Advertisement

Space Science Reviews

, Volume 140, Issue 1–4, pp 315–385 | Cite as

The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission

  • Ralph L. McNuttJr.Email author
  • Stefano A. Livi
  • Reid S. Gurnee
  • Matthew E. Hill
  • Kim A. Cooper
  • G. Bruce Andrews
  • Edwin P. Keath
  • Stamatios M. Krimigis
  • Donald G. Mitchell
  • Barry Tossman
  • Fran Bagenal
  • John D. Boldt
  • Walter Bradley
  • William S. Devereux
  • George C. Ho
  • Stephen E. Jaskulek
  • Thomas W. LeFevere
  • Horace Malcom
  • Geoffrey A. Marcus
  • John R. Hayes
  • G. Ty Moore
  • Mark E. Perry
  • Bruce D. Williams
  • Paul WilsonIV
  • Lawrence E. Brown
  • Martha B. Kusterer
  • Jon D. Vandegriff
Open Access
Article

Abstract

The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ∼1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ∼2.5 W.

Keywords

New Horizons PEPSSI Pluto Energetic particle instrument 

Abbreviations

1PPS

One Pulse Per Second

ADC

Analog-to-digital converter

APL

Applied Physics Laboratory

ASIC

Application specific integrated circuit

C&DH

Command and Data Handling

CCSDS

Consultative Committee for Space Data Systems

CFD

Constant Fraction Discriminator

CSA

Charge Sensitive Amplifier

eV

Electron Volt

FITS

Flexible Image Transport System

FOV

Field of View

FWHM

Full Width Half Maximum

GSE

Ground support equipment

GSFC

Goddard Space Flight Center

HDU

Header Data Unit

HV

High Voltage Section of HVPS

HVPS

High Voltage Power Supply (HV and Bias Supply Sections)

