Space Science Reviews

, Volume 139, Issue 1–4, pp 235–265

Solar System Ionospheres

  • O. Witasse
  • T. Cravens
  • M. Mendillo
  • J. Moses
  • A. Kliore
  • A. F. Nagy
  • T. Breus
Article

Abstract

This article reviews our understanding of the ionospheres in the solar system. It provides some basic information on the sources and sinks of the ionospheric plasma, its dynamics, the energetics and the coupling to the neutral atmosphere. Ionospheres in the solar system are reviewed and comparative ionospheric topics are discussed.

Keywords

Ionospheres Planetology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Agren et al., On magnetospheric electron impact ionisation and dynamics in Titan’s ram-side and polar ionosphere—a Cassini case study. Ann. Geophys. 25(11), 2359–2369 (2007) ADSGoogle Scholar
  2. A.L. Albee et al., Mars global surveyor mission: overview and status. Science 279(5357), 1671 (1998) ADSCrossRefGoogle Scholar
  3. V.G. Anicich, W.T. Huntress, A survey of bimolecular ion-molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds. Astrophys. J. Suppl. Ser. 62, 553–672 (1986) ADSCrossRefGoogle Scholar
  4. V.G. Anicich, M.J. McEwan, Ion-molecule chemistry in Titan’s ionosphere. Planet. Space Sci. 45, 897–921 (1997) ADSCrossRefGoogle Scholar
  5. S.K. Atreya, Atmospheres and Ionospheres of the Outer Planets and Their Satellites (Springer, Berlin, 1986), 224 pp. Also in Phys. Chem. Space 15. 90 figs. (partly in color) Google Scholar
  6. S.K. Atreya, J.H. Waite Jr., Saturn ionosphere: theoretical interpretation. Nature 292, 682–683 (1981). doi:10.1038/292682a0 ADSCrossRefGoogle Scholar
  7. H. Backes et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308(5724), 992–995 (2005) ADSCrossRefGoogle Scholar
  8. P.M. Banks, G. Kockarts, Aeronomy (Academic Press, San Diego, 1973) Google Scholar
  9. S.J. Bauer, Titan’s ionosphere and atmospheric evolution. Adv. Space Res. 7(5), 65–69 (1987) ADSCrossRefGoogle Scholar
  10. S.J. Bauer, M.H. Hantsch, Solar cycle variations of the upper atmosphere temperature of Mars. Geophys. Res. Lett. 16, 373–376 (1989). doi:10.1029/GL016i005p00373 ADSCrossRefGoogle Scholar
  11. J.-L. Bertaux, F. Leblanc, W. Witasse, E. Quemerais, J. Lilensten, A.S. Stern et al., Discovery of aurora on Mars. Nature 435, 790–794 (2005). doi:10.1038/nature03603 Medline ADSCrossRefGoogle Scholar
  12. A. Bhardwaj, 13 co-authors, X-rays from solar-system objects. Planet. Space Sci. 55, 1135–1189 (2007). doi:10.1016/j.pss.2006.11.009 ADSCrossRefGoogle Scholar
  13. A. Bhardwaj, G.R. Gladstone, Auroras on Saturn, Uranus, and Neptune. Adv. Space Res. 26, 1551–1558 (2000). doi:10.1016/S0273-1177(00)00096-X ADSCrossRefGoogle Scholar
  14. A. Bhardwaj, R.F. Elsner, J.H. Waite Jr., G.R. Gladstone, T.E. Cravens, P.G. Ford, Chandra observation of an X-ray flare at Saturn: Evidence of direct solar control on Saturn’s disk X-ray emissions. Astrophys. J. 624, L121–L124 (2005). doi:10.1086/430521 ADSCrossRefGoogle Scholar
  15. M.K. Bird, Detection of Titan’s ionosphere from Voyager 1 radio occultation observations. Icarus 130(2), 426–436 (1997) ADSMathSciNetCrossRefGoogle Scholar
  16. S.W. Bougher, S. Engel, D.P. Hinson, J.R. Murphy, MGS Radio Science electron density profiles: interannual variability and implications for the martian neutral atmosphere. J. Geophys. Res. 109, E03010 (2004). doi:10.1029/2003JE002154 CrossRefGoogle Scholar
  17. L.H. Brace, A.J. Kliore, The structure of the Venus ionosphere, in Venus Aeronomy, ed. by C.T. Russell. Space Science Reviews, vol. 55 (1991), pp. 81–163 Google Scholar
  18. T.K. Breus, A.M. Krymskii, D.H. Crider, N.F. Ness, D. Hinson, K.K. Barashyan, Effect of the solar radiation in the topside atmosphere/ionosphere of Mars: Mars Global Surveyor observations. J. Geophys. Res. 109 (2004). doi:10.1029/2003JE002154
