Space Science Reviews

, Volume 144, Issue 1–4, pp 401–412 | Cite as

Solar Cycle Forecasting

Article

Abstract

Predicting the behavior of a solar cycle after it is well underway (2–3 years after minimum) can be done with a fair degree of skill using auto-regression and curve fitting techniques that don’t require any knowledge of the physics involved. Predicting the amplitude of a solar cycle near, or before, the time of solar cycle minimum can be done using precursors such as geomagnetic activity and polar fields that do have some connection to the physics but the connections are uncertain and the precursors provide less reliable forecasts. Predictions for the amplitude of cycle 24 using these precursor techniques give drastically different values. Recently, dynamo models have been used directly with assimilated data to predict the amplitude of sunspot cycle 24 but have also given significantly different predictions. While others have questioned both the predictability of the solar cycle and the ability of current dynamo models to provide predictions, it is clear that cycle 24 will help to discriminate between some opposing dynamo models.

Keywords

Solar activity Sunspot cycle Solar cycle forecasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.S. Ahluwalia, The predicted size of cycle 23 based on the inferred three-cycle quasi-periodicity of the planetary index Ap. J. Geophys. Res. 103(A6), 12,103–12,109 (1998) CrossRefADSGoogle Scholar
  2. H.W. Babcock, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572–587 (1961) CrossRefADSGoogle Scholar
  3. G.M. Brown, What determines sunspot maximum? Mon. Not. Roy. Astron. Soc. 174, 185–190 (1976) ADSGoogle Scholar
  4. P.J. Bushby, S.T. Tobias, On predicting the solar cycle using mean-field models. Astrophys. J. 661, 1289–1296 (2007) CrossRefADSGoogle Scholar
  5. R. Cameron, M. Schüssler, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801–811 (2007) CrossRefADSGoogle Scholar
  6. A.R. Choudhuri, P. Chatterjee, J. Jiang, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103 (2007) CrossRefADSGoogle Scholar
  7. M. Dikpati, P. Charbonneau, A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508–520 (1999) CrossRefADSGoogle Scholar
  8. M. Dikpati, G. de Toma, P.A. Gilman, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102 (2006) CrossRefGoogle Scholar
  9. M. Dikpati, G. de Toma, P.A. Gilman, Polar flux, cross-equatorial flux, and dynamo generated tachocline toroidal flux as predictors of solar cycles. Astrophys. J. 675, 920–930 (2008) CrossRefADSGoogle Scholar
  10. W. Elling, H. Schwentek, Fitting the sunspot cycles 10-21 by a modified F-distribution density function. Sol. Phys. 137, 155–165 (1992) CrossRefADSGoogle Scholar
  11. J. Feynman, Geomagnetic and solar wind cycles, 1900–1975. J. Geophys. Res. 87(A8), 6153–6162 (1982) CrossRefADSGoogle Scholar
  12. W. Gleissberg, A long-periodic fluctuation of the Sun-spot numbers. The Observatory 62, 158–159 (1939) ADSGoogle Scholar
  13. M.N. Gnevyshev, A.I. Ohl, On the 22-year solar activity cycle. Astron. Z. 25, 18–20 (1948) Google Scholar
  14. K.L. Harvey, O.R. White, What is solar cycle minimum? J. Geophys. Res. 104(A9), 19,759–19,764 (1999) CrossRefADSGoogle Scholar
  15. D.H. Hathaway, Doppler measurements of the Sun’s meridional flow. Astrophys. J. 460, 1027–1033 (1996) CrossRefADSGoogle Scholar
  16. D.H. Hathaway, R.M. Wilson, E.J. Reichmann, The shape of the solar cycle. Sol. Phys. 151, 177–190 (1994) CrossRefADSGoogle Scholar
  17. D.H. Hathaway, R.M. Wilson, Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys. Res. Lett. 33, L18101 (2006) CrossRefADSGoogle Scholar
  18. D.H. Hathaway, R.M. Wilson, E.J. Reichmann, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104(A10), 22,375—22,388 (1999) CrossRefADSGoogle Scholar
  19. J. Javaraiah, North-south asymmetry in solar activity: predicting the amplitude of the next solar cycle. Mon. Not. R. Astron. Soc. 377, L34–L38 (2007) CrossRefADSGoogle Scholar
  20. J.A. McKinnon, ‘Sunspot numbers 1610–1985 based on sunspot-activity in the years 1610–1960, Rep. UAG-95 World Data Center A for Sol.-Terr. Phys., Boulder, Colo. (1987), 105 pp Google Scholar
  21. A.G. McNish, J.V. Lincoln, Prediction of sunspot numbers. Trans. AGU 30, 673–685 (1949) Google Scholar
  22. A.I. Ohl, Forecast of sunspot maximum number of cycle 20. Solice Danie 9, 84 (1966) Google Scholar
  23. K.H. Schatten, S. Sofia, Forecast of an exceptionally large even-numbered solar cycle. Geophys. Res. Lett. 14(6), 632–635 (1987) CrossRefADSGoogle Scholar
  24. K.H. Schatten, P.H. Scherrer, L. Svalgaard, J.M. Wilcox, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5(5), 411–414 (1978) CrossRefADSGoogle Scholar
  25. S.K. Solanki, N.A. Krivova, M. Schüssler, M. Fligge, Search for a relationship between solar cycle amplitude and length. Astron. Astrophys. 396, 1029–1035 (2002) CrossRefADSGoogle Scholar
  26. J.Q. Stewart, H.A.A. Panofsky, The mathematical characteristics of sunspot variations. Astrophys. J. 88, 385–407 (1938) MATHCrossRefADSGoogle Scholar
  27. L. Svalgaard, E.W. Cliver, Y. Kamide, Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104 (2005) CrossRefGoogle Scholar
  28. R.J. Thompson, A technique for predicting the amplitude of the solar cycle. Sol. Phys. 148, 383–388 (1993) CrossRefADSGoogle Scholar
  29. S. Tobias, D. Hughes, N. Weiss, Unpredictable Sun leaves researchers in the dark. Nature 442, 26 (2006) CrossRefADSGoogle Scholar
  30. M. Waldmeier, Neue eigenschaften der sonnenfleckenkurve. Astron. Mitt. Zurich 14(133), 105–130 (1935) Google Scholar
  31. M. Waldmeier, The sunspot-activity in the years 1610–1960, Zürich Schulthess, Zürich (1961), 171 pp Google Scholar
  32. R.M. Wilson, D.H. Hathaway, E.J. Reichmann, An estimate for the size of cycle 23 based on near minimum conditions. J. Geophys. Res. 103(A4), 6595–6603 (1998) CrossRefADSGoogle Scholar
  33. R. Wolf, Nachrichten von der Sternwarte in Bern. Sonnenflecken Beobachtungen in der zweiten Hafte des Jahres 1851. Naturf. Gesell. Bern Mitt. 229/230, 41–48 (1852) Google Scholar
  34. R. Wolf, Abstract of his latest results. Mon. Not. R. Astron. Soc. 21, 77–78 (1861) ADSGoogle Scholar
  35. A.R. Yeates, D. Nandy, D.H. Mackay, Exploring the physical basis of solar cycle predictions: Flux transport dynamics and persistence of memory in advection- vs. diffusion-dominated solar convection zones. Astrophys. J. 673, 544–556 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.NASA/MSFCHuntsvilleUSA

Personalised recommendations