Space Science Reviews

, Volume 137, Issue 1–4, pp 455–471 | Cite as

Schumann Resonances as a Means of Investigating the Electromagnetic Environment in the Solar System

  • F. Simões
  • M. Rycroft
  • N. Renno
  • Y. Yair
  • K. L. Aplin
  • Y. Takahashi


The propagation of extremely low frequency (ELF, 3 Hz to 3 kHz) radio waves and resonant phenomena in the spherical Earth-ionosphere cavity has been studied for almost fifty years. When such a cavity is excited by naturally occurring broadband electromagnetic radiation, resonances can develop if the equatorial circumference is approximately equal to an integral number of wavelengths of the propagating electromagnetic waves; these are termed Schumann resonances. They provide information not only about thunderstorm and lightning activity on the Earth, and their relation to climate, but also on the properties of the low ionosphere. Similar investigations can be performed for any other planet or satellite, provided that it has an ionosphere.

There are important differences between the Earth and other celestial bodies regarding, for example, the surface conductivity, the atmospheric conductivity profile, the geometry of the ionospheric cavity, and the sources of excitation. To a first approximation, the size of the cavity defines the fundamental resonant frequency, the atmospheric electron density profile controls the wave attenuation, the nature of the sources influences the electromagnetic field distribution in the cavity, and the body surface conductivity indicates to what extent the subsurface can be explored. The frequencies and attenuation rates of the principal eigenmodes depend upon the electrical properties of the cavity. Instruments that monitor the electromagnetic environment in the ELF range on the surface, on balloons, or on descent probes provide unique information on the cavity.

In this paper, we present Schumann resonance models for selected inner planets, some gaseous giant planets and a few of their satellites. We review the crucial parameters of ELF electromagnetic waves in their atmospheric cavities, namely the electric and magnetic field spectra, their eigenfrequencies, and the associated Q-factors (damping factors). Then we present important information on theoretical developments, on a general model that uses the finite element method and on the parameterization of the cavity. Next we show the distinctiveness of each planetary environment, and discuss how ELF radio wave propagation can contribute to an assessment of the major characteristics of those planetary environments.


