Space Science Reviews

, Volume 142, Issue 1–4, pp 157–231 | Cite as

The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity

  • D. J. McComas
  • F. Allegrini
  • J. Baldonado
  • B. Blake
  • P. C. Brandt
  • J. Burch
  • J. Clemmons
  • W. Crain
  • D. Delapp
  • R. DeMajistre
  • D. Everett
  • H. Fahr
  • L. Friesen
  • H. Funsten
  • J. Goldstein
  • M. Gruntman
  • R. Harbaugh
  • R. Harper
  • H. Henkel
  • C. Holmlund
  • G. Lay
  • D. Mabry
  • D. Mitchell
  • U. Nass
  • C. Pollock
  • S. Pope
  • M. Reno
  • S. Ritzau
  • E. Roelof
  • E. Scime
  • M. Sivjee
  • R. Skoug
  • T. S. Sotirelis
  • M. Thomsen
  • C. Urdiales
  • P. Valek
  • K. Viherkanto
  • S. Weidner
  • T. Ylikorpi
  • M. Young
  • J. Zoennchen
Article

Abstract

Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a NASA Explorer Mission-of-Opportunity to stereoscopically image the Earth’s magnetosphere for the first time. TWINS extends our understanding of magnetospheric structure and processes by providing simultaneous Energetic Neutral Atom (ENA) imaging from two widely separated locations. TWINS observes ENAs from 1–100 keV with high angular (∼4°×4°) and time (∼1-minute) resolution. The TWINS Ly-α monitor measures the geocoronal hydrogen density to aid in ENA analysis while environmental sensors provide contemporaneous measurements of the local charged particle environments. By imaging ENAs with identical instruments from two widely spaced, high-altitude, high-inclination spacecraft, TWINS enables three-dimensional visualization of the large-scale structures and dynamics within the magnetosphere for the first time. This “instrument paper” documents the TWINS design, construction, calibration, and initial results. Finally, the appendix of this paper describes and documents the Southwest Research Institute (SwRI) instrument calibration facility; this facility was used for all TWINS instrument-level calibrations.

Keywords

Energetic neutral atom imaging ENA ENA instrumentation Magnetosphere Geocorona Space plasma calibration facility 

Acronym List

ACE:

Advanced Composition Explorer

AMU:

Atomic Mass Unit

BESSY II:

Berlin Electron Synchrotron

BLOB:

Binary Large Object

CAPS:

Cassini Plasma Spectrometer

CEM:

Channel Electron Multiplier

CHAMPs:

Charge Preamplifiers

CRCM:

Comprehensive Ring Current Model

CTL:

Control

DBS:

Database Server

DE:

Dynamics Explorer spacecraft

DOS:

Dosimeter

DOY:

Day of Year

DP:

Data Processing

DPU:

Data Processing Unit

DST:

Disturbance Storm Time: a measure of the Earth’s magnetic field disturbance

EBOX:

Electronics Box

EEPROM:

Electrically Erasable Programmable Read-Only Memory

EMI:

Electromagnetic Interference

ENA:

Energetic Neutral Atom

EPO:

Education and Public Outreach

ES:

Environmental Sensor

ESD:

Electrostatic Discharge

ESTL:

European Space Tribology Laboratory

FEE:

Front-End Electronics

FM:

Flight Model

FOV:

Field-of-View

FWHM:

Full Width at Half Maximum

FPGA:

Field Programmable Gate Arrays

GSE:

Ground Support Equipment

GSM:

Geocentric Solar Magnetospheric

HENA:

High Energy Neutral Atom imager on IMAGE

HVPS:

High Voltage Power Supplies

IES:

Ion Electron Sensor

IMAGE:

Imager for Magnetopause-to Aurora Global Exploration Spacecraft

IMF:

Interplanetary Magnetic Field

IDL:

Interactive Data Language

IO:

Input/Output

JFET:

Junction Field Effect Transistor

LAD:

Lyman-α Detector

LAM:

Latch-Actuating Mechanism

LANL:

Los Alamos National Laboratory

LEMMS:

Low Energy Magnetospheric Measurements System

LENA:

Low Energy Neutral Atom Instrument on IMAGE

LISM:

Local Interstellar Medium

LLD:

Low Level Discriminator

LVPS:

Low Voltage Power Supplies

MAG:

Magnetometer Instrument

MCP:

Micro-Channel Plate

MENA:

Medium Energy Neutral Atom Instrument on IMAGE

MIT:

Massachusetts Institute of Technology

MLI:

Multi-Layer Insulation

MLT:

