Space Science Reviews

, Volume 138, Issue 1–4, pp 109–126 | Cite as

Dynamical Origin of Comets and Their Reservoirs

  • Martin J. DuncanEmail author


It is widely believed that cometary orbits contain important clues to both the outer solar system’s current structure and its past dynamical evolution. The first part of this paper summarizes the results of numerical simulations designed to study the dynamical origins of observed comets and to link the observed populations to the reservoirs from which they are currently leaking. The second part reviews simulations which are designed to study the dynamical origin of the reservoirs themselves. The paper concludes with a brief discussion of the currently unresolved issue of where in the primordial solar nebula the different dynamical classes of observed comets originated.


Comets Oort cloud Transneptunian region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. Adachi, C. Hayashi, K. Nakazawa, The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog. Theor. Phys. 56, 1756–1771 (1976) CrossRefADSGoogle Scholar
  2. F.C. Adams, E.M. Proszkow, M. Fatuzzo, P.C. Myers, Early evolution of stellar groups and clusters. Astrophys. J. 641, 504–525 (2006) CrossRefADSGoogle Scholar
  3. M.F. A’Hearn, R.L. Millis, D.G. Schleicher, D.J. Osip, P.V. Birch, The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976–1992. Icarus 118, 223–270 (1995) CrossRefADSGoogle Scholar
  4. M.E. Bailey, The mean energy transfer rate to comets in the Oort cloud and implications for cometary origins. Mon. Not. R. Astron. Soc. 218, 1–30 (1986) ADSGoogle Scholar
  5. G.M. Bernstein, D.E. Trilling, R.L. Allen, M.E. Brown, M. Holman, R. Malhotra, The size distribution of trans-Neptunian bodies. Astron. J. 128, 1364–1390 (2004) CrossRefADSGoogle Scholar
  6. R. Brasser, M.J. Duncan, H.F. Levison, Embedded star clusters and the formation of the Oort cloud. Icarus 184, 59–82 (2006) CrossRefADSGoogle Scholar
  7. R. Brasser, M.J. Duncan, H.F. Levison, Embedded star clusters and the formation of the Oort Cloud: II. The effect of the primordial Solar nebula. Icarus 191, 413–433 (2007) CrossRefADSGoogle Scholar
  8. M.E. Brown, C. Trujillo, D. Rabinowitz, Discovery of a candidate inner Oort cloud planetoid. Astrophys. J. Lett. 617, 645–649 (2004) CrossRefGoogle Scholar
  9. M.E. Brown, C. Trujillo, D. Rabinowitz, Discovery of a planet-sized body in the scattered Kuiper belt. Astrophys. J. 635, L97–L100 (2005) CrossRefADSGoogle Scholar
  10. J. Byl, Galactic perturbations on nearly parabolic cometary orbits. Moon Planets 29, 121–137 (1983) CrossRefADSGoogle Scholar
  11. J. Byl, The effect of the galaxy on cometary orbits. Earth, Moon, Planets 36, 263–273 (1986) CrossRefADSGoogle Scholar
  12. J. Byl, Galactic removal rates for long-period comets. Astron. J. 99, 1632–1635 (1990) CrossRefADSGoogle Scholar
  13. A. Carusi, G.B. Valsecchi, Dynamical evolution of short-period comets, in European Regional Astronomy Meeting of the IAU, vol. 2 (1987), pp. 21–28 Google Scholar
  14. G. Chabrier, The galactic disk mass budget. I. Stellar mass function and density. Astrophys. J. 554, 1274–1281 (2001) CrossRefADSGoogle Scholar
  15. W.P. Chen et al., Search for small trans-Neptunian objects by the TAOS project, in Proceedings IAU Symposium No. 236, ed. by G.B. Valsecchi, D. Vokrouhickly (Cambridge Univ. Press, 2006), pp. 65–68 Google Scholar
  16. C. de la Fuente Marcos, R. de la Fuente Marcos, On the origin of comet C/1999 S4 LINEAR. Astron. Astrophys. 395, 697–704 (2002) CrossRefADSGoogle Scholar
  17. A.H. Delsemme, Galactic tides affect the Oort cloud: An observational confirmation. Astron. Astrophys. 187, 913–918 (1987) ADSGoogle Scholar
  18. L. Dones, P.R. Weissman, H.F. Levison, M.J. Duncan, Oort cloud formation dynamics, in Comets II, ed. by M. Festou, H.U. Keller, H.A. Weaver (2004), pp. 153–174 Google Scholar