Atmospheric electricity Planets Moons Atmosphere Ionosphere Wave propagation Schumann resonance Lightning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P.A. Allen, Earth Surface Processes (Blackwell, Oxford, 1997) Google Scholar
  2. K.L. Aplin, Surv. Geophys. 27, 63–108 (2006). doi:10.1007/s10712-005-0642-9 CrossRefADSGoogle Scholar
  3. K.L. Aplin et al., Space Sci. Rev. (2008, this issue) Google Scholar
  4. S.K. Atreya, Atmosphere and Ionospheres of the Outer Planets and Their Satellites (Springer, Heidelberg, 1986) Google Scholar
  5. M. Balser, C.A. Wagner, Nature 188, 638–641 (1960). doi:10.1038/188638a0 CrossRefADSGoogle Scholar
  6. C. Béghin, F. Simões, K. Karsnoselskhikh et al., Icarus 191, 251–266 (2007). doi:10.1016/j.icarus.2007.04.005 CrossRefADSGoogle Scholar
  7. B.P. Besser, Radio Sci. 42, RS2S02 (2007). doi:10.1029/2006RS003495 CrossRefGoogle Scholar
  8. P.V. Bliokh, A.P. Nickolaenko, Yu.F. Filippov, in Schumann Resonances in the Earth-Ionosphere Cavity, ed. by D.L. Jones (Peter Peregrinus, Oxford, 1980) Google Scholar
  9. D.J. Boccippio, E.R. Williams, W.A. Lyons, I. Baker, R. Boldi, Science 269, 1088–1091 (1995) CrossRefADSGoogle Scholar
  10. W.J. Borucki, R.C. Whitten, Planet. Space Sci. 56, 19–26 (2008) CrossRefADSGoogle Scholar
  11. W.J. Borucki, Z. Levin, R.C. Whitten et al., Icarus 51, 302–321 (1982) CrossRefADSGoogle Scholar
  12. W.J. Borucki, Z. Levin, R.C. Whitten et al., Icarus 72, 604–622 (1987) CrossRefADSGoogle Scholar
  13. W.J. Borucki, R.C. Whitten, E.L.O. Bakes, E. Barth, S. Tripathi, Icarus 181, 527–544 (2006) CrossRefADSGoogle Scholar
  14. T. Bösinger, S. Shalimov, Space Sci. Rev. (2008, this issue) Google Scholar
  15. L.H. Brace, A.J. Kliore, Space Sci. Rev. 55, 81–163 (1991) CrossRefADSGoogle Scholar
  16. C.R. Buhler, C.I. Calle, E. Nelson, LPSC 34, 17–21 (2003) Google Scholar
  17. L.A. Capone, R.C. Whitten, S.S. Prasad, J. Dubach, Astrophys. J. 215, 977–983 (1977) CrossRefADSGoogle Scholar
  18. M.O. Chandler, J.H. Waite, Geophys. Res. Lett. 13, 6–9 (1986) CrossRefADSGoogle Scholar
  19. S. Chapman, Proc. Phys. Soc. 43(1), 26–45 (1931) MATHCrossRefADSGoogle Scholar
  20. P.R. Christensen, H.J. Moore, The Martian surface layer, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1993) Google Scholar
  21. W.D. Crozier, J. Geophys. Res. 69, 5427–5429 (1964) CrossRefADSGoogle Scholar
  22. S.A. Cummer, W.M. Farrell, J. Geophys. Res. 104(6), 14149–14158 (1999) CrossRefADSGoogle Scholar
  23. T.M. Donahue, C.T. Russell, The venus atmosphere and ionosphere and their interaction with the solar wind: An overview, in Venus, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1998) Google Scholar
  24. W.M. Farrell, Geophys. Res. Lett. 23, 587–590 (1996) CrossRefADSGoogle Scholar
  25. W.M. Farrell, M.D. Desch, J. Geophys. Res. 106, 7591–7595 (2001) CrossRefADSGoogle Scholar
  26. G. Fischer, M.D. Desch, P. Zarka et al., Icarus 183, 135–152 (2006) CrossRefADSGoogle Scholar
  27. G. Fischer, W.S. Kurth, U.A. Dyudina et al., Icarus 190, 528–544 (2007) CrossRefADSGoogle Scholar
  28. M. Füllekrug, Geophys. Res. Lett. 32, L13809 (2005) CrossRefADSGoogle Scholar
  29. J. Galejs, Terrestrial Propagation of Long Electromagnetic Waves (Pergamon, New York, 1972) Google Scholar
  30. R. Grard, M. Hamelin, J.J. López-Moreno et al., Planet. Space Sci. 54, 1124–1136 (2006) CrossRefADSGoogle Scholar
  31. C. Greifinger, P. Greifinger, Radio Sci. 13, 831–837 (1978) CrossRefADSGoogle Scholar
  32. C.A. Griffith et al., Science 313, 1620–1622 (2006) CrossRefADSGoogle Scholar