Magnetic Local Time

MoO:

Mission-of-Opportunity

MPA:

Magnetospheric Plasma Analyzer instrument on a series of geosynchronous spacecraft

MRI-VIDEOS:

Multi-point Magnetospheric Reconnaissance Imagine: Visualization of Ion Dynamics, Evolution, Origins, and Structures

NASA:

National Aeronautics and Space Administration

NSSDC:

National Space Science Data Center

PEM:

Parameterized Exospheric Model

PHA:

Pulse Height Analyzer

PWM:

Pulse-Width Modulator

RGA:

Residual Gas Analyzer

RTD:

Resistive Temperature Detectors

S/C:

Spacecraft

SCM:

Surface-Charging Monitor

SDS:

Science Data System

SOC:

Science Operations Center

SOLSTICE:

Solar Stellar IRadiance Comparison Experiment

SoHO:

Solar and Heliospheric Observatory

SQL:

Structured Query Language

SRAM:

Static Random Access Memory

SWAN:

Solar Wind ANisotropy Instrument on SoHO

SwRI:

Southwest Research Institute

TCP/IP:

Transmission Control Protocol/Internet Protocol

TOF:

Time of Flight

TWA:

TWINS Actuator

TWINS:

Two Wide-angle Imaging Neutral-atom Spectrometers Mission of Opportunity

UARS:

Upper Atmosphere Research Satellite

UNIX:

UNiplexed Information and Computing System

UPS:

Uninterruptible Power Supply

UT:

Universal Time

WUI:

Web User-Interface

WTA:

Wax Thermal Actuator

PACS

94.80.+g 94.30.C2 94.30.Lr 94.30.Va 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Allegrini, D.J. McComas, D.T. Young, J.-J. Berthelier, J. Covinhes, J.-M. Illiano, J.-F. Riou, H.O. Funsten, R.W. Harper, Energy Loss of 1–50 keV H, He, C, N, O, Ne, and Ar ions transmitted through thin carbon foils. Rev. Sci. Instrum. 77(4), 044501.1–044501.7 (2006) CrossRefGoogle Scholar
  2. D.N. Baker, E.W. Hones Jr., D.T. Young, J. Birn, The possible role of ionospheric oxygen in the initiation and development of plasma sheet instabilities. Geophys. Res. Lett. 9, 1337–1340 (1982) CrossRefADSGoogle Scholar
  3. S. Barabash, P.C. Son Brandt, O. Norberg, R. Lundin, E.C. Roelof, C.J. Chase, B.H. Mauk, H. Koskinen, Energetic neutral atom imaging by the astrid microsatellite. Adv. Space Res. 20(4–5), 1055–1060 (1997) CrossRefADSGoogle Scholar
  4. J.L. Bertaux, E. Kyrola, E. Quemerais, R. Pellinen, R. Lallement, W. Schmidt, M. Berthe, E. Dimarellis, J.P. Goutail, C. Taulemesse, C. Bernard, G. Leppelmeier, T. Summanen, H. Hannula, H. Huomo, V. Kehla, S. Korpela, K. Leppala, E. Strommer, J. Torsti, K. Viherkanto, J.F. Hochedez, G. Chretiennot, R. Peyroux, T. Holzer, SWAN: a study of solar wind anisotropies on SOHO with Lyman α sky mapping. Sol. Phys. 162, 403–439 (1995) CrossRefADSGoogle Scholar
  5. J.B. Blake, J.F. Cox, The radiation dose in a Molniya-type orbit. AIP Conf. Proc. 186, 297–303 (1989) CrossRefADSGoogle Scholar
  6. P.C. Brandt, S. Barabash, E.C. Roelof, C.J. Chase, Energetic neutral atom imaging at low altitudes from the Swedish microsatellite Astrid: Extraction of the equatorial ion distribution. J. Geophys. Res. 106(A11), 25,731–25,744 (2001) ADSGoogle Scholar
  7. P.C. Brandt, J. Goldstein, B.J. Anderson, H. Korth, T.J. Immel, E.C. Roelof, R. De Majistre, D.G. Mitchell, B. Sandel, On the relation between electric fields in the inner magnetosphere, ring current, auroral conductance, and plasmapause motion, in Inner Magnetosphere Interactions: New Perspective from Imaging, ed. by J. Burch, M. Schulz, H. Spence. Geophys. Monogr. Ser., vol. 159 (AGU, Washington, 2005), pp. 159–166 Google Scholar
  8. J.L. Burch, IMAGE mission overview. Space Sci. Rev. 91(1–2), 1–14 (2000) CrossRefADSGoogle Scholar
  9. J.L. Burch, R. Goldstein, T.E. Cravens, W.C. Gibson, R.N. Lundin, C.J. Pollock, J.D. Winningham, D.T. Young, RPC-IES: The ion and electron sensor of the rosetta plasma consortium. Space Sci. Rev. 128(1–4), 697–712 (2007). doi:10.1007/s11214-006-9002-4 CrossRefADSGoogle Scholar
  10. M. Bzowski, T. Summanen, D. Rucinski, E. Kyrola, Response of interplanetary glow to global variations of hydrogen ionization rate and solar Lyman α flux. J. Geophys. Res. 107(A7), 1101 (2002). doi:10.1029/2001JA000141 CrossRefGoogle Scholar
  11. M. Bzowski, T. Makinen, E. Kyrola, T. Summanen, E. Quemerais, Latitudinal structure and north-south asymmetry of the solar wind from Lyman-alpha remote sensing by SWAN. Astron. Astrophys. 408, 1165–1177 (2003) CrossRefADSGoogle Scholar
  12. C.W. Carlson, D.W. Curtis, G. Paschmann, W. Michael, An instrument to rapidly measure plasma distribution functions with high resolution. Adv. Space Res. 2(7), 67–70 (1983). doi:10.1016/0273-1177(82)90151-X CrossRefGoogle Scholar
  13. J.W. Chamberlain, Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11, 901–960 (1963) CrossRefADSGoogle Scholar
  14. J.W. Chamberlain, D.M. Hunten, Theory of planetary atmospheres: an introduction to their physics and chemistry. Int. Geophys. Ser. 36, 493 (1987) ADSGoogle Scholar
  15. J.H. Clemmons, J.B. Blake, J.F. Fennell, L.M. Friesen, D.J. Mabry, N. Katz, W. Crain, S. Crain, Y. Dotan, W. Skinner, A. Lin, P. Lew, S. Hansel, P. Carranza, The TWINS environmental sensor (2008, in prep.) Google Scholar
  16. D. Dempsey, Optical development of an ion/electron acceleration facility. M.S. Thesis, Rice University, Houston, July (1997) Google Scholar
  17. M.H. Denton, V.K. Jordanova, M.G. Henderson, R.M. Skoug, M.F. Thomsen, C.J. Pollock, S. Zaharia, H.O. Funsten, Storm-time plasma signatures observed by IMAGE/MENA and comparison with a global physics-based model. Geophys. Res. Lett. 32, L17102 (2005). doi:10.1029/2005GL023353 CrossRefADSGoogle Scholar
