Advertisement

Space Science Reviews

, Volume 146, Issue 1–4, pp 117–147 | Cite as

The IBEX-Lo Sensor

  • S. A. Fuselier
  • P. Bochsler
  • D. Chornay
  • G. Clark
  • G. B. Crew
  • G. Dunn
  • S. Ellis
  • T. Friedmann
  • H. O. Funsten
  • A. G. Ghielmetti
  • J. Googins
  • M. S. Granoff
  • J. W. Hamilton
  • J. Hanley
  • D. Heirtzler
  • E. Hertzberg
  • D. Isaac
  • B. King
  • U. Knauss
  • H. Kucharek
  • F. Kudirka
  • S. Livi
  • J. Lobell
  • S. Longworth
  • K. Mashburn
  • D. J. McComas
  • E. Möbius
  • A. S. Moore
  • T. E. Moore
  • R. J. Nemanich
  • J. Nolin
  • M. O’Neal
  • D. Piazza
  • L. Peterson
  • S. E. Pope
  • P. Rosmarynowski
  • L. A. Saul
  • J. R. Scherrer
  • J. A. Scheer
  • C. Schlemm
  • N. A. Schwadron
  • C. Tillier
  • S. Turco
  • J. Tyler
  • M. Vosbury
  • M. Wieser
  • P. Wurz
  • S. Zaffke
Article

Abstract

The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7°×7° in three 90° sectors and approximately 3.5°×3.5° in the fourth 90° sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7°×7°) quadrants of the collimator so that the interstellar neutrals are detected with 3.5°×3.5° angular resolution. These high angular resolution data are combined with star positions determined from a dedicated star sensor to measure the relative flow difference between filtered and unfiltered interstellar oxygen. At the end of 6 months of operation, full sky maps of heliospheric neutral hydrogen from 0.01 to 2 keV in 8 energy steps are accumulated. These data, similar sky maps from IBEX-Hi, and the first observations of interstellar neutral oxygen will answer the four key science questions of the IBEX mission.