  33. D.A. Gurnett, R.R. Shaw, R.R. Anderson, W.S. Kurth, Geophys. Res. Lett. 6, 511–514 (1979) CrossRefADSGoogle Scholar
  34. D.A. Gurnett, W.S. Kurth, I.H. Cairns, L.J. Granroth, J. Geophys. Res. 95, 20967–20976 (1990) CrossRefADSGoogle Scholar
  35. M. Hamelin, C. Béghin, C.R. Grard et al., Planet. Space Sci. 55, 1964–1977 (2007) CrossRefADSGoogle Scholar
  36. J.K. Hargreaves, The Upper Atmosphere and Solar–Terrestrial Relations (Van Nostrand Rheinhold, UK, 1979) Google Scholar
  37. J.K. Hargreaves, The Solar-Terrestrial Environment (Cambridge University Press, UK, 1992) Google Scholar
  38. A. Kliore, D.L. Cain, G. Fjeldbo, B.L. Seidel, S.I. Rasool, Science 183, 323–324 (1974) CrossRefADSGoogle Scholar
  39. A.J. Kliore, D.P. Hinson, F.M. Flasar, A.F. Nagy, T.E. Cravens, Science 277, 355–358 (1997) CrossRefADSGoogle Scholar
  40. J.F. Kok, N.O. Renno, Phys. Rev. Lett. 100, 014501 (2008) CrossRefADSGoogle Scholar
  41. W.S. Kurth, B.D. Strayer, D.A. Gurnett, F.L. Scarf, Icarus 61, 497–507 (1985) CrossRefADSGoogle Scholar
  42. J.-P. Lebreton, D.L. Matson, Space Sci. Rev. 104, 59–100 (2002) CrossRefADSGoogle Scholar
  43. H. Lammer et al., Planet. Space Sci. 49, 561–574 (2001) CrossRefADSGoogle Scholar
  44. J.S. Lewis, Physics and Chemistry of the Solar System (Academic Press, San Diego, 1995) Google Scholar
  45. D.R. Lide et al., CRC Handbook of Chemistry and Physics, 86th edn. (Taylor and Francis, Boca Raton, 2006) Google Scholar
  46. G.F. Lindal, J.R. Lyons, D.N. Sweetnam, V.R. Eshleman, D.P. Hinson, J. Geophys. Res. 92, 14987–15001 (1987) CrossRefADSGoogle Scholar
  47. J. Liu, Interaction of magnetic field and flow in the outer shells of giant planets. PhD Thesis, Caltech, California (2006) Google Scholar
  48. R.D. Lorenz et al., Science 319, 1649–1651 (2008) CrossRefADSGoogle Scholar
  49. J.I. Lunine, D.J. Stevenson, Icarus 70, 61–77 (1987) CrossRefADSGoogle Scholar
  50. T. Madden, W. Thompson, Rev. Geophys. 3, 211–254 (1965) CrossRefADSGoogle Scholar
  51. T. Majeed, J.H. Waite, S.W. Bougher, R.V. Yelle, G.R. Gladstone, J.C. McConnell, A. Bhardwaj, Adv. Space Res. 33, 197–211 (2004) CrossRefADSGoogle Scholar
  52. D.L. Matson, L.J. Spilker, J.-P. Lebreton, Space Sci. Rev. 104, 1–58 (2002) CrossRefADSGoogle Scholar
  53. G.J. Molina-Cuberos, J. Porti, B.P. Besser et al., Adv. Space Res. 33, 2309–2313 (2004) CrossRefADSGoogle Scholar
  54. G.J. Molina-Cuberos, J.A. Morente, B.P. Besser et al., Radio Sci. 41, RS1003 (2006) CrossRefADSGoogle Scholar
  55. J.A. Morente, G.J. Molina-Cuberos, J.A. Portí, K. Schwingenschuh, B.P. Besser, Icarus 162, 374–384 (2003) CrossRefADSGoogle Scholar
  56. A.F. Nagy, D. Winterhalter, K. Sauer et al., Space Sci. Rev. 111, 33–114 (2004) CrossRefADSGoogle Scholar
  57. E.A. Navarro, A. Soriano, J.A. Morente, J.A. Portí, Radio Sci. 42, RS2S04 (2007). doi:10.1029/2006RS003490 CrossRefGoogle Scholar
  58. A.P. Nickolaenko, M. Hayakawa, Resonances in the Earth-Ionosphere Cavity (Kluwer, Academic Publishers, Dordrecht, 2002) Google Scholar
  59. A.P. Nickolaenko, L.M. Rabinovich, Kosmicheskie Issledovasniya 20, 82–87 (1982) (in Russian) ADSGoogle Scholar
  60. A.P. Nickolaenko, D.D. Sentman, Radio Sci. 42, RS2S13 (2007). doi:10.1029/2006RS003473 CrossRefGoogle Scholar
  61. A.P. Nickolaenko, B.P. Besser, K. Schwingenschuh, Planet. Space Sci. 51(13), 853–862 (2003) CrossRefADSGoogle Scholar
  62. M. Pätzold, S. Tellmann, B. Häusler et al., Science 310, 837–839 (2005) CrossRefADSGoogle Scholar
  63. O. Pechony, C. Price, Radio Sci. 39, RS5007 (2004) CrossRefADSGoogle Scholar