  18. M.H. Denton, M.F. Thomsen, B. Lavraud, M.G. Henderson, R.M. Skoug, H.O. Funsten, J.M. Jahn, C.J. Pollock, J.M. Weygand, Transport of plasma sheet material to the inner magnetosphere. Geophys. Res. Lett. 34, L04105 (2007). doi:10.1029/2006GL027886 CrossRefGoogle Scholar
  19. R. De Majistre, E.C. Roelof, P.C. Brandt, D.G. Mitchell, Retrieval of global magnetospheric ion distributions from high energy neutral atom (ENA) measurements by the IMAGE/HENA instrument. J. Geophys. Res. 109, A04214 (2004). doi:10.1029/2003JA010322 CrossRefGoogle Scholar
  20. Y. Ebihara, M.-C. Fok, R.A. Wolf, T.J. Immel, T.E. Moore, Influence of ionospheric conductivity on the ring current. J. Geophys. Res. 109, A08205 (2004). doi:10.1029/2003JA010351 CrossRefGoogle Scholar
  21. M.C. Fok, T.E. Moore, J.U. Kozyra, G.C. Ho, D.C. Hamilton, Three-dimensional ring current decay model. J. Geophys. Res. 100, 9619–9632 (1995) CrossRefADSGoogle Scholar
  22. M.C. Fok, T.E. Moore, G.R. Wilson, J.D. Perez, X.X. Zhang, P. C:son Brandt, D.G. Mitchell, E.C. Roelof, J.-M. Jahn, C.J. Pollock, R.A. Wolf, Global ENA IMAGE simulations. Space Sci. Rev. 109, 77–103 (2003) CrossRefADSGoogle Scholar
  23. H.O. Funsten, D.J. McComas, B.L. Barraclough, Ultrathin foils used for low-energy neutral atom imaging of the terrestrial magnetosphere. Opt. Eng. 31, 3090–3095 (1993) CrossRefADSGoogle Scholar
  24. H.O. Funsten, D.J. McComas, M.E. Gruntman, Neutral atom imaging: UV rejection techniques, in Measurement Techniques in Space Plasmas-Fields, ed. by R.F. Pfaff, J.E. Borovsky, D.T. Young. Geophys. Monogr. Ser., vol. 103 (AGU, Washington, 1998), pp. 251–256 Google Scholar
  25. H.O. Funsten, D.J. Suszcynsky, R.W. Harper, J.E. Nordholt, B.L. Barraclough, Effect of local electric fields on microchannel plate detection and spatial resolution. Rev. Sci. Instrum. 67, 145 (1996) CrossRefADSGoogle Scholar
  26. M.A. Gruntman, Extreme-ultraviolet radiation filtering by freestanding transmission gratings. Appl. Opt. 34, 5732 (1995) CrossRefADSGoogle Scholar
  27. M.A. Gruntman, Transmission grating filtering of 52–140 nm radiation. Appl. Opt. 36, 2203 (1997) CrossRefADSGoogle Scholar
  28. M.G. Henderson, G.D. Reeves, H.E. Spence, R.B. Sheldon, A.M. Jorgensen, J.B. Blake, J.F. Fennell, First energetic neutral atom images from Polar. Geophys. Res. Lett. 24, 1167 (1997) CrossRefADSGoogle Scholar
  29. M.G. Henderson, G.D. Reeves, K.R. Moore, H.E. Spence, A.M. Jorgensen, J.F. Fennell, J.B. Blake, E.C. Roelof, Energetic neutral atom imaging with the POLAR CEPPAD/IPS instrument: initial forward modeling results. Phys. Chem. Earth 24, 203 (1999) Google Scholar
  30. M.G. Henderson, M.F. Thomsen, R. Skoug, M.H. Denton, R. Harper, H.O. Funsten, C.J. Pollock, Calculation of IMAGE/MENA geometric factors and conversion of images to units of integral and differential flux. Rev. Sci. Instrum. 76, 043303 (2005) CrossRefADSGoogle Scholar
  31. M.G. Henderson, G.D. Reeves, R. Skoug, M.F. Thomsen, M.H. Denton, S.B. Mende, T.J. Immel, P. C:son Brandt, H.J. Singer, Magnetospheric and auroral activity during the 18 April 2002 saw tooth event. J. Geophys. Res. 111, A01 (2006) S90 CrossRefGoogle Scholar
  32. R.R. Hodges Jr., Monte Carlo simulation of the terrestrial hydrogen exosphere. J. Geophys. Res. 99(A12), 23,229–23,247 (1994) CrossRefADSGoogle Scholar
  33. C.-S. Huang, J.C. Foster, G.D. Reeves, G. Le, H.U. Frey, C.J. Pollock, J.-M. Jahn, Periodic magnetospheric substorms: Multiple space-based and ground-based instrumental observations. J. Geophys. Res. 108(A11), 1411 (2003). doi:10.1029/2003JA009992 CrossRefGoogle Scholar
  34. V.K. Jordanova, L.M. Kistler, J.U. Kozyra, G.V. Khazanov, A.F. Nagy, Collisional losses of ring current ions. J. Geophys. Res. 101(A1), 111–126 (1996) CrossRefADSGoogle Scholar
  35. V.K. Jordanova, J.U. Kozyra, A.F. Nagey, G.V. Khazanov, Kinetic model of the ring current-atmosphere interactions. J. Geophys. Res. 102, 14279–14291 (1997) CrossRefADSGoogle Scholar
