Space Science Reviews

, Volume 140, Issue 1–4, pp 93–127 | Cite as

New Horizons: Anticipated Scientific Investigations at the Pluto System

  • Leslie A. Young
  • S. Alan Stern
  • Harold A. Weaver
  • Fran Bagenal
  • Richard P. Binzel
  • Bonnie Buratti
  • Andrew F. Cheng
  • Dale Cruikshank
  • G. Randall Gladstone
  • William M. Grundy
  • David P. Hinson
  • Mihaly Horanyi
  • Donald E. Jennings
  • Ivan R. Linscott
  • David J. McComas
  • William B. McKinnon
  • Ralph McNutt
  • Jeffery M. Moore
  • Scott Murchie
  • Catherine B. Olkin
  • Carolyn C. Porco
  • Harold Reitsema
  • Dennis C. Reuter
  • John R. Spencer
  • David C. Slater
  • Darrell Strobel
  • Michael E. Summers
  • G. Leonard Tyler
Article

Abstract

The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).

Keywords

Pluto Charon Nix Hydra New Horizons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bagenal, T.E. Cravens, J.G. Luhmann, R.L. McNutt, A.F. Cheng, Pluto’s interaction with the solar wind, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 523–555 Google Scholar
  2. K.H. Baines et al., Polar lightning and decadal-scale cloud variability on Jupiter. Science 318, 226 (2007) CrossRefADSGoogle Scholar
  3. D. Bockelée-Morvan, E. Lellouch, N. Biver, G. Paubert, J. Bauer, P. Colom, D.C. Lis, Search for CO gas in Pluto, Centaurs and Kuiper belt objects at radio wavelengths. Astron. Astrophys. 377, 343–353 (2001) CrossRefADSGoogle Scholar
  4. M.E. Brown, Pluto and Charon: formation, seasons, composition. Ann. Rev. Earth Planet. Sci. 30, 307–345 (2002) CrossRefADSGoogle Scholar
  5. M.E. Brown, W.M. Calvin, Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science 287, 107–109 (2000) CrossRefADSGoogle Scholar
  6. R.H. Brown, D.P. Cruikshank, J. Veverka, P. Helfenstein, J. Eluszkiewicz, Surface composition and photometric properties of Triton, in Neptune and Triton, ed. by D.P. Cruikshank (Univ. of Arizona Press, Tucson, 1995), pp. 991–1030 Google Scholar
  7. M.W. Buie, W.M. Grundy, The distribution and physical state of H2O on Charon. Icarus 148, 324–329 (2000) CrossRefADSGoogle Scholar
  8. M.W. Buie, W.M. Grundy, E.F. Young, L.A. Young, S.A. Stern, Orbits and photometry of Pluto’s satellites: Charon, S/2005 P1, and S/2005 P2. Astron. J. 132, 290–298 (2006) CrossRefADSGoogle Scholar
  9. M.W. Buie, D.J. Tholen, L.H. Wasserman, Separate lightcurves of Pluto and Charon. Icarus 125, 233–244 (1997a) CrossRefADSGoogle Scholar
  10. M.W. Buie, E.F. Young, R.P. Binzel, Surface appearance of Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997b), pp. 269–293 Google Scholar
  11. R.M. Canup, A giant impact origin of Pluto–Charon. Science 307, 546–550 (2005) CrossRefADSGoogle Scholar
  12. A.F. Cheng et al., Long range reconnaissance imager on New Horizons. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9271-6 Google Scholar
  13. A.F. Cheng et al., Changing characteristics of Jupiter’s little red spot. Astron. J. 135, 2446–2452 (2008) CrossRefADSGoogle Scholar
  14. J.T. Clarke, S.A. Stern, L.M. Trafton, Pluto’s extended atmosphere—an escape model and initial observations. Icarus 95m, 173–179 (1992) CrossRefADSGoogle Scholar
  15. D.P. Cruikshank, T.L. Roush, J.M. Moore, M. Sykes, T.C. Owen, M.J. Bartholomew, R.H. Brown, K.A. Tryka, The surfaces of Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 221–268 Google Scholar
  16. A.R. Dobrovolskis, S.J. Peale, A.W. Harris, Dynamics of the Pluto–Charon binary, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 159–190 Google Scholar