IEM

Integrated Electronics Module

IGSE

Instrument Ground Support Equipment

ICD

Interface Control Document

ITF

Instrument Transfer Frame

LED

Leading Edge Discriminator

MCP

Micro-channel plate

MIDL

Mission Independent Data Layer

MDM

Master Data Manager

MET

Mission Elapsed Time

MOI

Moment of inertia

NA

Not applicable

NASA

National Aeronautics and Space Administration

NH

New Horizons

ns

nanosecond=10−9 s

PDS

Planetary Data System

PEPSSI

Pluto Energetic Particle Spectrometer Science Investigation

PFF

Pluto Fast Flyby

PHA

Pulse height analysis

PIDDP

Planetary Instrument Definition and Development Program

ps

picosecond=10−12 s

psi

Pounds per square inch

RTG

Radioisotope Thermoelectric Generator

SQL

Structured Query Language

SSD

Solid-state detector

SSR

Solid-state recorder

STP

Supplemented Telemetry Packet

SwRI

Southwest Research Institute

TDC

Time-to-digital chip

TOF

Time of flight

TRIO

Temperature remote input/output

T-V

Thermal-vacuum

UART

Universal asynchronous receive and transmit

References

  1. S. Agostinelli et al., GEANT4—a simulation toolkit. NIM(A) 506, 250–303 (2003) CrossRefADSGoogle Scholar
  2. G.B. Andrews, R.E. Gold et al., Compact Particle Detector for Space Measurements: Prototype Performance (SPIE, San Diego, 1998) Google Scholar
  3. G.B. Andrews, T.H. Zurbuchen et al., The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev. 131, 523–556 (2007) CrossRefADSGoogle Scholar
  4. F. Bagenal, T.E. Cravens et al., Pluto’s interaction with the solar wind, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (University of Arizona Press, Tucson, 1997), pp. 523–555 Google Scholar
  5. F. Bagenal, R.L. McNutt, Jr., Pluto’s interaction with the solar wind. Geophys. Res. Lett. 16, 1229–1232 (1989) CrossRefADSGoogle Scholar
  6. J.P. Biersack, L. Haggmark, Stopping and range of ions in matter. NIM 174, 257 (1980) CrossRefGoogle Scholar
  7. N. Brosch, The 1985 stellar occultation by Pluto. Mon. Not. R. Astron. Soc. 276, 571–578 (1995) ADSGoogle Scholar
  8. A.J. Coates, A.D. Johnstone et al., Pick-up water group ions at Comet Grigg-Skellerup. Geophys. Res. Lett. 20, 483–486 (1993a) CrossRefADSGoogle Scholar
  9. A.J. Coates, A.D. Johnstone et al., Velocity space diffusion and non-gyrotropy of pickup water group ions at comet Grigg Skjellerup. J. Geophys. Res. 98, 20985–20994 (1993b) CrossRefADSGoogle Scholar
  10. S.J. De Amicis, Instrumentation developed by the Johns Hopkins University Applied Physics Laboratory for Non-APL Spacecraft, Laurel, MD, JHU/APL, 1988 Google Scholar
  11. P.A. Delamere, F. Bagenal, Pluto’s kinetic interaction with the solar wind. Geophys. Res. Lett. 31, L04807 (2004). doi: 10.1029/2003GL018122 CrossRefGoogle Scholar
  12. M. Dryer, A.W. Rizzi et al., Interaction of the solar wind with the outer planets. Astrophys. Space Sci. 22, 329–351 (1973) CrossRefADSGoogle Scholar
  13. J.L. Elliot, E.W. Dunham et al., Pluto’s atmosphere. Icarus 77, 148–170 (1989) CrossRefADSGoogle Scholar
  14. J.L. Elliot, A. Ates et al., The recent expansion of Pluto’s atmosphere. Nature 424, 165–168 (2003) CrossRefADSGoogle Scholar
  15. J.L. Elliot, M.J. Person et al., Changes in Pluto’s atmosphere: 1988–2006. Astrophys. J. 134, 1–13 (2007) Google Scholar
  16. U. Fink, B.A. Smith et al., Detection of a CH4 atmosphere on Pluto. Icarus 44, 62–71 (1980) CrossRefADSGoogle Scholar
  17. G.H. Fountain, D.Y. Kusnierkiewicz et al., The New Horizons spacecraft. Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-008-9374-8
  18. H.J. Frischkorn et al., Total yield and escape depth of electrons from heavy ion solid interactions. IEEE Trans. Nucl. Sci. NS-30 (1983) Google Scholar
  19. A.A. Galeev, Encounters with comets: discoveries and puzzles in cometary plasma physics. Astron. Astrophys. 187, 12–20 (1987) ADSGoogle Scholar
  20. A.A. Galeev, T.E. Cravens et al., Solar wind stagnation near comets. Astrophys. J. 289, 807–819 (1985) CrossRefADSGoogle Scholar
  21. G. Gloeckler, F.M. Ipavich et al., The charge-energy-mass spectrometer for 0.3–300 keV/e ions on the AMPTE CCE. IEEE Trans. Geosci. Remote Sens. GE-23, 234–240 (1985) CrossRefADSGoogle Scholar
  22. G. Gloeckler, D. Hovestadt et al., Cometary pick-up ions observed near Giacobini-Zinner. Geophys. Res. Lett. 13(3), 251–254 (1986) CrossRefADSGoogle Scholar
  23. R.E. Gold, S.C. Solomon et al., The MESSENGER mission to Mercury: scientific payload. Planet. Space Sci. 49, 1467–1479 (2001) CrossRefADSGoogle Scholar
  24. E.M. Harnett, R.M. Winglee et al., Three-dimensional multifluid simulations of Pluto’s magnetosphere: A comparison to 3D hybrid simulations. Geophys. Res. Lett. 32, L19104 (2005). doi: 10.1029/2005GL023178 CrossRefADSGoogle Scholar
  25. D.E. Huddleston, A.J. Coates et al., Mass loading and velocity diffusion models for heavy pickup ions at comet Grigg-Skjellerup. J. Geophys. Res. 98, 20995–21002 (1993) CrossRefADSGoogle Scholar
  26. K. Kecskemety, T.E. Cravens, Pick-up ions at Pluto. Geophys. Res. Lett. 20, 543 (1993) CrossRefADSGoogle Scholar
  27. V.A. Krasnopolsky, Hydrodynamic flow of N2 from Pluto. J. Geophys. Res. 104(E3), 5955–5962 (1999) CrossRefADSGoogle Scholar
  28. S.M. Krimigis, D.G. Mitchell et al., Magnetospheric imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Sci. Rev. 114, 233–329 (2004) CrossRefADSGoogle Scholar
