interstellar flow, represented by He, which has not been altered in the heliospheric boundary region, with a flow that is processed in the outer heliosheath, represented by O. The O flow distribution consists of a depleted pristine component and decelerated and heated neutrals. Extracting the latter so-called secondary component of interstellar neutrals will provide quantitative constraints for several important parameters of the heliosheath interaction in current global heliospheric models. Finding the fraction and width of the secondary component yields an independent value for the global filtration factor of species, such as O and H. Thus far filtration can only be inferred, barring observations in the local interstellar cloud proper. The direction of the secondary component will provide independent information on the interstellar magnetic field strength and orientation, which has been inferred from SOHO SWAN Ly-α backscattering observations and the two Voyager crossings of the termination shock.

Keywords

Interstellar gas Heliosphere Instrumentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.F. Adams, P.C. Frisch, Astrophys. J. 212, 300 (1977) CrossRefADSGoogle Scholar
  2. W.I. Axford, in: Solar Wind. NASA SP-308, ed. by E.P. Sonnett, P.J. Coleman, J.M. Wilcox (1972), p. 609 Google Scholar
  3. M. Banaszkiewicz, M. Witte, H. Rosenbauer, Astron. Astrophys. Suppl. Ser. 120, 587 (1996) CrossRefADSGoogle Scholar
  4. V.B. Baranov, Yu.G. Malama, J. Geophys. Res. 98, 15157 (1993) CrossRefADSGoogle Scholar
  5. J.L. Bertaux, J.E. Blamont, Astron. Astrophys. 11, 200 (1971) ADSGoogle Scholar
  6. J.L. Bertaux, R. Lallement, V.G. Kurt, E.N. Mironova, Astron. Astrophys. 150, 1 (1985) ADSGoogle Scholar
  7. M. Bzowski, Astron. Astrophys. 483, 1155 (2008) Google Scholar
  8. M. Bzowski, E. Möbius, S. Tarnopolski, V. Izmodenov, G. Gloeckler, Astron. Astrophys. 491, 7 (2008) CrossRefADSGoogle Scholar
  9. E. Chassefière, J.L. Bertaux, R. Lallement, V.G. Kurt, Astron. Astrophys. 160, 229 (1986) ADSGoogle Scholar
  10. K.-P. Cheng, F.C. Bruhweiler, Astrophys. J. 364, 573 (1990) CrossRefADSGoogle Scholar
  11. D.P. Cox, R.J. Reynolds, Ann. Rev. Astron. Astrophys. 25, 303 (1987) CrossRefADSGoogle Scholar
  12. R.M. Crutcher, Astrophys. J. 254, 82 (1982) CrossRefADSGoogle Scholar
  13. A.C. Cummings, E.C. Stone, C. Steenberg, Astrophys. J. 578, 194 (2002) CrossRefADSGoogle Scholar
  14. H.J. Fahr, Space Sci. Rev. 15, 483 (1974) CrossRefADSGoogle Scholar
  15. H.J. Fahr, G. Lay, C. Wulf-Mathies, COSPAR Space Res. 18, 393 (1978) ADSGoogle Scholar
  16. H.J. Fahr, T. Kausch, H. Scherer, Astron. Astrophys. 357, 268 (2000) ADSGoogle Scholar
  17. P.C. Frisch, Nature 293, 377 (1981) CrossRefADSGoogle Scholar
  18. P.C. Frisch, Space Sci. Rev. 72, 499 (1995) CrossRefADSGoogle Scholar
  19. P.C. Frisch, Solar Journey: The Significance of our Galactic Environment for the Heliosphere and Earth. Astrophysics and Space Science Library, vol. 338 (Springer, Berlin, 2006) Google Scholar
  20. P.C. Frisch et al., Space Sci. Rev. (2009, this issue) Google Scholar
  21. S. Fuselier et al., Space Sci. Rev. (2009, this issue) Google Scholar
  22. A.B. Galvin , Space Sci. Rev. (2007). doi: 10.1007/s11214-007-9296-x Google Scholar
  23. G. Gloeckler, J. Geiss, Nature 381, 210 (1996) CrossRefADSGoogle Scholar
  24. G. Gloeckler, L.A. Fisk, J. Geiss, Nature 386, 374 (1997) CrossRefADSGoogle Scholar