  36. B.G. Lindsay, R.F. Stebbings, Charge transfer cross sections for energetic neutral atom data analysis. J. Geophys. Res. 110, A12213 (2005). doi:10.1029/2005JA011298 CrossRefADSGoogle Scholar
  37. A.T.Y. Lui, H.E. Spence, D.P. Stern, Empirical modeling of the quiet time nightside magnetosphere. J. Geophys. Res. 99(A1), 151–158 (1994) CrossRefADSGoogle Scholar
  38. D.J. McComas, S.J. Bame, Channel multiplier compatible materials and lifetime tests. Rev. Sci. Instrum. 55(4), 463–467 (1984) CrossRefADSGoogle Scholar
  39. D.J. McComas, J.R. Baldonado, S.J. Bame, B.L. Barraclough, Channel electron multiplier compatibility with viton and Apiezon-L vacuum grease. Rev. Sci. Insrum. 58, 2331–2332 (1987) CrossRefADSGoogle Scholar
  40. D.J. McComas, B.L. Barraclough, R.C. Elphic, H.O. Funsten III, M.F. Thomsen, Magnetospheric imaging with low energy neutral atoms. Proc. Nat. Acad. Sci. 88, 9598–9602 (1991) CrossRefADSGoogle Scholar
  41. D.J. McComas, H.O. Funsten, J.T. Gosling, K.R. Moore, E.E. Scime, M.F. Thomsen, Fundamentals of low energy neutral atom imaging. Opt. Eng. 33, 335–341 (1994) CrossRefADSGoogle Scholar
  42. D.J. McComas, H.O. Funsten, E.E. Scime, Advances in low energy neutral atom imaging, in Measurement Techniques in Space Plasmas-Fields, ed. by R.F. Pfaff, J.E. Borovsky, D.T. Young. Geophys. Monograph Series, vol. 103 (AGU, Washington, 1998), pp. 275–280 Google Scholar
  43. D.J. McComas, P. Valek, J.L. Burch, C.J. Pollock, R.M. Skoug, M.F. Thomsen, Filling and emptying of the plasma sheet: remote observations with 1–70 keV energetic neutral atoms. Geophys. Res. Lett. 29(22), 36–1 (2002). doi:10.1029/2002GL016153 CrossRefGoogle Scholar
  44. D.J. McComas, F. Allegrini, C.J. Pollock, H.O. Funsten, S. Ritzau, G. Gloeckler, Ultra-thin (∼10 nm) carbon foils in space instrumentation. Rev. Sci. Instrum. 75(11), 4863–4870 (2004). doi:10.1063/1.1809265 CrossRefADSGoogle Scholar
  45. D. McComas, F. Allegrini, F. Bagenal, P. Casey, P. Delamere, D. Demkee, G. Dunn, H. Elliott, J. Hanley, K. Johnson, J. Langle, G. Miller, S. Pope, M. Reno, B. Rodriguez, N. Schwadron, P. Valek, S. Weidner, The Solar Wind Around Pluto (SWAP) instrument aboard New Horizons. Space Sci. Rev. (2007). doi:10.1007/s11214-007-9205-3. Online First, ISSN 0038-6308 (Print) 1572-9672 (Online) Google Scholar
  46. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory. International Geophysics Series, vol. 45 (Academic Press, New York, 1989) MATHGoogle Scholar
  47. D.G. Mitchell, A.F. Cheng, S.M. Krimigis, E.P. Keath, S.E. Jaskulek, B.H. Mauk, R.W. McEntire, E.C. Roelof, D.J. Williams, K.C. Hsieh, V.A. Drake, INCA: The ion neutral camera for energetic neutral atom imaging of the Saturnian magnetosphere. Opt. Eng. 32, 3096–3101 (1993) CrossRefADSGoogle Scholar
  48. D.G. Mitchell, S.E. Jaskulek, C.E. Schlemm, E.P. Keath, R.E. Thompson, B.E. Tossman, J.D. Boldt, J.R. Hayes, G.B. Andrews, N. Paxchalidis, D.C. Hamilton, R.A. Lundgren, E.O. Tums, P. Wilson IV, H.D. Voss, D. Prentice, K.C. Hsieh, C.C. Curtis, F.R. Powell, High energy neutral atom (HENA) imager for the IMAGE mission. Space Sci. Rev. 91, 67–112 (2000) CrossRefADSGoogle Scholar
  49. T.E. Moore, D.J. Chornay, M.R. Collier, F.A. Herrero, J. Johnson, M.A. Johnson, J.W. Keller, J.F. Laudadio, J.F. Lobell, K.W. Ogilvie, P. Rozmarynowski, S.A. Fuselier, A.G. Ghielmetti, E. Hertzberg, D.C. Hamilton, R. Lundgren, P. Wilson, P. Walpole, T.M. Stephen, B.L. Peko, B. Van Zyl, P. Wurz, J.M. Quinn, G.R. Wilson, The low-energy neutral atom imager for IMAGE. Space Sci. Rev. 91, 155–195 (2000) CrossRefADSGoogle Scholar
  50. T.E. Moore, M.R. Collier, M.-C. Fok, S.A. Fuselier, H. Khan, W. Lennartsson, D.G. Simpson, G.R. Wilson, M.O. Chandler, Heliosphere–geosphere interactions using low energy neutral atom imaging. Space Sci. Rev. 109, 351–371 (2003) CrossRefADSGoogle Scholar
  51. H.U. Nass, G. Lay, J.H. Zoennchen, H.J. Fahr, The TWINS-LAD mission: Observations of terrestrial Lyman-α fluxes. Astrophys. Space Sci. Trans. 2, 27–31 (2006) ADSCrossRefGoogle Scholar