  19. M.J. Duncan, H.F. Levison, A scattered comet disk and the origin of Jupiter family comets. Science 276, 1670–1672 (1997) CrossRefADSGoogle Scholar
  20. M.J. Duncan, H.F. Levison, L. Dones, Dynamical evolution of ecliptic comets. In Comets II, ed. by M. Festou, H.U. Keller, H.A. Weaver (2004), pp. 193–204 Google Scholar
  21. M. Duncan, T. Quinn, S. Tremaine, The origin of short-period comets. Astrophys. J. 328, L69–L73 (1988) CrossRefADSGoogle Scholar
  22. P.A. Dybczyński, Simulating observable comets. III. Real Stellar Perturbers of the Oort cloud and their output. Astron. Astrophys. 449, 1233–1242 (2006) CrossRefADSGoogle Scholar
  23. K.E. Edgeworth, The origin and evolution of the Solar System. Mon. Not. R. Astron. Soc. 109, 600–609 (1949) ADSGoogle Scholar
  24. S. Eggers, Cometary dynamics during the formation of the solar system. Ph.D. thesis, Max-Planck-Institut für Aeronomie (1999) Google Scholar
  25. S. Eggers, H.U. Keller, P. Kroupa, W.J. Markiewicz, Origin and dynamics of comets and star formation. Planet. Space Sci. 45, 1099–1104 (1997) CrossRefADSGoogle Scholar
  26. S. Eggers, H.U. Keller, W.J. Markiewicz, P. Kroupa, Cometary dynamics in a star cluster. Astronomische Gesellschaft meeting abstracts 14, 5 (1998), abstract Google Scholar
  27. V.V. Emel’yanenko, M.E. Bailey, Capture of Halley-type comets from the near-parabolic flux. Mon. Not. R. Astron. Soc. 298, 212–222 (1998) CrossRefADSGoogle Scholar
  28. E. Everhart, in Comets–Asteroids–Meteorites, ed. by A.H. Delsemme (University of Toledo Press, Ohio, 1977) Google Scholar
  29. J.A. Fernandez, On the existence of a comet belt beyond Neptune. Mon. Not. R. Astron. Soc. 192, 481–491 (1980) ADSGoogle Scholar
  30. J.A. Fernández, The formation of the Oort cloud and the primitive galactic environment. Icarus 129, 106–119 (1997) CrossRefADSGoogle Scholar
  31. J.A. Fernández, Changes in the inclination-distribution of long-period comets with the orbital energy, ESA SP-500: Asteroids, Comets, and Meteors: ACM 2002 (2002), pp. 303–304 Google Scholar
  32. J.A. Fernández, A. Brunini, The buildup of a tightly bound comet cloud around an early Sun immersed in a dense galactic environment: Numerical experiments. Icarus 145, 580–590 (2000) CrossRefADSGoogle Scholar
  33. J.A. Fernández, T. Gallardo, The transfer of comets from parabolic orbits to short-period orbits: Numerical studies. Astron. Astrophys. 281, 911–922 (1994) ADSGoogle Scholar
  34. P.J. Francis, The demographic of long-period comets. Astrophys. J. 635, 1348–1361 (2005) CrossRefADSGoogle Scholar
  35. E.J. Gaidos, Paleodynamics: Solar System formation and the early environment of the Sun. Icarus 114, 258–268 (1995) CrossRefADSGoogle Scholar
  36. J. García-Sánchez, R.A. Preston, D.L. Jones, P.R. Weissman, J.F. Lestrade, D.W. Latham, R.P. Stefanik, Stellar encounters with the Oort cloud based on Hipparcos data. Astron. J. 117, 1042–1055 (1999). Erratum in Astron. J. 118, 600 CrossRefADSGoogle Scholar
  37. J. García-Sánchez, P.R. Weissman, R.A. Preston, D.L. Jones, J.-F. Lestrade, D.W. Latham, R.P. Stefanik, J.M. Paredes, Stellar encounters with the Solar System. Astron. Astrophys. 379, 634–659 (2001) CrossRefADSGoogle Scholar
  38. B. Gladman, C. Chan, Production of the extended scattered disk by rogue planets. Astrophys. J. 643, L135–L138 (2006) CrossRefADSGoogle Scholar
  39. B. Gladman, J.J. Kavelaars, J.-M. Petit, A. Morbidelli, M.J. Holman, T. Loredo, The structure of the Kuiper belt: Size distribution and radial extent. Astron. J. 122, 1051–1066 (2001) CrossRefADSGoogle Scholar
  40. B. Gladman, M. Holman, T. Grav, J. Kavelaars, P. Nicholson, K. Aksnes, J.-M. Petit, Evidence for an extended scattered disk. Icarus 157, 269–279 (2002) CrossRefADSGoogle Scholar