  64. G.H. Pettengill, B.A. Campbell, D.B. Campbell, R.A. Simpson, Surface scattering and dielectrical properties, in Venus, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1998) Google Scholar
  65. V. Rakov, M. Uman, Lightning (Cambridge Univ. Press, Cambridge, UK, 2003) Google Scholar
  66. G.C. Reid, in Study in Geophysics: The Earth’s Electrical Environment, ed. by E.P. Krider, R.G. Roble (National Academy Press, Washington, 1986), pp. 183–194 Google Scholar
  67. C.T. Russell, T.L. Zhang, M. Delva et al., Nature 450, 661–662 (2007) CrossRefADSGoogle Scholar
  68. M.J. Rycroft, S. Israelsson, C. Price, J. Atmos. Sol.-Terr. Phys. 62, 1563–1576 (2000) CrossRefADSGoogle Scholar
  69. M.J. Rycroft et al., Space Sci. Rev. (2008, this issue) Google Scholar
  70. G. Sátori, M. Neska, E. Williams, J. Szendrői, Radio Sci. 42, RS2S10 (2007). doi:10.1029/2006RS003483 CrossRefGoogle Scholar
  71. K. Schlegel, M. Füllekrug, J. Geophys. Res. 104, 10111–10118 (1999) CrossRefADSGoogle Scholar
  72. W.O. Schumann, Z. Naturforschung A 7, 149–154 (1952) (in German) MATHADSMathSciNetGoogle Scholar
  73. D.D. Sentman, J. Atmos. Terr. Phys. 51, 507–519 (1989) CrossRefADSGoogle Scholar
  74. D.D. Sentman, J. Atmos. Terr. Phys. 52, 35 (1990a) CrossRefADSGoogle Scholar
  75. D.D. Sentman, Icarus 88, 73–86 (1990b) CrossRefADSGoogle Scholar
  76. D.D. Sentman, in Handbook of Atmospheric Electrodynamics, 1st edn., ed. by H. Volland (CRC Press, Boca Raton, 1995), pp. 267–298 Google Scholar
  77. F. Simões, PhD thesis. Université Pierre et Marie Curie, Paris 6, France (2007) Google Scholar
  78. F. Simões, R. Grard, M. Hamelin et al., Planet. Space Sci. 55, 1978–1989 (2007) CrossRefADSGoogle Scholar
  79. F. Simões, R. Grard, M. Hamelin et al., Icarus 194, 30–41 (2008a) CrossRefADSGoogle Scholar
  80. F. Simões, M. Hamelin, R. Grard et al., J. Geophys. Res. (2008b). doi:10.1029/2007JE003045 Google Scholar
  81. A. Soriano, E.A. Navarro, J.A. Morente, J.A. Portí, J. Geophys. Res. 112, 06311 (2007). doi:10.1029/2007JA012281 CrossRefGoogle Scholar
  82. R.J. Strangeway, Adv. Space Res. 33, 1956–1967 (2004) CrossRefADSGoogle Scholar
  83. A.I. Sukhorukov, Planet. Space Sci. 39, 1673–1676 (1991) CrossRefADSGoogle Scholar
  84. M.G. Tomasko et al., Nature 438, 765–778 (2005) CrossRefADSGoogle Scholar
  85. E.R. Williams, Science 256, 1184–1187 (1992) CrossRefADSGoogle Scholar
  86. E.R. Williams, G. Sátori, Radio Sci. 42, RS2S11 (2007). doi:10.1029/2006rs003494 CrossRefGoogle Scholar
  87. E.R. Williams, V.C. Mushtak, R. Boldi, R.L. Dowden, Z.-I. Kawasaki, Radio Sci. 42, RS2S20 (2007). doi:10.1029/2006RS003498 CrossRefGoogle Scholar
  88. Y. Yair et al., Space Sci. Rev. (2008, this issue) Google Scholar
  89. H. Yang, V.P. Pasko, Y. Yair, Radio Sci. 41, RS2S03 (2006). doi:10.1029/2005RS003431 Google Scholar
  90. P. Zarka, B.M. Pedersen, Nature 323, 605–608 (1986) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. Simões
    • 1
  • M. Rycroft
    • 2
    • 3
  • N. Renno
    • 4
  • Y. Yair
    • 5
  • K. L. Aplin
    • 6
  • Y. Takahashi
    • 7
  1. 1.Centre d’Etude des Environnements Terrestre et PlanétairesSaint MaurFrance
  2. 2.CAESAR ConsultancyCambridgeUK
  3. 3.International Space UniversityIllkirch-GraffenstadenFrance
  4. 4.Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA
  5. 5.Department of Life and Natural SciencesOpen University of IsraelRa’ananaIsrael
  6. 6.Space Science and Technology DepartmentRutherford Appleton LaboratoryDidcotUK
  7. 7.Department of GeophysicsTohoku UniversitySendaiJapan

Personalised recommendations