Space Science Reviews

, Volume 143, Issue 1–4, pp 427–436 | Cite as

Some Observations Related to the Origin and Evolution of the Local Bubble/Local ISM

  • Rosine LallementEmail author


I discuss some recent observations of the Local Interstellar medium (ISM) that are related to its history and temperature structure. I focus on three topics: (i) the abundance pattern of interstellar deuterium and metals, (ii) highly charged ion data, (iii) soft X-ray data.

Deuterium has been unambiguously shown to correlate almost linearly with refractory metals, confirming that interstellar grains are a “reservoir” of deuterium, and release it into the gaseous phase jointly with metals when the gas is shocked and heated. By interpreting the observed level of deuterium with respect to the abundance patterns of metals and oxygen, these data give some clues to the event, which gave rise to the expanding Gould belt. As a matter of fact abundance data seem to be linked to the belt, and the observed trends suggest an explosive origin, rather than a collision with an external cloud made of unastrated material.

X-rays and high ions trace hot gas and interfaces between hot and cool gas. However absorption lines of high ions show highly complex characteristics and no relationships have been established yet between their detected columns and the existence of hot-cool gas interfaces. Adding to the complexity, the X-ray emission through charge-exchange reactions between highly charged solar wind ions and neutrals plays a significant role, calling for modifications of the global picture of the LISM. In addition to the ubiquitous contamination of background data by locally emitted X-rays, there are also potential distant charge transfer (CX) X-ray emissions from clouds-hot gas interfaces.

There is a strong need for high quality, high spectral resolution X-ray data, because X-ray lines emitted after charge-transfer neutralization of helium-like ions bear a clear signature of the charge transfer process, if present, and allow to disentangle thermal and CX emission. More precise density and velocity distributions of the local ISM are also needed to take full advantage of the X-ray and high ion data and build a consistent picture of the Local Cavity (LC) and its surroundings. As an example of these requirements I discuss the case of the North Polar Spur for which there may be some evidence for CX emission.