  41. B. Gladman, G.G. Marsden, C. Van Laerhoven, Nomenclature in the outer Solar System, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli (University of Arizona, Tucson, 2008), 43–57 Google Scholar
  42. R.S. Gomes, T. Gallardo, J.A. Fernandez, A. Brunini, On the origin of the high-perihelion scattered disk: The role of the Kozai mechanism and mean motion resonances. Cel. Mech. Dyn. Ast. 91, 109–129 (2005a) zbMATHCrossRefADSGoogle Scholar
  43. R.S. Gomes, J.J. Matese, J.J. Lissauer, A distant planetary-mass solar companion may have produced distant detached objects. Icarus 184, 589–601 (2006) CrossRefADSGoogle Scholar
  44. R.S. Gomes, A. Morbidelli, H.F. Levison, Planetary migration in a planetesimal disk: Why did Neptune stop at 30 AU? Icarus 170, 492–507 (2004) CrossRefADSGoogle Scholar
  45. R.A. Gutermuth, S.T. Megeath, J.L. Pipher, J.P. Williams, L.E. Allen, P.C. Myers, S.N. Raines, The initial configuration of young stellar clusters: A K-band number counts analysis of the surface density of stars. Astrophys. J. 632, 397–420 (2005) CrossRefADSGoogle Scholar
  46. J.M. Hahn, R. Malhotra, Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117, 3041–3053 (1999) CrossRefADSGoogle Scholar
  47. C. Hayashi, K. Nakazawa, Y. Nakagawa, Formation of the solar system, in Protostars and Planets II (University of Arizona Press, Tucson, 1985), pp. 1100–1153 Google Scholar
  48. J. Heisler, Monte Carlo simulations of the Oort comet cloud. Icarus 88, 104–121 (1990) CrossRefADSGoogle Scholar
  49. J. Heisler, S. Tremaine, The influence of the galactic tidal field on the Oort comet cloud. Icarus 65, 13–26 (1986) CrossRefADSGoogle Scholar
  50. A. Higuchi, E. Kokubo, T. Mukai, Cometary dynamics: Migration due to gas drag and scattering by protoplanets. ESA SP-500: Asteroids, Comets, and Meteors. ACM (2002), pp. 453–456 Google Scholar
  51. J.G. Hills, Comet showers and the steady-state infall of comets from the Oort cloud. Astron. J. 86, 1730–1740 (1981) CrossRefADSGoogle Scholar
  52. P. Joss, Astron. Astrophys. 25, 271 (1973) ADSGoogle Scholar
  53. S.J. Kenyon, B.C. Bromley, Collisional cascades in planetesimal disks. I. Stellar flybys. Astron. J. 123, 1757–1775 (2002) CrossRefADSGoogle Scholar
  54. S.J. Kenyon, B.C. Bromley, Stellar encounters as the origin of distant Solar System objects in highly eccentric orbits. Nature 432, 598–602 (2004a) CrossRefADSGoogle Scholar
  55. S.J. Kenyon, B.C. Bromley, The size distribution of Kuiper belt objects. Astron. J. 128, 1916–1926 (2004b) CrossRefADSGoogle Scholar
  56. G.P. Kuiper, On the origin of the Solar System, in Proceedings of a Topical Symposium, Commemorating the 50th Anniversary of the Yerkes Observatory and Half a Century of Progress in Astrophysics, ed. by J.A. Hynek (McGraw-Hill, New York, 1951), pp. 357–414 Google Scholar
  57. C.J. Lada, E.A. Lada, Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003) CrossRefADSGoogle Scholar
  58. C.J. Lada, M. Margulis, D. Dearborn, The formation and early dynamical evolution of bound stellar systems. Astrophys. J. 285, 141–152 (1984) CrossRefADSGoogle Scholar
  59. M.J. Lehner, The Whipple mission. Talk presented at 2006 TNO conference in Catania, Italy (2006) Google Scholar
  60. H.F. Levison, Comet taxonomy, in Completing the Inventory of the Solar System. ASP Conf. Ser, vol. 107 (1996), pp. 173–191 Google Scholar
  61. H.F. Levison, M.J. Duncan, The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994) CrossRefADSGoogle Scholar
  62. H.F. Levison, M.J. Duncan, From the Kuiper belt to Jupiter-family comets: The spatial distribution of ecliptic comets. Icarus 127, 13–32 (1997) CrossRefADSGoogle Scholar
  63. H.F. Levison, L. Dones, M.J. Duncan, The origin of Halley-type comets: Probing the inner Oort cloud. Astron. J. 121, 2253–2267 (2001) CrossRefADSGoogle Scholar