Keywords

Neutral atom imaging Heliosphere Termination shock Energetic neutral atoms Magnetosphere Surface ionization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Fuselier, E.S. Claflin, S.B. Mende, C.W. Carlson, T.E. Moore, Combined in situ and remote sensing of ionospheric ion outflow. Geophys. Res. Lett. 33, L04103 (2006). doi: 10.1029/2005GL024055 CrossRefGoogle Scholar
  2. A. Galli, P. Wurz, S. Barabash, A. Grigoriev, R. Lundin, Y. Futaana, H. Gunell, M. Holström, E.C. Roelof, C.C. Curtis, K.C. Hsieh, A. Fedorov, D. Winningham, R.A. Fram, R. Cerulli-Irelli, P. Bochsler, N. Krupp, J. Woch, M. Fraenz, Direct measurements of energetic neutral hydrogen in the interplanetary medium. Astrophys. J. 644, 1317 (2006). CrossRefADSGoogle Scholar
  3. A.G. Ghielmetti, E.G. Shelley, S.A. Fuselier, F. Herrero, M.F. Smith, P. Wurz, P. Bochsler, T. Stephen, Mass spectrograph for imaging low energy neutral atoms, in Instrumentation for Magnetospheric Imaging II, ed. by S. Chakrabarti, Proc. SPIE 2008, pp. 105–112, 1993; Opt. Eng. 33, 362 (1994) Google Scholar
  4. Gruntman, Magnetospheric imaging (1993) Google Scholar
  5. M. Gruntman, E.C. Roelof, D.G. Mitchell, H.J. Fahr, H.O. Funsten, D.J. McComas, Energetic neutral atom imaging of the heliospheric boundary region. J. Geophys. Res. 106, 15767 (2001) CrossRefADSGoogle Scholar
  6. S. Jans, P. Wurz, R. Schletti, T. Fröhlich, E. Hertzberg, S. Fuselier, Negative ion production by surface ionization using aluminum-nitride surfaces. J. Appl. Phys. 85, 2587 (2000) CrossRefADSGoogle Scholar
  7. A. Marti, R. Schletti, P. Wurz, P. Bochsler, Calibration facility for solar wind plasma instruments. Rev. Sci. Instrum. 72, 1354 (2001) CrossRefADSGoogle Scholar
  8. D.J. McComas, P. Valek, J.L. Burch, C. Pollock, R.M. Skoug, M.F. Thomsen, Filling and emptying of the plasma sheet: Remote observations with 1–70 keV energetic neutral atoms. Geophys. Res. Lett. 29, 2079 (2002). doi: 10.1029/2002GL016153 CrossRefADSGoogle Scholar
  9. D.J. McComas et al., The interstellar boundary explorer (IBEX), in Physics of the Outer Heliosphere, Third Annual IGPP Conference, ed. by V. Florinski, N.V. Pogorelov, G.P. Zank, AIP CP719 (2004), p. 162 Google Scholar
  10. D.J. McComas et al., Space Sci. Rev. (2009, this issue) Google Scholar
  11. H. Moestue, The electric field and geometrical factor of an annular curved plate electrostatic analyzer. Rev. Sci. Instrum. 44, 1709 (1973) CrossRefADSGoogle Scholar
  12. T.E. Moore, D.J. Chornay, M.R. Collier, F.A. Herrero, J. Johnson, M.A. Johnson, J.W. Keller, J.F. Laudadio, J.F. Lobell, K.W. Ogilvie, P. Rozmarynowsky, S.A. Fuselier, A.G. Ghielmetti, E. Hertzberg, D.C. Hamilton, R. Lundgren, P. Wilson, P. Walpole, T.M. Stephen, B.L. Peko, B. Zyl, P. Wurz, J.M. Quinn, G.R. Wilson, The low-energy neutral atom imager for IMAGE, in The IMAGE Mission, ed. by J.L. Burch. (Kluwer, Dordrecht, 2000). Space Sci. Rev. 91 (2000), pp. 155–195 Google Scholar
  13. E. Möbius, D. Hovestadt, B. Klecker, L.M. Kistler, M.A. Popecki, K.N. Crocker, F. Gliem, M. Granoff, S. Turco, A. Anderson, H. Arbinger, S. Battell, J. Cravens, P. Demain, J. Distelbrink, I. Dors, P. Dunphy, J. Gaidos, J. Googins, A. Harasim, R. Hayes, G. Humphrey, H. Kästle, E. Künneth, J. Lavasseur, E.J. Lund, R. Miller, G. Murphy, E. Pfeffermann, K.-U. Reiche, E. Sartori, J. Schimpfle, E. Seidenschwang, M. Shappirio, K. Stöckner, S.C. Taylor, M. Vosbury, W. Wiewesiek, V. Ye, The solar energetic particle ionic charge analyzer (SEPICA) and the data processing unit (S3DPU) for SWICS, SWIMS and SEPICA. Space Sci. Rev. 86, 447 (1998a) CrossRefGoogle Scholar