ISM X-ray background 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.K. André et al., Astrophys. J. 591, 1000 (2003) CrossRefADSGoogle Scholar
  2. F. Comerón, J. Torra, Astron. Astrophys. 281, 35 (1994) ADSGoogle Scholar
  3. D.P. Cox, in Lecture Notes in Physics, vol. 506 (Springer, Berlin, 1998), p. 121 Google Scholar
  4. D.P. Cox, L. Helenius, Astrophys. J. 583, 205 (2003) CrossRefADSGoogle Scholar
  5. T.E. Cravens, I.P. Robertson, S.L.J. Snowden, Geophys. Res. 106(A11), 24883 (2001) CrossRefADSGoogle Scholar
  6. M. De Avillez, Space Sci. Rev. (2008), this issue Google Scholar
  7. M. De Avillez, D. Breitschwerdt, Astron. Astrophys. 436, 585 (2005) CrossRefADSGoogle Scholar
  8. B.T. Draine, in Origin and Evolution of the Elements, ed. by A. McWilliams, M. Rauch (Cambridge Univ. Press, Cambridge, 2004), p. 320 Google Scholar
  9. S.L. Ellison, J.X. Prochaska, S. Lopez, Mon. Not. R. Astron. Soc. 380, 1245 (2007) CrossRefADSGoogle Scholar
  10. P.C. Frisch, Space Sci. Rev. (2008), this issue. doi:  10.1007/s11214-008-9394-4
  11. B. Fuchs, Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-008-9427-z
  12. J. Geiss, G. Gloeckler, C. Charbonnel, Astrophys. J. 578, 863 (2002) CrossRefADSGoogle Scholar
  13. I. Grenier, Astron. Astrophys. 364, L93 (2000). ADSGoogle Scholar
  14. C. Gry, E.B. Jenkins, Astron. Astrophys. 367, 617 (2001) CrossRefADSGoogle Scholar
  15. G. Hébrard, T.M. Tripp, P. Chayer et al., Astrophys. J. 635, 1136 (2005) CrossRefADSGoogle Scholar
  16. E.B. Jenkins, Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-008-9352-1
  17. M. Jura, in Advances in Ultraviolet Astronomy, ed. by Y. Kondo. vol. CP-238 (NASA, 1982), p. 54 Google Scholar
  18. J. Kerp, J. Pietz, P.M.W. Kalberla et al., in Lect. Notes in Phys., vol. 506 (1998), p. 457 Google Scholar
  19. D. Koutroumpa, R. Lallement, V. Kharchenko, A. Dalgarno, Space Sci. Rev. (2008), this issue Google Scholar
  20. D. Knauth, C. Howk, K. Sembach, J. Lauroesch, D. Meyer, Astrophys. J. 592, 964 (2003) CrossRefADSGoogle Scholar
  21. R. Lallement, Astron. Astrophys. 422, 391 (2004) CrossRefADSGoogle Scholar
  22. R. Lallement, Space Sci. Rev. 130, 341 (2007) CrossRefADSGoogle Scholar
  23. R. Lallement, B.Y. Welsh, J.L. Vergely, F. Crifo, D. Sfeir, Astron. Astrophys. 411, 447 (2003) CrossRefADSGoogle Scholar
  24. R. Lallement, G. Hebrard, B.Y. Welsh, Astron. Astrophys. 481, 381 (2008) CrossRefADSGoogle Scholar
  25. Y. Liebert, E. Gérard, T. Le Bertre, Mon. Not. R. Astron. Soc. 380, 1161 (2007) CrossRefADSGoogle Scholar
  26. J. Linsky, B. Draine, W. Moos et al., Astrophys. J. 647, 1106 (2006) CrossRefADSGoogle Scholar
  27. D. McCammon et al., Astrophys. J. 576, 188 (2002) CrossRefADSGoogle Scholar
  28. D.M. Meyer, M. Jura, J.A. Cardelli, Astrophys. J. 493, 222 (1998) CrossRefADSGoogle Scholar
  29. E.D. Miller, H. Tsunemi, M. Bautz et al., Publ. Astron. Soc. Jpn. 60(SP1), S95 (2008) ADSGoogle Scholar
  30. W. Oegerle, E.B. Jenkins, R. Shelton, D. Bowen, P. Chayer, Astrophys. J. 622, 377 (2005) CrossRefADSGoogle Scholar
  31. C.A. Olano, Astron. Astrophys. 112, 195 (1982) ADSGoogle Scholar
  32. C.A. Olano, Astron. J. 121, 295 (2001) CrossRefADSGoogle Scholar
  33. C.M. Oliveira, H.W. Moos, P. Chayer, J.W. Kruk, Astrophys. J. 642, 283 (2006) CrossRefADSGoogle Scholar
  34. C. Perrot, I. Grenier, Astron. Astrophys. 404, 519 (2003) CrossRefADSGoogle Scholar
  35. R. Pepino, V. Kharchenko, A. Dalgarno, R. Lallement, Astrophys. J. 617, 1347 (2004) CrossRefADSGoogle Scholar
  36. W.G.L. Pöppel, Fundam. Cosm. Phys. 18, 1 (1997) ADSGoogle Scholar
  37. S. Redfield, Space Sci. Rev. (2008), this issue Google Scholar
  38. B. Savage, N. Lehner, Astrophys. J. Supp. Ser. 162, 134 (2006) CrossRefADSGoogle Scholar
  39. B.D. Savage, M.R. Meade, K.R. Sembach, Astrophys. J. Supp. Ser. 136, 631 (2001) CrossRefADSGoogle Scholar
  40. K.R. Sembach, B.D. Savage, E.B. Jenkins, Astrophys. J. 421(2), 585 (1994) CrossRefADSGoogle Scholar
  41. D.M. Sfeir, R. Lallement, F. Crifo, B.Y. Welsh, Astron. Astrophys. 346, 785 (1999) Google Scholar
  42. R. Shelton, Space Sci. Rev. (2008), this issue Google Scholar
  43. J.D. Slavin, Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-008-9342-3
  44. J.D. Slavin, P.C. Frisch, Astrophys. J. 565, 364 (2002) CrossRefADSGoogle Scholar
  45. S.L. Snowden, R. Egger, D.P. Finkbeiner, M.J. Freyberg, P.P. Plucinsky, Astrophys. J. 493, 715 (1998) CrossRefADSGoogle Scholar
  46. S.L. Snowden, M.J. Freyberg, K.D. Kuntz, W.T. Sanders, Astrophys. J. 128, 171 (2000) CrossRefADSGoogle Scholar
  47. S.L. Snowden, M.R. Collier, K.D. Kuntz, Astrophys. J. 610, 1182 (2004) CrossRefADSGoogle Scholar
  48. S. Stanimirovic, Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-008-9363-y
  49. J. Wareing, A.A. Zijlstra, T.J. O’Brien, M. Seibert, Astrophys. J. Lett. 670, L125 (2007) CrossRefADSGoogle Scholar
  50. B.Y. Welsh, R. Lallement, Astron. Astrophys. 436, 615 (2005) CrossRefADSGoogle Scholar
  51. B.Y. Welsh, D.M. Sfeir, M.M. Sirk, R. Lallement, Astron. Astrophys. 352, 308 (1999) Google Scholar
  52. R. Willingale, A.D.P. Hands, R.S. Warwick, S.L. Snowden, D.N. Burrows, Mon. Not. R. Astron. Soc. 343(3), 995 (2003) CrossRefADSGoogle Scholar
  53. B.E. Wood, V.V. Izmodenov, Y.G. Malama, Space Sci. Rev. (2008), this issue. doi: 10.1007/s11214-008-9369-5

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Service d’Aéronomie du CNRSVerrières-le-BuissonFrance

Personalised recommendations