  29. L.J. Lanzerotti, R.E. Gold et al., Heliosphere instrument for spectra, composition, and anisotropy at low energies. Astron. Astrophys. Suppl. Ser. 92, 349–363 (1992) ADSGoogle Scholar
  30. J.L. Lunine, D. Cruikshank et al., Pluto Express. Report of the Science Definition Team: 65, 1995 Google Scholar
  31. D.J. McComas, F. Allegrini et al., The solar wind around Pluto (SWAP) instrument aboard New Horizons. Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-007-9205-3
  32. R.W. McEntire, E.P. Keath et al., The medium-energy particle analyzer (MEPA) on the AMPTE CCE spacecraft. IEEE Trans. Geosci. Remote Sens. GE-23, 230–233 (1985) CrossRefADSGoogle Scholar
  33. S. McKenna-Lawlor, E. Kirsch et al., Energetic ions in the environment of comet Halley. Nature 321, 347–349 (1986) CrossRefADSGoogle Scholar
  34. R.L. McNutt Jr., Physics of Space Plasmas. SPI Conf. Proceedings (Scientific Publishers, Cambridge, 1982) Google Scholar
  35. R.L. McNutt Jr., Models of Pluto’s upper atmosphere. Geophys. Res. Lett. 16, 1225–1228 (1989) CrossRefADSGoogle Scholar
  36. R.L. McNutt, Jr., D.G. Mitchell et al., A compact particle detector. SPIE 2804, 217–226 (1996) CrossRefADSGoogle Scholar
  37. R.L. McNutt, Jr., S.C. Solomon et al., The MESSENGER mission to Mercury: Development history and early mission status. Adv. Space Res. 38, 564–571 (2006) CrossRefADSGoogle Scholar
  38. R.L. McNutt, Jr., D.K. Haggerty et al., Energetic particles in the Jovian magnetotail. Science 318(5848), 220–222 (2007) CrossRefADSGoogle Scholar
  39. D.A. Mendis, E.J. Smith et al., Comet-solar wind interaction: Dynamical length scales and models. Geophys. Res. Lett. 13, 239 (1986) CrossRefADSGoogle Scholar
  40. D. Morrison, D. Cruikshank et al., Nature 300, 425 (1982) CrossRefADSGoogle Scholar
  41. U. Motschmann, K.-H. Glassmeier, Nongyrotropic distribution of pickup ions at comet P/Grigg-Skjellerup: A possible source of wave activity. J. Geophys. Res. 98, 20977–20983 (1993) CrossRefADSGoogle Scholar
  42. M. Neugebauer, Spacecraft observations of the interaction of active comets with the solar wind. Rev. Geophys. 28, 231–252 (1990) CrossRefADSGoogle Scholar
  43. M. Neugebauer, A.F. Cheng et al., Space physics objectives for the Pluto Fast Flyby mission. Report to NASA Space Physics Division, 1993 Google Scholar
  44. I.G. Richardson, S.W.H. Cowley et al., Three dimensional ion bulk flows at comet P/Giacobini-Zinner. Geophys. Res. Lett. 13(4), 415–418 (1986) CrossRefADSGoogle Scholar
  45. T.R. Sanderson, K.-P. Wentzel et al., The interaction of heavy ions from comet P/Giacobini-Zinner with the solar wind. Geophys. Res. Lett. 13(4), 411–414 (1986) CrossRefADSGoogle Scholar
  46. R. Sicardy, T. Widemann et al., Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature 424, 168–170 (2003) CrossRefADSGoogle Scholar
  47. A.J. Somogyi, K.I. Gringauz et al., First observations of energetic particles near comet Halley. Nature 321, 285–288 (1986) CrossRefADSGoogle Scholar
  48. S.A. Stern, The New Horizons Pluto Kuiper Belt mission: An overview with historical context. Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-007-9295-y
  49. S.A. Stern, D.C. Slater et al., ALICE: The ultraviolet imaging spectrograph aboard the New Horizons Pluto-Kuiper Belt Mission. Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-008-9407-3
  50. F. Tian, O.B. Toon, Hydrodynamic escape of nitrogen from Pluto. Geophys. Res. Lett. (2005). doi: 10.1029/2005GL023510 Google Scholar
  51. L.M. Trafton, D.M. Hunten et al., Escape processes at Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (University of Arizona Press, Tucson, 1997), pp. 475–521 Google Scholar
  52. L. Tyler, I.R. Linscott et al., The New Horizons radio science experiment. Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-007-9302-3
  53. H.A. Weaver, W.C. Gibson et al., Overview of the New Horizons science payload. Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-008-9376-6
  54. D.J. Williams, R.W. McEntire et al., Energetic particles at Venus: Galileo results. Science 253, 1525–1528 (1991) CrossRefADSGoogle Scholar
  55. D.J. Williams, R.W. McEntire et al., The Galileo energetic particles detector. Space Sci. Rev. 60, 385–412 (1992) CrossRefADSGoogle Scholar
  56. D.J. Williams et al., GEOTAIL energetic particles and ion composition experiment. J. Geomagn. Geoelectr. 46, 39–57 (1994) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ralph L. McNuttJr.
    • 1
    Email author
  • Stefano A. Livi
    • 2
  • Reid S. Gurnee
    • 1
  • Matthew E. Hill
    • 1
  • Kim A. Cooper
    • 1
  • G. Bruce Andrews
    • 1
  • Edwin P. Keath
    • 1
  • Stamatios M. Krimigis
    • 1
    • 3
  • Donald G. Mitchell
    • 1
  • Barry Tossman
    • 1
  • Fran Bagenal
    • 4
  • John D. Boldt
    • 1
  • Walter Bradley
    • 1
  • William S. Devereux
    • 1
  • George C. Ho
    • 1
  • Stephen E. Jaskulek
    • 1
  • Thomas W. LeFevere
    • 1
  • Horace Malcom
    • 1
  • Geoffrey A. Marcus
    • 1
  • John R. Hayes
    • 1
  • G. Ty Moore
    • 1
  • Mark E. Perry
    • 1
  • Bruce D. Williams
    • 1
  • Paul WilsonIV
    • 1
  • Lawrence E. Brown
    • 1
  • Martha B. Kusterer
    • 1
  • Jon D. Vandegriff
    • 1
  1. 1.Applied Physics LaboratoryThe John Hopkins UniversityLaurelUSA
  2. 2.Southwest Research InstituteSan AntonioUSA
  3. 3.Academy of AthensAthensGreece
  4. 4.The University of ColoradoBoulderUSA

Personalised recommendations