  64. H.F. Levison, A. Morbidelli, C. van Laerhoven, R. Gomes, K. Tsiganis, Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune (2008) astro-ph preprint Google Scholar
  65. H.F. Levison, M.J. Duncan, L. Dones, B.J. Gladman, The scattered disk as a source of Halley-type comets. Icarus 184, 619–633 (2006) CrossRefADSGoogle Scholar
  66. J. Matese, D. Whitmire, Tidal imprint of distant galactic matter on the Oort comet cloud. Astrophys. J. 472, L41–L43 (1996) CrossRefADSGoogle Scholar
  67. J.J. Matese, D.P. Whitmire, J.L. Lissauer, A wide binary Solar companion as a possible origin of Sedna-like objects. Earth, Moon Planets 97, 459–470 (2005) CrossRefADSGoogle Scholar
  68. J.J. Matese, P.G. Whitman, K.A. Innanen, M.J. Valtonen, Periodic modulation of the Oort cloud comet flux by the adiabatically changing galactic tide. Icarus 116, 255–268 (1995) CrossRefADSGoogle Scholar
  69. A. Morbidelli, H. Levison, Scenarios for the origin of the orbits of the trans-Neptunian objects 2000 CR105 and 2003 VB12. Astron. J. 128, 2564–2576 (2004) CrossRefADSGoogle Scholar
  70. A. Morbidelli, H. Levison, R. Gomes, The dynamical structure of the Kuiper belt and its primordial origin, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli (University of Arizona, Tucson, 2008), 275–292 Google Scholar
  71. H.A. Newton, Astron. J. 11, 73 (1891) CrossRefADSGoogle Scholar
  72. H.A. Newton, Mem. Natl. Acad. Sci. 6, 7 (1893) Google Scholar
  73. J.H. Oort, The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin. Bull. Astron. Inst. Neth. 11, 91–110 (1950) ADSGoogle Scholar
  74. T. Quinn, S. Tremaine, M. Duncan, Planetary perturbations and the origins of short-period comets. Astrophys. J. 355, 667–679 (1990) CrossRefADSGoogle Scholar
  75. F. Roques et al., Exploration of the Kuiper belt by high-precision photometric stellar occultations: First results. Astrophys. J. 132, 819–822 (2006) Google Scholar
  76. R. Smoluchowski, M. Torbett, The boundary of the Solar System. Nature 311, 38–39 (1984) CrossRefADSGoogle Scholar
  77. S.A. Stern, On the collisional environment, accretion time scales, and architecture of the massive, primordial Kuiper belt. Astron. J. 112, 1203–1217 (1996) CrossRefADSGoogle Scholar
  78. E.W. Thommes, M.J. Duncan, H.F. Levison, The formation of Uranus and Neptune in the Jupiter–Saturn region of the Solar System. Nature 402, 635–638 (1999) CrossRefADSGoogle Scholar
  79. E.W. Thommes, M.J. Duncan, H.F. Levison, The formation of Uranus and Neptune among Jupiter and Saturn. Astron. J. 123, 2862–2883 (2002) CrossRefADSGoogle Scholar
  80. E.W. Thommes, M.J. Duncan, H.F. Levison, Oligarchic growth of giant planets. Icarus 161, 431–455 (2003) CrossRefADSGoogle Scholar
  81. M. Torbett, Astron. J. 98, 1477 (1989) CrossRefADSGoogle Scholar
  82. S. Tremaine, The distribution of comets around stars, in Planets Around Pulsars, ed. by J.A. Phillips, S.E. Thorsett, S.R. Kulkarni. Astronomical Society of the Pacific conference series (1993), pp. 335–344 Google Scholar
  83. C.A. Trujillo, D.C. Jewitt, J.X. Luu, Population of the scattered Kuiper belt. Astrophys. J. Lett. 529, L103–L106 (2000) CrossRefADSGoogle Scholar
  84. K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets in the Solar System. Nature 402, 635–638 (2005) Google Scholar
  85. M.D. Weinberg, S.L. Shapiro, I. Wasserman, The dynamical fate of wide binaries in the solar neighborhood. Astrophys. J. 312, 367–389 (1987) CrossRefADSGoogle Scholar
  86. P.R. Weissman, The Oort cloud. Completing the Inventory of the Solar System. ASP Conf. Ser., vol. 107 (1996), pp. 265–288 Google Scholar
  87. S. Yabushita, On exact solutions of diffusion equations in cometary dynamics. Astron. Astrophys. 85, 77–79 (1980) zbMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Physics, Engineering Physics and AstronomyQueen’s UniversityKingstonCanada

Personalised recommendations