  17. S. Douté, B. Schmitt, E. Quirico, T.C. Owen, D.P. Cruikshank, C. de Bergh, T.R. Geballe, T.L. Roush, Evidence for methane segregation at the surface of Pluto. Icarus 142, 421–444 (1999) CrossRefADSGoogle Scholar
  18. N.S. Duxbury, R.H. Brown, V. Anicich, Condensation of nitrogen: Implications for Pluto and Triton. Icarus 129, 202–206 (1997) CrossRefADSGoogle Scholar
  19. J.L. Elliot, L.A. Young, Limits to the radius and possible atmosphere of Charon from its 1980 stellar occultation. Icarus 89, 244–254 (1991) CrossRefADSGoogle Scholar
  20. J.L. Elliot et al., The recent expansion of Pluto’s atmosphere. Nature 424, 165–168 (2003) CrossRefADSGoogle Scholar
  21. J.L. Elliot et al., Changes in Pluto’s atmosphere: 1988–2006. Astron. J. 134, 1–13 (2007) CrossRefADSGoogle Scholar
  22. P. Farinella, D.R. Davis, S.A. Stern, Formation and collisional evolution of the Edgeworth-Kuiper belt, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russell (Univ. of Arizona Press, Tucson, 2000), pp. 1255–1282 Google Scholar
  23. G.R. Gladstone et al., Jupiter’s nightside airglow and aurora. Science 318, 229 (2007) CrossRefADSGoogle Scholar
  24. T.K. Greathouse et al., New Horizons Alice ultraviolet observations of a stellar occultation by Jupiter’s atmosphere. Icarus (2008, submitted) Google Scholar
  25. W.M. Grundy, Methane and nitrogen ices on Pluto and Triton: a combined laboratory and telescope investigation. Ph.D. Thesis, University of Arizona, 1995 Google Scholar
  26. W.M. Grundy, M.W. Buie, Distribution and evolution of CH4, N2, and CO ices on Pluto’s surface: 1995 to 1998. Icarus 153, 248–263 (2001) CrossRefADSGoogle Scholar
  27. W.M. Grundy, M.W. Buie, Spatial and compositional constraints on non-ice components and H2O on Pluto’s surface. Icarus 157, 128–138 (2002) CrossRefADSGoogle Scholar
  28. W.M. Grundy, L.A. Young, Near infrared spectral monitoring of Triton with IRTF/SpeX I: Establishing a baseline. Icarus 172, 455–465 (2004) CrossRefADSGoogle Scholar
  29. W.M. Grundy, B. Schmitt, E. Quirico, The temperature dependent spectra of alpha and beta nitrogen ice with application to Triton. Icarus 105, 254–258 (1993) CrossRefADSGoogle Scholar
  30. W.M. Grundy, M.W. Buie, J.A. Stansberry, J.R. Spencer, B. Schmitt, Near-infrared spectra of icy outer solar system surfaces: Remote determination of H2O ice temperatures. Icarus 142, 536–549 (1999) CrossRefADSGoogle Scholar
  31. W.M. Grundy, B. Schmitt, E. Quirico, The temperature-dependent spectrum of methane ice I between 0.7 and 5 μm and opportunities for near-infrared remote thermometry. Icarus 155, 486–496 (2002) CrossRefADSGoogle Scholar
  32. W.M. Grundy, L.A. Young, J.R. Spencer, R.E. Johnson, E.F. Young, M.W. Buie, Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus 184, 543–555 (2006) CrossRefADSGoogle Scholar
  33. W.M. Grundy et al., New Horizons mapping of Europa and Ganymede. Science 318, 234 (2007) CrossRefADSGoogle Scholar
  34. A.A.S. Gulbis, J.L. Elliot, M.J. Person, E.R. Adams, B.A. Babcock, M. Emilio, J.W. Gangestad, S.D. Kern, E.A. Kramer, D.J. Osip, J.M. Pasachoff, S.P. Souza, T. Tuvikene, Charon’s radius and atmospheric constraints from observations of a stellar occultation. Nature 439, 48–51 (2006) CrossRefADSGoogle Scholar
  35. Y. Guo, R. Farquhar, New Horizons mission design. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9242-y Google Scholar
  36. M. Horanyi et al., The Student Dust Counter on the New Horizons mission. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9250-y Google Scholar
  37. V.A. Krasnopolsky, Hydrodynamic flow of N2 from Pluto. J. Geophys. Res. 104, 5955–5962 (1999) CrossRefADSGoogle Scholar
  38. V.A. Krasnopolsky, D.P. Cruikshank, Photochemistry of Pluto’s atmosphere and ionosphere near perihelion. J. Geophys. Res. 104, 21979–21996 (1999) CrossRefADSGoogle Scholar
  39. E. Lellouch, R. Laureijs, B. Schmitt, E. Quirico, C. de Bergh, J. Crovisier, A. Coustenis, Pluto’s non-isothermal surface. Icarus 147, 220–250 (2000) CrossRefADSGoogle Scholar
  40. J.-C. Liou, H.A. Zook, Signatures of the giant planets imprinted on the Edgeworth-Kuiper belt dust disk. Astron. J. 118, 580–590 (1999) CrossRefADSGoogle Scholar
  41. J.G. Luhmann, C.T. Russell, K. Schwingenschuh, E. Eroshenko, A comparison of induced magnetotails of planetary bodies – Venus, Mars, and Titan. J. Geophys. Res. 96, 11,19911,208 (1991) ADSGoogle Scholar
  42. R. Malhotra, J.G. Williams, Pluto’s heliocentric orbit, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 127–157 Google Scholar
  43. D.J. McComas, F. Allegrini, F. Bagenal, F. Crary, R.W. Ebert, H. Elliott, A. Stern, P. Valek, Diverse Plasma Populations and Structures in Jupiter’s Magnetotail. Science 318, 217 (2007) CrossRefADSGoogle Scholar
  44. D. McComas et al., The Solar Wind Around Pluto (SWAP) instrument aboard New Horizons. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9205-3 Google Scholar
  45. R.L. McNutt Jr., Models of Pluto’s upper atmosphere. GRL 16, 1225–1228 (1989) CrossRefADSGoogle Scholar
  46. R.L. McNutt et al., Energetic Particles in the Jovian Magnetotail. Science 318, 220 (2007) CrossRefADSGoogle Scholar
  47. R.E. McNutt et al., The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on New Horizons. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9436-y Google Scholar
  48. C.B. Olkin, D. Reuter, A. Lunsford, R.P. Binzel, S.A. Stern, The New Horizons Distant Flyby of Asteroid 2002 JF56. AAS/Division for Planetary Sciences Meeting Abstracts 38 (2006) #59.22 Google Scholar
  49. C.B. Olkin, E.F. Young, L.A. Young, W. Grundy, B. Schmitt, A. Tokunaga, T. Owen, T. Roush, H. Terda, Pluto’s spectrum from 1.0 to 4.2 μm: implications for surface properties. Astron. J. 133, 420–431 (2007) CrossRefADSGoogle Scholar
  50. T.C. Owen, T.L. Roush, D.P. Cruikshank, J.L. Elliot, L.A. Young, C. de Bergh, B. Schmitt, T.R. Geballe, R.H. Brown, M.J. Bartholomew, Surface ices and atmospheric composition of Pluto. Science 261, 745–748 (1993) CrossRefADSGoogle Scholar
  51. M.J. Person, J.L. Elliot, A.A.S. Gulbis, J.M. Pasachoff, B.A. Babcock, S.P. Souza, J. Gangestad, Charon’s radius and density from the combined data sets of the 2005 July 11 occultation. Astron. J. 132, 1575–1580 (2006) CrossRefADSGoogle Scholar
  52. E. Quirico, B. Schmitt, Near infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and pure ices: Implication for Triton and Pluto. Icarus 127, 354–378 (1997) CrossRefADSGoogle Scholar
  53. E. Quirico, S. Douté, B. Schmitt, C. de Bergh, D.P. Cruikshank, T.C. Owen, T.R. Geballe, T.L. Roush, Composition, physical state and distribution of ices at the surface of Triton. Icarus 139, 159–178 (1999) CrossRefADSGoogle Scholar
  54. K. Rages, J.B. Pollack, Voyager imaging of Triton’s clouds and hazes. Icarus 99, 289–301 (1992) CrossRefADSGoogle Scholar
  55. K.D. Retherford et al., Io’s atmospheric response to eclipse: UV aurorae observations. Science 318, 237 (2007) CrossRefADSGoogle Scholar
  56. D.C. Reuter et al., Jupiter cloud composition, stratification, convection, and wave motion: a view from New Horizons. Science 318, 223 (2007) CrossRefADSGoogle Scholar
  57. D. Reuter et al., Ralph: A visible/infrared imager for the New Horizons mission. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9375-7 Google Scholar
  58. E.L. Shock, W.B. McKinnon, Hydrothermal processing of cometary volatiles-applications to Triton. Icarus 106, 464–477 (1993) CrossRefADSGoogle Scholar
  59. M.R. Showalter, A.F. Cheng, H.A. Weaver, S.A. Stern, J.R. Spencer, H.B. Throop, E.M. Birath, D. Rose, J.M. Moore, Clump detections and limits on moons in Jupiter’s ring system. Science 318, 232 (2007) CrossRefADSGoogle Scholar
  60. B. Sicardy et al., Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature 424, 168–170 (2003) CrossRefADSGoogle Scholar
  61. B. Sicardy et al., Charon’s size and an upper limit on its atmosphere from a stellar occultation. Nature 439, 52–54 (2006) CrossRefADSGoogle Scholar
  62. J.R. Spencer, J.A. Stansberry, L.M. Trafton, E.F. Young, R.P. Binzel, S.K. Croft, Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 435–473 Google Scholar
  63. J. Spencer, M. Buie, L. Young, Y. Guo, A. Stern, Finding KBO flyby targets for New Horizons. Earth, Moon Planets 92, 483–491 (2003) CrossRefADSGoogle Scholar
  64. J.R. Spencer et al., Io volcanism seen by New Horizons: A major eruption of the Tvashtar volcano. Science 318, 240 (2007) CrossRefADSGoogle Scholar
  65. J.A. Stansberry, R.V. Yelle, Emissivity and the fate of Pluto’s atmosphere. Icarus 141, 299–306 (1999) CrossRefADSGoogle Scholar
  66. A.J. Steffl, M.J. Mutchler, H.A. Weaver, S.A. Stern, D.D. Durda, D. Terrell, W.J. Merline, L.A. Young, E.F. Young, M.W. Buie, J.R. Spencer, New constraints on additional satellites of the Pluto system. Astron. J. 132, 614–619 (2007) CrossRefADSGoogle Scholar
  67. S.A. Stern, The Pluto–Charon system. Ann. Rev. Astron. Astrophys. 30, 185–233 (1992) CrossRefADSGoogle Scholar
  68. S.A. Stern, The New Horizons Pluto Kuiper belt mission: an overview with historical context. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9295-y Google Scholar
  69. S.A. Stern, A. Cheng, NASA plans Pluto–Kuiper belt mission. EOS 83, 101 (2002) CrossRefADSGoogle Scholar
  70. S.A. Stern, M.W. Buie, L.M. Trafton, HST high-resolution images and maps of Pluto. Astrophys. J. 113, 827 (1997a) ADSGoogle Scholar
  71. S.A. Stern, W.B. McKinnon, J.L. Lunine, On the origin of Pluto, Charon, and the Pluto–Charon binary, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. Arizona Press, Tucson, 1997b), pp. 605–663 Google Scholar
  72. S.A. Stern, M.J. Mutchler, H.A. Weaver, A.J. Steffl, The positions, colors, and photometric variability of Pluto’s small satellites from HST observations: 2005–2006. Lunar and Planetary Sci. Conference 38, no. 1722 (2007) Google Scholar
  73. S.A. Stern et al., Alice: The ultraviolet imaging spectrometer aboard the New Horizons Pluto–Kuiper belt mission. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9407-3 Google Scholar
  74. M.E. Summers, D.F. Strobel, G.R. Gladstone, Chemical models of Pluto’s atmosphere, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. Arizona Press, Tucson, 1997), pp. 391–434 Google Scholar
  75. D.T. Tholen, M.W. Buie, Bulk properties of Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 435–473 Google Scholar
  76. F. Tian, B. Toon, Hydrodynamic escape of nitrogen from Pluto. Geophys. Res. Lett. 32, L18201 (2005) CrossRefADSGoogle Scholar
  77. L.M. Trafton, D.M. Hunten, K.J. Zahnle, R.L. McNutt Jr., Escape processes at Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. Arizona Press, Tucson, 1997), pp. 475–522 Google Scholar
  78. L.M. Trafton, D.L. Matson, J.A. Stansberry, Surface/atmosphere interactions and volatile transport (Triton, Pluto and Io), in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (Kluwer, Dordrecht, 1998), p. 773 Google Scholar
  79. K.A. Tryka, R.H. Brown, V. Anicich, Near-infrared absorption coefficients of solid nitrogen as a function of temperature. Icarus 116, 409–414 (1995) CrossRefADSGoogle Scholar
  80. L. Tyler et al., The Radio EXperiment (REX) on New Horizons. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9302-3 Google Scholar
  81. H.A. Weaver, S.A. Stern, M.J. Mutchler, A.J. Steffl, M.W. Buie, W.J. Merline, J.R. Spencer, E.F. Young, L.A. Young, The discovery of two new satellites of Pluto. Nature 439, 943 (2006) CrossRefADSGoogle Scholar
  82. P.R. Weissman, H.F. Levison, The population of the trans-neptunian region: the Pluto–Charon environment, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 559–604 Google Scholar
  83. R.V. Yelle, J.L. Elliot, Atmospheric structure and composition: Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 347–390 Google Scholar
  84. L.A. Young, J.L. Elliot, A. Tokunaga, C. de Bergh, T. Owen, Detection of gaseous methane on Pluto. Icarus 127, 258 (1997) CrossRefADSGoogle Scholar
  85. E.F. Young, K. Galdamez, M.W. Buie, R.P. Binzel, D.J. Tholen, Mapping the variegated surface of Pluto. Astron. J. 117, 1063–1076 (1999) CrossRefADSGoogle Scholar
  86. E.F. Young, R.P. Binzel, K. Crane, A two-color map of Pluto’s sub-Charon hemisphere. Astron. J. 121, 552–561 (2001a) CrossRefADSGoogle Scholar
  87. L.A. Young, J.C. Cook, R.V. Yelle, E.F. Young, Upper limits on gaseous CO at Pluto and Triton from high-resolution near-IR spectroscopy. Icarus 153, 148–156 (2001b) CrossRefADSGoogle Scholar
  88. L.A. Young, C.B. Olkin, E.F. Young, R.G. French, International Astronomical Union Circular 8570 (2005) Google Scholar
  89. E.F. Young et al., Vertical structure in Pluto’s atmosphere from the 12 June 2006 stellar occultation. Astron. J. 136, 1757–1769 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Leslie A. Young
    • 1
  • S. Alan Stern
    • 1
  • Harold A. Weaver
    • 2
  • Fran Bagenal
    • 3
  • Richard P. Binzel
    • 4
  • Bonnie Buratti
    • 5
  • Andrew F. Cheng
    • 2
  • Dale Cruikshank
    • 6
  • G. Randall Gladstone
    • 7
  • William M. Grundy
    • 8
  • David P. Hinson
    • 9
  • Mihaly Horanyi
    • 3
  • Donald E. Jennings
    • 10
  • Ivan R. Linscott
    • 9
  • David J. McComas
    • 7
  • William B. McKinnon
    • 11
  • Ralph McNutt
    • 2
  • Jeffery M. Moore
    • 6
  • Scott Murchie
    • 2
  • Catherine B. Olkin
    • 1
  • Carolyn C. Porco
    • 12
  • Harold Reitsema
    • 13
  • Dennis C. Reuter
    • 10
  • John R. Spencer
    • 1
  • David C. Slater
    • 7
  • Darrell Strobel
    • 14
  • Michael E. Summers
    • 15
  • G. Leonard Tyler
    • 9
  1. 1.Southwest Research InstituteBoulderUSA
  2. 2.Johns Hopkins University Applied Physics Lab.LaurelUSA
  3. 3.University of ColoradoBoulderUSA
  4. 4.Massachusetts Institute of TechnologyCambridgeUSA
  5. 5.Jet Propulsion LaboratoryPasadenaUSA
  6. 6.NASA Ames Research CenterMoffett FieldUSA
  7. 7.Southwest Research InstituteSan AntonioUSA
  8. 8.Lowell ObservatoryFlagstaffUSA
  9. 9.Stanford UniversityStanfordUSA
  10. 10.NASA Goddard Space Flight CenterGreenbeltUSA
  11. 11.Washington UniversitySaint LouisUSA
  12. 12.Space Science InstituteBoulderUSA
  13. 13.Ball Aerospace and Technologies CorporationBoulderUSA
  14. 14.Johns Hopkins UniversityBaltimoreUSA
  15. 15.George Mason UniversityFairfaxUSA

Personalised recommendations