Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Physical Properties of the Local Interstellar Medium

  • 100 Accesses

  • 13 Citations

Abstract

The observed properties of the local interstellar medium (LISM) have been facilitated by a growing ultraviolet and optical database of high spectral resolution observations of interstellar absorption toward nearby stars. Such observations provide insight into the physical properties (e.g., temperature, turbulent velocity, and depletion onto dust grains) of the population of warm clouds (e.g., 7000 K) that reside within the Local Bubble. In particular, I will focus on the dynamical properties of clouds within ∼15 pc of the Sun. This simple dynamical model addresses a wide range of issues, including, the location of the Sun as it pertains to the relationship between local interstellar clouds and the circumheliospheric interstellar medium (CHISM), the creation of small cold clouds inside the Local Bubble, and the association of interacting warm clouds and small-scale density fluctuations that cause interstellar scintillation. Local interstellar clouds that can be easily distinguished based on their dynamical properties also differentiate themselves by other physical properties. For example, the two nearest local clouds, the Local Interstellar Cloud (LIC) and the Galactic (G) Cloud, show distinct properties in temperature and depletion of iron and magnesium. The availability of large-scale observational surveys allows for studies of the global characteristics of our local interstellar environment, which will ultimately be necessary to address fundamental questions regarding the origins and evolution of the local interstellar medium.

This is a preview of subscription content, log in to check access.

References

  1. E. Audit, P. Hennebelle, Astrophys. J. 433, 1–13 (2005)

  2. H.E. Bignall, J.-P. Macquart, D.L. Jauncey, J.E.J. Lovell, A.K. Tzioumis, L. Kedziora-Chudczer, Astrophys. J. 652, 1050–1058 (2006)

  3. M. Bzowski, Acta Astron. 38, 443–453 (1988)

  4. Y.C.Y. Chol Minh et al., New Astron. 8, 795–803 (2003)

  5. I.A. Crawford, Mon. Not. R. Astron. Soc. 327, 841–848 (2001)

  6. R.M. Crutcher, Astrophys. J. 254, 82–87 (1982)

  7. J. Dennett-Thorpe, A.G. de Bruyn, Astron. Astrophys. 404, 113–132 (2003)

  8. R. Ferlet, Astron. Astrophys. Rev. 9, 153–169 (1999)

  9. P.C. Frisch, Space Sci. Rev. 72, 499–592 (1995)

  10. P.C. Frisch, Adv. Space Res. 34, 20–26 (2004)

  11. P.C. Frisch, L. Grodnicki, D.E. Welty, Astrophys. J. 574, 834–846 (2002)

  12. C. Heiles, T.H. Troland, Astrophys. J. Suppl. Ser. 145, 329–354 (2003)

  13. M. Hurwitz, T.P. Sasseen, M.M. Sirk, Astrophys. J. 623, 911–916 (2005)

  14. E.B. Jenkins et al., Astrophys. J. Lett. 538, L81–L85 (2000)

  15. R. Lallement, P. Bertin, Astron. Astrophys. 266, 479–485 (1992)

  16. R. Lallement, A. Vidal-Madjar, R. Ferlet, Astron. Astrophys. 168, 225–236 (1986)

  17. R. Lallement, B.Y. Welsh, J.L. Vergely, F. Crifo, D. Sfeir, Astron. Astrophys. 411, 447–464 (2003)

  18. N. Lehner, E.B. Jenkins, C. Gry, H.W. Moos, P. Chayer, S. Lacour, Astrophys. J. 595, 858–879 (2003)

  19. J.L. Linsky et al., Astrophys. J. 647, 1106–1124 (2006)

  20. J.L. Linsky, B.J. Rickett, S. Redfield, Astrophys. J. 675, 413–419 (2008)

  21. J.-P. Macquart, A.G. de Bruyn, Astron. Astrophys. 446, 185–200 (2006)

  22. L. Magnani, D. Hartmann, B.G. Speck, Astrophys. J. Suppl. Ser. 106, 447 (1996)

  23. D.M. Meyer, J.T. Lauroesch, C. Heiles, J.E.G. Peek, K. Engelhorn, Astrophys. J. 650, L67–L70 (2006)

  24. E. Möbius et al., Astron. Astrophys. 426, 897–907 (2004)

  25. W. Oegerle, E. Jenkins, R. Shelton, D. Bowen, P. Chayer, Astrophys. J. 622, 377–389 (2005)

  26. M.L. Putney, D.R. Stinebring, Chin. J. Astron. Astrophys. Suppl. 6, 233–236 (2006)

  27. E. Quémerais, J.-L. Bertaux, R. Lallement, M. Berthé, E. Kyrölä, W. Schmidt, Adv. Space Res. 26, 815–818 (2000)

  28. A. Quirrenbach, A. Witzel, T.P. Kirchbaum, C.A. Hummel, R. Wegner, C.J. Schalinski, M. Ott, A. Alberdi, M. Rioja, Astron. Astrophys. 258, 279–284 (1992)

  29. S. Redfield, in ASP Conf. Ser. 352, New Horizons in Astronomy, Frank N. Bash Symposium 2005, ed. by S.J. Kannappan, S. Redfield, J.E. Kessler-Silacci, M. Landriau, N. Drory (ASP, San Francisco, 2006), p. 79

  30. S. Redfield, R.E. Falcon, Astrophys. J. 683, 207 (2008)

  31. S. Redfield, J.L. Linsky, Astrophys. J. 534, 825–837 (2000)

  32. S. Redfield, J.L. Linsky, Astrophys. J. 551, 413–428 (2001)

  33. S. Redfield, J.L. Linsky, Astrophys. J. Suppl. Ser. 139, 439–465 (2002)

  34. S. Redfield, J.L. Linsky, Astrophys. J. 602, 776–802 (2004a)

  35. S. Redfield, J.L. Linsky, Astrophys. J. 613, 1004–1022 (2004b)

  36. S. Redfield, J.L. Linsky, Astrophys. J. 673, 283–314 (2008)

  37. S. Redfield, B. Gibson, C. Thom, A. Hughes, N. McClure-Griffiths, P. Palunas, Anglo-Aust. Obs. Epp. Newslett. 110, 9 (2006)

  38. B.J. Rickett, L. Kedziora-Chudczer, D.L. Jauncey, Astrophys. J. 581, 103–126 (2002)

  39. J.D. Slavin, P.C. Frisch, Astrophys. J. 565, 364–379 (2002)

  40. R.K. Smith, R.J. Edgar, P.P. Plucinsky, B.J. Wargelin, P.E. Freeman, B.A. Biller, Astrophys. J. 623, 225–234 (2005)

  41. S.L. Snowden, R. Egger, D.P. Finkbeiner, M.J. Freyberg, P.P. Plucinsky, Astrophys. J. 493, 715 (1998)

  42. E. Vázquez-Semadeni, D. Ryu, T. Passot, R.F. González, A. Gazol, Astrophys. J. 643, 245–259 (2006)

  43. D.E. Welty, D.C. Morton, L.M. Hobbs, Astrophys. J. Suppl. Ser. 106, 533 (1996)

  44. M. Witte, M. Banaszkiewicz, H. Rosenbauer, Space Sci. Rev. 78, 289–296 (1996)

Download references

Author information

Correspondence to Seth Redfield.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Redfield, S. Physical Properties of the Local Interstellar Medium. Space Sci Rev 143, 323 (2009). https://doi.org/10.1007/s11214-008-9422-4

Download citation

Keywords

  • Local interstellar medium
  • High resolution spectroscopy
  • Dynamics
  • Abundances