  25. G. Gloeckler, J. Geiss, Space Sci. Rev. 86, 127 (1998) CrossRefADSGoogle Scholar
  26. G. Gloeckler, J. Geiss, Space Sci. Rev. 97, 169 (2001) CrossRefADSGoogle Scholar
  27. T.E. Holzer, Rev. Geophys. Space Phys. 15, 467 (1977) CrossRefADSGoogle Scholar
  28. H. Hotop, W.C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975) ADSCrossRefGoogle Scholar
  29. V.V. Izmodenov, Space Sci. Rev. 130, 377 (2007) CrossRefADSGoogle Scholar
  30. V.V. Izmodenov, Yu. Malama, R. Lallement, Astron. Astrophys. 317, 193 (1997) ADSGoogle Scholar
  31. V.V. Izmodenov, R. Kallenbach, eds., The Physics of the Heliospheric Boundaries, ISSI Scientific Report Series, vol. 5 (ESA, 2006). ISBN 1608-280X Google Scholar
  32. V.V. Izmodenov , Astron. Astrophys. 414, L29 (2004) CrossRefADSGoogle Scholar
  33. V.V. Izmodenov, D.B. Alexashov, A.V. Myasnikov, Astron. Astrophys. 437, L35 (2005) CrossRefADSGoogle Scholar
  34. V.V. Izmodenov, Y.G. Malama, M.S. Ruderman, J. Adv. Space Res. 41, 318 (2008) CrossRefADSGoogle Scholar
  35. J.R. Jokipii, Space Sci. Rev. 86, 161 (1998) CrossRefADSGoogle Scholar
  36. B. Klecker, Space Sci. Rev. 72, 419 (1995) CrossRefADSGoogle Scholar
  37. R. Lallement, P. Bertin, Astron. Astrophys. 266, 79 (1992) ADSGoogle Scholar
  38. R. Lallement, E. Quemerais, J.L. Bertaux , Science 307, 1447 (2005) CrossRefADSGoogle Scholar
  39. T.J. Linde, T.I. Gombosi, P.L. Roe, K.G. Powell, D.L. DeZeeuw, J. Geophys. Res. 103, 1889 (1998) CrossRefADSGoogle Scholar
  40. J.L. Linsky, Space Sci. Rev. 84, 285 (1998) CrossRefADSGoogle Scholar
  41. J.L. Linsky, A. Brown, Gayley , Astrophys. J. 402, 694 (1993) CrossRefADSGoogle Scholar
  42. Yu.G. Malama, V.V. Izmodenov, S.V. Chalov, Astron. Astrophys. 445, 693 (2006) CrossRefADSGoogle Scholar
  43. J. Mazeau, F. Grestau, R.I. Hall, A. Huetz, J. Phys. B 11, L557 (1978) ADSGoogle Scholar
  44. W. McClintock, R.C. Henry, J.L. Linsky, W.H. Moos, Astrophys. J. 225, 465 (1978) CrossRefADSGoogle Scholar
  45. D. McComas et al., Space Sci. Rev. (2009, this issue) Google Scholar
  46. E. Möbius, Space Sci. Rev. 143, 465 (2009) CrossRefADSGoogle Scholar
  47. E. Möbius, D. Hovestadt, B. Klecker , Nature 318, 426 (1985) CrossRefADSGoogle Scholar
  48. E. Möbius, D. Ruciñski, D. Hovestadt, B. Klecker, Astron. Astrophys. 304, 505 (1995) ADSGoogle Scholar
  49. E. Möbius, D. Rucinski, M.A. Lee, P.A. Isenberg, J. Geophys. Res. 103, 257 (1998a) CrossRefADSGoogle Scholar
  50. E. Möbius et al., in: Measurement Techniques in Space Plasmas, ed. by R. Pfaff, J. Borowski, D. Young, Geophys. Monograph, vol. 102 (1998b), p. 243 Google Scholar
  51. E. Möbius , Astron. Astrophys. 426, 897 (2004) CrossRefADSGoogle Scholar
  52. E. Möbius, M. Bzowski, H.-R. Müller, P. Wurz, in Solar Journey: The Significance of our Galactic Environment for the Heliosphere and Earth, ed. by P.C. Frisch (Springer, Berlin, 2006), pp. 209–258 CrossRefGoogle Scholar
  53. H.-R. Müller, G.P. Zank, J. Geophys. Res. 109, A07104 (2004) CrossRefGoogle Scholar
  54. H.-R. Müller, V. Florinski, J. Heerikhuisen , Astron. Astrophys. 491, 43 (2008) CrossRefADSGoogle Scholar
  55. D.J. Mullan, J.L. Linsky, Astrophys. J. 511, 502 (1998) CrossRefADSGoogle Scholar
  56. M. Opher, E.C. Stone, P.C. Liewer, Astrophys. J. 640, L71 (2006) CrossRefADSGoogle Scholar
  57. H.L. Pauls, G.P. Zank, L.L. Williams, J. Geophys. Res. 100, 21595 (1995) CrossRefADSGoogle Scholar
  58. N.V. Pogorelov, G.P. Zank, T. Ogino, Astrophys. J. 644, 1299 (2006) CrossRefADSGoogle Scholar