  52. N. Østgaard, S.B. Mende, H.U. Frey, G.R. Gladstone, H. Lauche, Neutral hydrogen density profiles derived from geocoronal imaging. J. Geophys. Res. 108(A7), 1300 (2003). doi:10.1029/2002JA009749 CrossRefGoogle Scholar
  53. J.D. Perez, X.-X. Zhang, P.C. Brandt, D.G. Mitchell, C.J. Pollock, Dynamics of ring current ions as obtained from IMAGE HENA & MENA ENA images. J. Geophys. Res. 109, A05208 (2004a). doi:10.1029/2003JA010164 CrossRefGoogle Scholar
  54. J.D. Perez, X.-X. Zhang, P.C. Brandt, D.G. Mitchell, J.-M. Jahn, C.J. Pollock, S.B. Mende, Trapped and precipitating protons in the inner magnetosphere as seen by IMAGE. J. Geophys. Res. 109, A09202 (2004b). doi:10.1029/2004JA010421 CrossRefGoogle Scholar
  55. C.J. Pollock, K. Asamura, J. Baldonado, M.M. Balkey, P. Barker, J.L. Burch, E.J. Korpela, J. Cravens, G. Dirks, M.-C. Fok, H.O. Funsten, M. Grande, M. Gruntman, J. Hanley, J.-M. Jahn, M. Jenkins, M. Lampton, M. Marckwordt, D.J. McComas, T. Mukai, G. Penegor, S. Pope, S. Ritzau, M. Schattenburg, E. Scime, R. Skoug, W. Spurgeon, T. Stecklein, S. Storms, C. Urdialies, P. Valek, J.T.M. Van Beek, S.E. Weidner, M. Wüest, M.K. Young, C. Zinsmeyer, Medium energy neutral atom (MENA) imager for the IMAGE mission. Space Sci. Rev. 91, 113–154 (2000) CrossRefADSGoogle Scholar
  56. C.J. Pollock, K. Asamura, M.M. Balkey, J.L. Burch, H.O. Funsten, M. Grande, M. Gruntman, M. Henderson, J.-M. Jahn, M. Lampton, M.W. Liemohn, D.J. McComas, T. Mukai, S. Ritzau, M.L. Schattenburg, E. Scime, R. Skoug, P. Valek, M. Wuest, First medium energy neutral atom (MENA) images of Earth’s magnetosphere during substorm and storm-time. Geophys. Res. Lett. 28(6), 1147 (2001) CrossRefADSGoogle Scholar
  57. C.J. Pollock, P. Cson Brandt, J.L. Burch, M.G. Henderson, J.-M. Jahn, D.J. McComas, S.B. Mende, D.G. Mitchell, G.D. Reeves, E.E. Scime, R.M. Skoug, M. Thomsen, P. Valek, The role and contributions of energetic neutral atom (ENA) imaging in magnetospheric substorm research. Space Sci. Rev. 109, 155 (2003) CrossRefADSGoogle Scholar
  58. C.J. Pollock, J. Jahn, A. Isaksson, Low altitude ENA emissions observed from various vantage points on IMAGE. Eos Trans. AGU 85(47) (2004). Fall Meet. Suppl, Abstract SM13A-1181 Google Scholar
  59. R.L. Rairden, L.A. Frank, J.D. Craven, Geocoronal imaging with Dynamics Explorer. J. Geophys. Res. 91, 13613 (1986) CrossRefADSGoogle Scholar
  60. G.D. Reeves, M.G. Henderson, R.M. Skoug, M.F. Thomsen, J.E. Borovsky, H.O. Funsten, P. C:son Brandt, D.J. Mitchell, J.-M. Jahn, C.J. Pollock, D.J. McComas, S.B. Mende, IMAGE, POLAR, and geosynchronous observations of substorm and ring current ion injection, in Disturbances in Geospace: The Storm-Substorm Relationship, ed. by A.S. Sharma, Y. Kamide, G.S. Lakhina. Geophys. Monogr. Ser., vol. 142 (AGU, Washington, 2003), pp. 91–101 Google Scholar
  61. S.M. Ritzau, R.A. Baragiola, Electron emission from carbon foils induced by keV ions. Phys. Rev. B. Condens. Matter 58(5), 2529–2538 (1998) ADSGoogle Scholar
  62. C. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, vol. 2 (World Scientific, Singapore, 2000) MATHGoogle Scholar
  63. E.C. Roelof, Energetic neutral atom imaging of a storm-time ring current. Geophys. Res. Lett. 14, 652–655 (1987) CrossRefADSGoogle Scholar
  64. E.C. Roelof, Remote sensing of the ring current using energetic neutral atoms. Adv. Space. Res. 9(12), 195–203 (1989) CrossRefADSGoogle Scholar
  65. E.C. Roelof, ENA emission from nearly-mirroring magnetospheric ions interacting with the exosphere. Adv. Space Res. 20(3), 361–366 (1997) CrossRefADSGoogle Scholar
  66. E.C. Roelof, A.J. Skinner, Extraction of ion distributions from magnetospheric ENA and EUV images. Space Sci. Rev. 91, 437–459 (2000) CrossRefADSGoogle Scholar
  67. E.C. Roelof, P. C:son Brandt, D.G. Mitchell, Derivation of currents and diamagnetic effects from global plasma pressure distributions obtained by IMAGE/HENA. Adv. Space Res. 33(5), 747–751 (2004) CrossRefADSGoogle Scholar
  68. E.C. Roelof, Pressure-driven currents derived from global ENA images by IMAGE/HENA, in Inner Magnetosphere Interactions: New Perspectives from Imaging, ed. by J.L. Burch, M. Schulz, H. Spence. AGU Geophys. Monogr. Ser., vol. 159 (AGU, Washington, 2005), pp. 153–157 Google Scholar
  69. E.E. Scime, E.H. Anderson, D.J. McComas, M.L. Schattenburg, Extreme-ultraviolet polarization and filtering with gold transmission gratings. Appl. Opt. 34(4), 648–654 (1995) CrossRefADSGoogle Scholar
  70. E.E. Scime, A.M. Keesee, J.-M. Jahn, J.L. Kline, C.J. Pollock, M. Thomsen, Remote ion temperature measurements of Earth’s magnetosphere: medium energy neutral atom (MENA) images. Geophys. Res. Lett. 29(10), 80.1–80.4 (2002) CrossRefGoogle Scholar
  71. R.M. Skoug, M.F. Thomsen, M.G. Henderson, H.O. Funsten, G.D. Reeves, C.J. Pollock, J.-M. Jahn, D.J. McComas, D.G. Mitchell, P. Cson Brandt, B.R. Sandel, C.R. Clauer, H.J. Singer, Tail dominated storm main phase: March 31, 2001. J. Geophys. Res. 108(A6), 1259 (2003). doi:10.1029/2002JA009705 CrossRefGoogle Scholar
  72. P.M. Stier, C.F. Barnett, Charge exchange cross sections of hydrogen ions in gases. Phys. Rev. 103(4), 896–907 (1956). doi:10.1103/PhysRev.103.896 CrossRefADSGoogle Scholar
  73. N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. J. Geophys. Res. 107(A8), 1179 (2002a). doi:10.1029/2001JA000219 CrossRefGoogle Scholar
  74. N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations. J. Geophys. Res. 107(A8), 1176 (2002b). doi:10.1029/2001JA000220 CrossRefGoogle Scholar
  75. N.A. Tsyganenko, H.J. Singer, J.C. Kasper, Storm-time distortion of the inner magnetosphere: How severe can it get? J. Geophys. Res. 108(A5), 1209 (2003). doi:10.1029/2002JA009808 CrossRefGoogle Scholar
  76. C. Vallat, I. Dandouras, P. Cson Brandt, R. De Majistre, D.G. Mitchell, E.C. Roelof, H. Reme, J.-A. Sauvaud, L.M. Kistler, C. Mouikis, M. Dunlop, A. Balogh, First comparison between ring current measurements by Cluster/CIS and IMAGE/HENA. J. Geophys. Res. 109(A4), A04213 (2004). doi:10.1029/2003JA010224 CrossRefGoogle Scholar
  77. J. Vette, The NASA/National Space Science Data Center trapped radiation environment model program (1964–1991). NSSDC Report 91-29, Greenbelt, Maryland (1991) Google Scholar
  78. T. Ylikorpi, T. Luntama, K. Viherkanto, V.-P. Lappalainen, H. Hannula, H. Huomo, Development of an Actuator for CAPS Instrument on spacecraft Cassini. Paper presented at Sixth European Space Mechanisms and Tribology Symposium, European Space Agency, Technopark, Zurich, Switzerland, 4–6 Oct. (1995) Google Scholar
  79. D.T. Young, J.J. Berthelier, M. Blanc, J.L. Burch, A.J. Coates, R. Goldstein, M. Grande, T.W. Hill, R.E. Johnson, V. Kelha, D.J. McComas, E.C. Sittler, K.R. Svenes, K. Szegö, P. Tanskanen, K. Ahola, D. Anderson, S. Bakshi, R.A. Baragiola, B.L. Barraclough, R.K. Black, S. Bolton, T. Booker, R. Bowman, P. Casey, F.J. Crary, D. Delapp, G. Dirks, N. Eaker, H. Funsten, J.D. Furman, J.T. Gosling, H. Hannula, C. Holmlund, H. Huomo, J.M. Illiano, P. Jensen, M.A. Johnson, D.R. Linder, T. Luntama, S. Maurice, K.P. McCabe, K. Mursula, B.T. Narheim, J.E. Nordholt, A. Preece, J. Rudzki, A. Ruitberg, K. Smith, S. Szalai, M.F. Thomsen, K. Viherkanto, J. Vilppola, T. Vollmer, T.E. Wahl, M. Wüest, T. Ylikorpi, C. Zinsmeyer, Cassini plasma spectrometer investigation. Space Sci. Rev. 114(1–4), 1–112 (2004) CrossRefADSGoogle Scholar
  80. A.M. Zaniewski, X. Sun, A. Gripper, E.E. Scime, J.-M. Jahn, C.J. Pollock, Evolution of remotely measured inner magnetospheric ion temperatures during a geomagnetic storm. J. Geophys. Res. 111, A10221 (2006). doi:10.1029/2006JA011769 CrossRefADSGoogle Scholar
  81. X.X. Zhang, J.D. Perez, T. Chen, C. Wang, P. C:son Brandt, D.G. Mitchell, Y.L. Wang, Proton temperatures in the ring current from ENA images and in situ measurements. Geophys. Res. Lett. 32, L16101 (2005). doi:10.1029/2005GL023481 CrossRefADSGoogle Scholar
  82. J.H. Zoennchen, Modellierung der dreidimensionalen Dicteverteilung des geokoronalen Neutralwasserstoffes auf Basis von TWINS Ly-Alpha-Instensitätsmessungen, urn:nbn:de:hbz:5N-08886 (2006). http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2006/zoennchen_jochen