  14. E. Möbius, L.M. Kistler, M. Popecki, K. Crocker, M. Granoff, Y. Jiang, E. Sartori, V. Ye, H. Rème, J.A. Sauvaud, A. Cros, C. Aoustin, T. Camus, J.L. Médale, J. Rouzaud, C.W. Carlson, J.P. McFadden, D.W. Curtis, H. Heetderks, J. Croyle, C. Ingraham, E.G. Shelley, D. Klumpar, E. Hertzberg, B. Klecker, M. Ertl, F. Eberl, H. Kästle, E. Künneth, P. Laeverenz, E. Seidenschwang, G.K. Parks, M. McCarthy, A. Korth, B. Gräwe, H. Balsiger, U. Schwab, M. Steinacher, The 3-D plasma distribution function analyzers with time-of-flight mass discrimination for CLUSTER, FAST and Equator-S, measurement techniques in space plasmas, ed. by R. Pfaff, J. Borowski, D. Young. Geophys. Monograph 102 (1998b), p. 243 Google Scholar
  15. E. Möbius, S. Fuselier, M. Granoff, E. Hertzberg, B. King, H. Kucharek, S. Livi, S. Longworth, N. Paschalidis, L. Saul, J. Scheer, C. Schlemm, M. Wieser, P. Wurz, Time-of-flight detector system of the IBEX-Lo sensor with low background performance for heliospheric ENA detection, Proc. of the 30th Int. Cosmic Ray Conf., on CD (2007) Google Scholar
  16. E. Möbius et al., Space Sci. Rev. (2009, this issue) Google Scholar
  17. N.P. Paschalidis et al., A CMOS time of flight system on a chip for spacecraft instrumentation. IEEE Trans. Nucl. Sci. 49, 1156–1163 (2002) CrossRefADSGoogle Scholar
  18. N.P. Paschalidis, Advanced system on a chip microelectronics for spacecraft and science instruments. Acta Astronaut. 52(2–6), 411–420 (2003) CrossRefADSGoogle Scholar
  19. Pollock et al., Medium energy neutral atom (MENA) imager for the IMAGE mission, in The IMAGE Mission, ed. by J.L. Burch (Kluwer, Dordrecht, 2000), pp. 113–154 Google Scholar
  20. J.A. Scheer, M. Wieser, P. Wurz, P. Bochsler, E. Hertzberg, S.A. Fuselier, F.A. Koeck, R.J. Nemanich, M. Schleberger, High negative ion yield from light molecule scattering. Nucl. Instr. Meth. Phys. Res. B 230(1–4), 330–339 (2005). doi: 10.1016/j.nimb.2004.12.063 CrossRefADSGoogle Scholar
  21. J.A. Scheer, M. Wieser, P. Wurz, P. Bochsler, E. Hertzberg, S.A. Fuselier, F.A. Koeck, R.J. Nemanich, M. Schleberger, Conversion surfaces for neutral particle imaging detectors. Adv. Space Res. 38(4), 664–671 (2006) CrossRefADSGoogle Scholar
  22. J. Scheer, P. Wahlström, P. Wurz, E. Hertzberg, S. Fuselier, Scattering properties of hydrogen and oxygen on artificial diamond surfaces using in space flight, Nucl. Instr. Meth. B (2008, in preparation) Google Scholar
  23. J. Scherrer et al., Space Sci. Rev. (2009, this issue) Google Scholar
  24. X. Shelley et al., The toroidal imaging mass-angle spectrography (TIMSA) for the polar mission. Space Sci. Rev. 71, 497 (1995) CrossRefADSGoogle Scholar
  25. P. Wahlström, J. Scheer, P. Wurz, E. Hertzberg, S. Fuselier, Calibration of charge state conversion surfaces for neutral particle detectors. J. Appl. Phys. 104, 034503-1–034503-6 (2008). doi: 10.1063/1.2957064 CrossRefADSGoogle Scholar
  26. M. Wieser, Detection of energetic neutral atoms and its application to heliospheric science. PhD Thesis, University of Bern (2005) Google Scholar
  27. M. Wieser, P. Wurz, Production of a 10 eV—1000 eV neutral particle beam using surface neutralization. Meas. Sci. Technol. 16, 2511–2516 (2005) CrossRefADSGoogle Scholar
  28. M. Wieser, P. Wurz, R.J. Nemanich, S.A. Fuselier, Secondary electron emission of chemical-vapor-deposited diamond by impact of slow H+, D+, H2+, C+, O+, and O2+ ions. J. Appl. Phys. 98, 034906 (2005). doi: 10.1063/1.1996855 CrossRefADSGoogle Scholar
  29. M. Wieser, P. Wurz, E. Möbius, S.A. Fuselier, E. Hertzberg, D.J. McComas, The ion-optical prototype of the low energy neutral atom sensor of the interstellar boundary explorer mission (IBEX). Rev. Sci. Instr. 78, 124502-1–124502-14 (2007) CrossRefADSGoogle Scholar
