Space Science Reviews

, 146:105 | Cite as

The IBEX Background Monitor

  • F. Allegrini
  • G. B. Crew
  • D. Demkee
  • H. O. Funsten
  • D. J. McComas
  • B. Randol
  • B. Rodriguez
  • N. A. Schwadron
  • P. Valek
  • S. Weidner
Article

Abstract

The IBEX Background Monitor (IBaM) provides a small and lightweight method for independently measuring IBEX’s high-energy proton background by integrating the flux of >∼14 keV protons over a ∼7° conical FOV. The IBaM is part of the IBEX-Hi sensor and has a co-aligned look direction. This paper describes the principle of the IBaM and details its design and responses. In particular, we show the response of major components to both ions and ultraviolet (UV) light background. We also provide the geometric factor and calculate expected count rates.

Keywords

IBEX background Channel electron multiplier Carbon foil Upstream event 

References

  1. H.O. Funsten, B.L. Barraclough, D.J. McComas, Pinhole detection in thin foils used in space plasma diagnostic instrumentation. Rev. Sci. Instrum. 63(10), 4741–4743 (1992a) CrossRefADSGoogle Scholar
  2. H.O. Funsten, D.J. McComas, B.L. Barraclough, Thickness uniformity and pinhole density analysis of thin carbon foils using incident keV ions. Nucl. Instrum. Meth. Phys. Res. B 66(4), 470–478 (1992b) CrossRefADSGoogle Scholar
  3. H.O. Funsten, R.W. Harper, D.J. McComas, Absolute detection efficiency of space-based ion mass spectrometers and neutral atom imagers. Rev. Sci. Instrum. 76, 053301 (2005) CrossRefADSGoogle Scholar
  4. H.O. Funsten et al., Space Sci. Rev. (2008, this issue) Google Scholar
  5. K.C. Hsieh, E. Keppler, G. Schmidtke, Extreme ultraviolet induced forward photoemission from thin carbon foils. J. Appl. Phys. 51(4), 2242–2246 (1980) CrossRefADSGoogle Scholar
  6. D.J. McComas, S.J. Bame, Channel multiplier compatible materials and lifetime tests. Rev. Sci. Instrum. 55(4), 463–467 (1984) CrossRefADSGoogle Scholar
  7. D.J. McComas et al., Space Sci. Rev. (2008, this issue) Google Scholar
  8. F. Paresce, Quantum efficiency of a channel electron multiplier in the far ultraviolet. Appl. Opt. 14(12), 2823–2824 (1975) ADSGoogle Scholar
  9. T.R. Sanderson et al., WIND observations of energetic ions far upstream of the Earth’s bow-shock. Geophys. Res. Lett. 23(10), 1215–1218 (1996) CrossRefADSGoogle Scholar
  10. N.A. Schwadron et al., Space Sci. Rev. (2008, this issue) Google Scholar
  11. M.P. Seah, G.C. Smith, Energy and spatial dependence of the electron detection efficiencies of single channel electron multiplier used in electron spectroscopy. Rev. Sci. Instrum. 62(1), 62–68 (1991) CrossRefADSGoogle Scholar
  12. J.G. Timothy, R.L. Bybee, One-dimensional photon-counting detector array for use at EUV and soft X-ray wavelengths. Appl. Opt. 14(7), 1632–1644 (1975) CrossRefADSGoogle Scholar
  13. P. Wurz et al., Space Sci. Rev. (2008, this issue) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. Allegrini
    • 1
  • G. B. Crew
    • 2
  • D. Demkee
    • 1
  • H. O. Funsten
    • 3
  • D. J. McComas
    • 1
  • B. Randol
    • 1
  • B. Rodriguez
    • 1
  • N. A. Schwadron
    • 4
  • P. Valek
    • 1
  • S. Weidner
    • 1
  1. 1.Southwest Research InstituteSan AntonioUSA
  2. 2.MIT Kavli Institute for Astrophysics and Space ResearchCambridgeUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Boston UniversityBostonUSA

Personalised recommendations