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • D. J. McComas
    • 1
  • F. Allegrini
    • 1
  • J. Baldonado
    • 2
  • B. Blake
    • 3
  • P. C. Brandt
    • 4
  • J. Burch
    • 1
  • J. Clemmons
    • 3
  • W. Crain
    • 3
  • D. Delapp
    • 2
  • R. DeMajistre
    • 4
  • D. Everett
    • 2
  • H. Fahr
    • 5
  • L. Friesen
    • 3
  • H. Funsten
    • 2
  • J. Goldstein
    • 1
  • M. Gruntman
    • 6
  • R. Harbaugh
    • 1
  • R. Harper
    • 2
  • H. Henkel
    • 7
  • C. Holmlund
    • 8
  • G. Lay
    • 5
  • D. Mabry
    • 3
  • D. Mitchell
    • 4
  • U. Nass
    • 5
  • C. Pollock
    • 1
  • S. Pope
    • 1
  • M. Reno
    • 1
  • S. Ritzau
    • 9
  • E. Roelof
    • 4
  • E. Scime
    • 10
  • M. Sivjee
    • 3
  • R. Skoug
    • 2
  • T. S. Sotirelis
    • 4
  • M. Thomsen
    • 2
  • C. Urdiales
    • 1
  • P. Valek
    • 1
  • K. Viherkanto
    • 8
  • S. Weidner
    • 1
  • T. Ylikorpi
    • 8
  • M. Young
    • 1
  • J. Zoennchen
    • 5
  1. 1.Southwest Research InstituteSan AntonioUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.The Aerospace CorporationEl SegundoUSA
  4. 4.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  5. 5.Argelander Institute for Astronomy, Astrophysics SectionUniversity of BonnBonnGermany
  6. 6.Astronautics and Space Technology DivisionUniversity of Southern CaliforniaLos AngelesUSA
  7. 7.von Hoerner & Sulger GmbHSchwetzingenGermany
  8. 8.VTTEspooFinland
  9. 9.Burle Electro-Optics, Inc.SturbridgeUSA
  10. 10.Department of PhysicsWest Virginia UniversityMorgantownUSA

Personalised recommendations