  30. M. Wieser, P. Wurz, E. Möbius, S.A. Fuselier, E. Hertzberg, D.J. McComas, Development of the low energy neutral atom sensor of the Interstellar Boundary Explorer Mission (IBEX). Rev. Sci. Instrum. (2008, in press) Google Scholar
  31. P. Wurz, Detection of energetic neutral particles, in The Outer Heliosphere: Beyond the Planets, ed. by K. Scherer, H. Fichtner, E. Marsch (Copernicus Gesellschaft e.V., Katlenburg-Lindau, 2000), pp. 251–288 Google Scholar
  32. P. Wurz, P. Bochsler, A.G. Ghielmetti, E.G. Shelley, F. Herrero, M.F. Smith, Concept for the Hi-LITE neutral atom imaging instrument, in ed. by P. Varga and G. Betz, Proceedings of Symposium on Surface Science, Kaprun, Austria (1993), p. 225 Google Scholar
  33. P. Wurz, R. Schletti, M.R. Aellig, Hydrogen and oxygen negative ion production by surface ionization using diamond surfaces. Surf. Sci. 373, 56–66 (1997) CrossRefADSGoogle Scholar
  34. P. Wurz et al., Formation of negative ions by scattering from a diamond (111) surface, in Proc. of the Week of Doctoral Students, ed. by J. Safrankova, A. Koruka (Charles University, Prague, 1998), p. 257 Google Scholar
  35. P. Wurz, J. Scheer, M. Wieser, Particle scattering off surfaces: application in space science. e-J. Surf. Sci. Nanotechnol., 4, 394–400 (2006) CrossRefGoogle Scholar
  36. P. Wurz, L. Saul, J.A. Scheer, E. Möbius, H. Kucharek, S.A. Fuselier, Negative helium generation upon surface scattering: Application in space science. J. Appl. Phys. 103, 054905 (2008a) CrossRefADSGoogle Scholar
  37. P. Wurz, A. Galli, S. Barabash, A. Grigoriev, Energetic neutral atoms from the heliosheath. Astrophys. J. 683, 248 (2008b) doi: 10.1086/589854 CrossRefADSGoogle Scholar
  38. P. Wurz, Space Sci. Rev. (2009, this issue) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S. A. Fuselier
    • 1
  • P. Bochsler
    • 3
  • D. Chornay
    • 5
  • G. Clark
    • 2
  • G. B. Crew
    • 13
  • G. Dunn
    • 4
  • S. Ellis
    • 2
  • T. Friedmann
    • 10
  • H. O. Funsten
    • 9
  • A. G. Ghielmetti
    • 1
  • J. Googins
    • 2
  • M. S. Granoff
    • 2
  • J. W. Hamilton
    • 1
  • J. Hanley
    • 4
  • D. Heirtzler
    • 2
  • E. Hertzberg
    • 1
  • D. Isaac
    • 1
  • B. King
    • 2
  • U. Knauss
    • 2
  • H. Kucharek
    • 2
  • F. Kudirka
    • 2
  • S. Livi
    • 2
  • J. Lobell
    • 5
  • S. Longworth
    • 2
  • K. Mashburn
    • 8
  • D. J. McComas
    • 4
  • E. Möbius
    • 2
  • A. S. Moore
    • 1
  • T. E. Moore
    • 5
  • R. J. Nemanich
    • 11
  • J. Nolin
    • 2
  • M. O’Neal
    • 2
  • D. Piazza
    • 3
  • L. Peterson
    • 2
  • S. E. Pope
    • 4
  • P. Rosmarynowski
    • 5
  • L. A. Saul
    • 3
  • J. R. Scherrer
    • 4
  • J. A. Scheer
    • 3
  • C. Schlemm
    • 7
  • N. A. Schwadron
    • 12
  • C. Tillier
    • 1
  • S. Turco
    • 2
  • J. Tyler
    • 2
  • M. Vosbury
    • 2
  • M. Wieser
    • 6
  • P. Wurz
    • 3
  • S. Zaffke
    • 2
  1. 1.Lockheed Martin Advanced Technology CenterPalo AltoUSA
  2. 2.University of New HampshireDurhamUSA
  3. 3.Physikalisches InstitutUniversity of BernBernSwitzerland
  4. 4.Southwest Research InstituteSan AntonioUSA
  5. 5.Goddard Space Flight CenterGreenbeltUSA
  6. 6.Swedish Institute of Space PhysicsKirunaSweden
  7. 7.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  8. 8.Montana State UniversityBozemanUSA
  9. 9.ISR Division MS B241Los Alamos National LaboratoryLos AlamosUSA
  10. 10.Sandia Laboratory, Mail Stop 1415AlbuquerqueUSA
  11. 11.University of ArizonaTusconUSA
  12. 12.Boston UniversityBostonUSA
  13. 13.MIT Kavli Institute for Astrophysics and Space ResearchCambridgeUSA

Personalised recommendations