  59. N.V. Pogorelov, J. Heerikhuisen, G.P. Zank, Astrophys. J. 675, L41 (2008) CrossRefADSGoogle Scholar
  60. N. Prantzos, Space Sci. Rev. 84, 225 (1998) CrossRefADSGoogle Scholar
  61. E. Quémerais, J.L. Bertaux, R. Lallement , J. Geophys. Res. 104, 12585 (1999) CrossRefADSGoogle Scholar
  62. S. Redfield, Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9422-4 MATHGoogle Scholar
  63. J.D. Richardson, Y. Liu, C. Wang, D.J. McComas, Astron. Astrophys. 491, 1 (2008) CrossRefADSGoogle Scholar
  64. J.D. Richardson, K.I. Paularena, A.J. Lazarus, J.W. Belcher, Geophys. Res. Lett. 22, 1469 (1995) CrossRefADSGoogle Scholar
  65. J. Slavin, P.C. Frisch, Astrophys. J. 565, 364 (2002) CrossRefADSGoogle Scholar
  66. B.M. Smirnov, Negative Ions (McGraw-Hill, New York, 1982) Google Scholar
  67. S. Tarnopolski, M. Bzowski, Astron. Astrophys. 483, L35 (2008) CrossRefADSGoogle Scholar
  68. G.E. Thomas, R.F. Krassa, Astron. Astrophys. 11, 218 (1971) ADSGoogle Scholar
  69. G.E. Thomas, Ann. Rev. Earth Planet. Sci. 6, 173 (1978) CrossRefADSGoogle Scholar
  70. H. Washimi, G.P. Zank, Q. Hu, T. Tanaka, in: Turbulence and Non-Linear Processes in Astrophysical Plasmas. AIP Conf. Proc., vol. 932 (2007), p. 153 Google Scholar
  71. C.S. Weller, R.R. Meier, Astrophys. J. 193, 471 (1974) CrossRefADSGoogle Scholar
  72. M. Witte, Astron. Astrophys. 426, 835 (2004) CrossRefADSGoogle Scholar
  73. M. Witte, M. Banaszkiewicz, M. Rosenbauer, Space Sci. Rev. 78, 289 (1996) CrossRefADSGoogle Scholar
  74. B. Wolff, D. Koester, R. Lallement, Astron. Astrophys. 346, 969 (1999) ADSGoogle Scholar
  75. F.M. Wu, D.L. Judge, Astrophys. J. 231, 594 (1979) CrossRefADSGoogle Scholar
  76. P. Wurz, in The Outer Heliosphere: Beyond the Planets, ed. by K. Scherer, H. Fichtner, E. Marsch (Copernicus Gesellschaft e.V., Katlenburg-Lindau, 2000), p. 251 Google Scholar
  77. P. Wurz, L. Saul, J. Scheer et al., J. Appl. Phys. 103 (2008). doi: 10.1063/1.2842398
  78. G.P. Zank, Space Sci. Rev. 89, 413 (1999) CrossRefADSGoogle Scholar
  79. G.P. Zank, H.-R. Müller, J. Geophys. Res. 108, 1240 (2003). doi: 10.1029/2002JA009689 CrossRefGoogle Scholar
  80. G.P. Zank, H.L. Pauls, L.L. Williams, D.T. Hall, J. Geophys. Res. 101, 21639 (1996) CrossRefADSGoogle Scholar
  81. G.P. Zank, H.-R. Müller, V. Florinski, P.C. Frisch, in Solar Journey: The Significance of our Galactic Environment for the Heliosphere and Earth, ed. by P.C. Frisch (Springer, Berlin, 2006), p. 23 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. Möbius
    • 1
  • H. Kucharek
    • 1
  • G. Clark
    • 1
  • M. O’Neill
    • 1
  • L. Petersen
    • 1
  • M. Bzowski
    • 2
  • L. Saul
    • 3
  • P. Wurz
    • 3
  • S. A. Fuselier
    • 4
  • V. V. Izmodenov
    • 5
  • D. J. McComas
    • 6
  • H. R. Müller
    • 7
  • D. B. Alexashov
    • 8
  1. 1.Space Science Center & Department of PhysicsUniversity of New HampshireDurhamUSA
  2. 2.Space Research CentrePolish Academy of SciencesWarsawPoland
  3. 3.Physikalisches InstitutUniversität BernBernSwitzerland
  4. 4.Lockheed Martin Advanced Technology LabPalo AltoUSA
  5. 5.Moscow State University and Space Research InstituteRussian Academy of SciencesMoscowRussia
  6. 6.Southwest Research InstituteSan AntonioUSA
  7. 7.Department of Physics and AstronomyDartmouth CollegeHanoverUSA
  8. 8.Space Research Institute (IKI) and Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations