Advertisement

Space Science Reviews

, 144:25 | Cite as

Chaos and Intermittency in the Solar Cycle

  • Edward A. SpiegelEmail author
Article

Abstract

Where a magnetic flux tube of sufficient strength and cross section protrudes from the sun, convection is locally inhibited and a sunspot appears. The number of spots on the sun at any time varies in a cyclic, but aperiodic, manner. Models with chaos and intermittency can capture the main qualitative aspects of this temporal variability, especially if they display the mechanism of on-off intermittency. Capturing the spatio-temporal aspects of the sunspot cycle requires a more complicated model but a description in terms of waves of excitation seems promising. To clarify these possibilities, qualitative introductory remarks about chaos theory itself are included in this narrative.

Keywords

Sunspot number Tachocline Chaos On-off intermittency Dimensional reduction Amplitude equations 

References

  1. H.M. Antia, S. Basu, S.M. Chitre, Astrophys. J. 681, 680 (2008) CrossRefADSGoogle Scholar
  2. A. Arneodo, P.H. Coullet, E.A. Spiegel, Geophys. Astrophys. Fluid Dyn. 31, 1 (1985) zbMATHCrossRefADSGoogle Scholar
  3. S.L. Baliunas et al., Astrophys. J. 438, 269 (1995) CrossRefADSGoogle Scholar
  4. N.J. Balmforth, Annu. Rev. Fluid Mech. 27, 335 (1995) CrossRefADSMathSciNetGoogle Scholar
  5. N.J. Balmforth, R.V. Craster, Chaos 7, 738 (1997) zbMATHCrossRefADSGoogle Scholar
  6. J.A. Barnes, H.H. Sargent III, P.V. Tryon, in The Ancient Sun, ed. by R.O. Pepin, J.A. Eddy, R.B. Merrill (Pergamon Press, New York, 1980), p. 159 Google Scholar
  7. S. Basu, H.M. Antia, Mon. Not. R. Astron. Soc. 324, 498 (2001) CrossRefADSGoogle Scholar
  8. J. Beer, S. Tobias, N. Weiss, Sol. Phys. 181, 237 (1998) CrossRefADSGoogle Scholar
  9. J. Bernoulli, Ars conjectandi, in World of Mathematics, vol. 3 (1713), p. 1453 Google Scholar
  10. R.N. Bracewell, Aust. J. Phys. 38, 1009 (1985) ADSGoogle Scholar
  11. A. Brandenburg, Astrophys. J. 625, 529 (2005) CrossRefADSGoogle Scholar
  12. A. Brandenburg, E.A. Spiegel, Astron. Nachr. 329, 351 (2008) CrossRefADSGoogle Scholar
  13. S. Childress, A. Gilbert, Stretch, Twist, Fold: The Fast Dynamo. Lecture Notes in Physics (Springer, Berlin, 1995) zbMATHGoogle Scholar
  14. P.H. Coullet, E.A. Spiegel, SIAM J. Appl. Math. 43, 774 (1983) CrossRefMathSciNetGoogle Scholar
  15. J.P. Eckman, D. Ruelle, Rev. Mod. Phys. 57, 617 (1985) CrossRefADSGoogle Scholar
  16. J.A. Eddy, Science 192, 1189 (1972) CrossRefADSGoogle Scholar
  17. U. Feudel, W. Jansen, J. Kurths, Int. J. Bifurc. Chaos 3, 131 (1995) Google Scholar
  18. A.M. Fraser, H.L. Swinney, Phys. Rev. A 33, 1134 (1986) CrossRefADSMathSciNetGoogle Scholar
  19. B. Friedman, Principles and Techniques of Applied Mathematics (Wiley, New York, 1956) zbMATHGoogle Scholar
  20. R. Hoffman, V. Torrence, The Sciences, 29 November–December 1993 Google Scholar
  21. L.N. Howard, D.W. Moore, E.A. Spiegel, Nature 214, 1297 (1967) CrossRefADSGoogle Scholar
  22. D.W. Hughes, R. Rosner, N.O. Weiss (eds.), The Solar Tachocline (Cambridge University Press, Cambridge, 2007) Google Scholar
  23. C.A. Jones, N.O. Weiss, F. Cattaneo, Physica D 14, 161 (1984) ADSMathSciNetGoogle Scholar
  24. J.B. Keller, Am. Math. Mon. 93, 191 (1986) zbMATHCrossRefGoogle Scholar
  25. C. Letellier, L.A. Aguirre, J. Maquet, R. Gilmore, Astron. Astrophys. 449, 2006 (2006) CrossRefGoogle Scholar
  26. G.E.R. Lloyd, in Ancient Cosmologies, ed. by C. Blackes, M. Loewe (George Allen & Unwin, London, 1975), p. 200 Google Scholar
  27. W.V.R. Malkus, E.O.S. Trans. Am. Geophys. Union 53, 617 (1972) Google Scholar
  28. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1997) Google Scholar
  29. C.J. Marzec, E.A. Spiegel, SIAM J. Appl. Math. 38, 387 (1980) CrossRefMathSciNetGoogle Scholar
  30. E.N. Parker, Astrophys. J. 122, 293 (1955) CrossRefADSMathSciNetGoogle Scholar
  31. C. Pasquero, Tesi de Laurea, Univ. di Torino, 1995 Google Scholar
  32. C. Pasquero, A. Provenzale, E.A. Spiegel, Unpublished manuscript, 1995 Google Scholar
  33. N. Platt, in Proceedings of 1990 GFD Program. WHOI Tech. Rep. (WHOI-91-93) (1993), p. 327 Google Scholar
  34. N. Platt, E.A. Spiegel, C. Tresser, Phys. Rev. Lett. 70, 279 (1993a) CrossRefADSGoogle Scholar
  35. N. Platt, E.A. Spiegel, C. Tresser, Geophys. Astrophys. Fluid Dyn. 73, 146 (1993b) CrossRefADSGoogle Scholar
  36. M.R.E. Proctor, E.A. Spiegel, in The Sun and the Cool Stars, ed. by D. Moss, G. Rüddiger, I. Tuominen (Springer, Berlin, 1991), p. 117 Google Scholar
  37. O. Regev, Chaos and Complexity in Astrophysics (Cambridge Univ. Press, Cambridge, 2006) Google Scholar
  38. J.C. Ribes, E. Nesmes-Ribes, Astron. Astrophys. 276, 549 (1993) ADSGoogle Scholar
  39. K.A. Robbins, Math. Proc. Camb. Philos. Soc. 82, 309 (1997) CrossRefMathSciNetGoogle Scholar
  40. G. Rüdiger, A. Brandenburg, Astron. Astrophys. 296, 557 (1995) ADSGoogle Scholar
  41. D. Ruelle, F. Takens, Commun. Math. Phys. 20, 167 (1971) zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. L.A. Smith, Chaos: A Very Short Introduction (Oxford University Press, New York, 2007) Google Scholar
  43. L.A. Smith, C. Ziehmann, K. Fraedrich, Q. J. R. Meteorol. Soc. 125, 2855 (1999) CrossRefADSGoogle Scholar
  44. R.A. Solow, Earth Planet. Sci. Lett. 232, 67 (2005) CrossRefADSGoogle Scholar
  45. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors (Springer, New York, 1982) zbMATHGoogle Scholar
  46. E.A. Spiegel, Ann. N.Y. Acad. Sci. 357, 305 (1981) CrossRefADSGoogle Scholar
  47. E.A. Spiegel, in Chaotic Behavior in Astrophysics, ed. by R. Buchler, J. Perdang, E.A. Spiegel (Reidel, Dordrecht, 1985), p. 91 Google Scholar
  48. E.A. Spiegel, Proc. R. Soc. Lond. 413, 87 (1987) zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. E.A. Spiegel, in Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models, ed. by G. Cini (IOS Press, Amsterdam, 1997), p. 311 Google Scholar
  50. E.A. Spiegel, A.N. Wolf, Ann. N.Y. Acad. Sci. 497, 55 (1987) CrossRefADSMathSciNetGoogle Scholar
  51. E.A. Spiegel, J.P. Zahn, Astron. Astrophys. 265, 106 (1992) ADSGoogle Scholar
  52. R.B. Stothers, Astrophys. J. 77, 121 (1979) ADSGoogle Scholar
  53. F. Takens, in Dynamical Systems and Turbulence, ed. by D.A. Rand, L.-S. Young. Lecture Notes in Physics, vol. 898 (Springer, Berlin, 1981), p. 366 CrossRefGoogle Scholar
  54. J. Thurber, The New Yorker, March 1 (1947), p. 26 Google Scholar
  55. S.M. Tobias, Astron. Astrophys. 307, L21 (1996) ADSGoogle Scholar
  56. S.M. Tobias, N.O. Weiss, V. Kirk, Mon. Not. R. Astron. Soc. 273, 1150 (1995) ADSGoogle Scholar
  57. G.E. Uhlenbeck, G.W. Ford, Lectures in Statistical Mechanics (Am. Math. Soc., Providence, 1963) zbMATHGoogle Scholar
  58. S.I. Vainshtein, F. Cattaneo, Astrophys. J. 393, 165 (1992) CrossRefADSGoogle Scholar
  59. G.B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974) zbMATHGoogle Scholar
  60. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastanio, Physica D 16, 285 (1985) zbMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Astronomy DepartmentColumbia UniversityNew YorkUSA

Personalised recommendations