  19. L.A. Capone et al., The lower ionosphere of Titan. Icarus 28, 367–378 (1976) ADSCrossRefGoogle Scholar
  20. S. Chandra, E.I. Reed, B.E. Troy Jr., J.E. Blamont, Equatorial airglow and the Ionospheric geomagnetic anomaly. J. Geophys. Res. 78, 4630–4640 (1973). doi:10.1029/JA078i022p04630 ADSCrossRefGoogle Scholar
  21. J.T. Clarke, 12 co-authors, Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature 433, 717–719 (2005). doi:10.1038/nature03331 Medline ADSCrossRefGoogle Scholar
  22. J.T. Clarke, H.W. Moos, P.D. Feldman, The far-ultraviolet spectra and geometric albedos of Jupiter and Saturn. Astrophys. J. 255, 806–818 (1982). doi:10.1086/159879 ADSCrossRefGoogle Scholar
  23. J.T. Clarke, D. Grodent, S.W.H. Cowley, E.J. Bunce, P. Zarka, J.E.P. Connerney et al., Jupiter’s Aurora, in Jupiter: The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Camb. Univ. Press., Cambridge, 2004) Google Scholar
  24. A. Coates, F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite, E.C. Sittler, Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 34(22), L22103 (2007) ADSCrossRefGoogle Scholar
  25. J.E.P. Connerney, J.H. Waite Jr., New model of Saturn’s ionosphere with an influx of water from the rings. Nature 312, 136–138 (1984). doi:10.1038/312136a0 ADSCrossRefGoogle Scholar
  26. A.R. Cooray, J.L. Elliot, A.S. Bosh, L.A. Young, M.A. Shure, Stellar occultation observations of Saturn’s north-polar temperature structure. Icarus 132, 298–310 (1998). doi:10.1006/icar.1998.5901 ADSCrossRefGoogle Scholar
  27. T.E. Cravens, Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter. J. Geophys. Res. 92, 11083–11100 (1987). doi:10.1029/JA092iA10p11083 ADSCrossRefGoogle Scholar
  28. T.E. Cravens, Physics of Solar System Plasmas (Cambridge Univ. Press, Cambridge, 1997) Google Scholar
  29. T.E. Cravens, The ionosphere of Titan: an updated theoretical model. Adv. Space Res. 33(2), 212–215 (2004) ADSCrossRefGoogle Scholar
  30. T.E. Cravens, S.L. Crawford, A.F. Nagy, T.I. Gombosi, A two-dimensional model of the ionosphere of Venus. J. Geophys. Res. 88, 5595 (1983). doi:10.1029/JA088iA07p05595 ADSCrossRefGoogle Scholar
  31. T.E. Cravens, H. Shinagawa, J.G. Luhmann, Magnetohydrodynamic processes: Magnetic fields in the ionosphere of Venus, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (Univ. of Arizona Press, Tucson, 1997), pp. 61–95 Google Scholar
  32. T.E. Cravens, J. Clark, A. Bhardwaj, R. Elsner, J.H. Waite, A.N. Maurellis, G.R. Gladstone, G. Branuardi-Raymont, X-ray emission from the outer planets: Albedo for scattering and fluorescence of solar X-rays. J. Geophys. Res. 111(A&), A07308 (2006). doi:10.1029/2005JA011413 CrossRefGoogle Scholar
  33. T.E. Cravens et al., Energetic Ion Precipitation at Titan. American Geophysical Union, Fall Meeting 2007, abstract #P43A–1011 (2007) Google Scholar
  34. Z. Dobe et al., A theoretical study concerning the solar cycle dependence of the nightside ionosphere of Venus. J. Geophys. Res. 100, 14507 (1995). doi:10.1029/95JA00331 ADSCrossRefGoogle Scholar
  35. L.P. Dyrud, L. Ray, M. Oppenheim, S. Close, K. Denney, Modelling high-power large-aperture radar meteor trains. J. Atmos. Sol. Terr. Phys. 67, 1171–1177 (2005). doi:10.1016/j.jastp.2005.06.016 ADSCrossRefGoogle Scholar
  36. R.C. Elphic et al., Nightward ion flow in the Venus ionosphere: Implications of momentum balance. Geophys. Res. Lett. 11, 1007 (1984). doi:10.1029/GL011i010p01007 ADSCrossRefGoogle Scholar
  37. V.R. Eshleman et al., Radio science with Voyager at Jupiter—initial Voyager 2 results and a Voyager 1 measure of the Io torus. Science 206(23), 959–962 (1979a) ADSCrossRefGoogle Scholar
  38. V.R. Eshleman et al., Radio science with Voyager 1 at Jupiter—preliminary profiles of the atmosphere and ionosphere. Science 204(1), 976–978 (1979b) ADSMathSciNetCrossRefGoogle Scholar
  39. J.R. Esplay et al., Absorption of MARSIS radar signals: Solar energetic particles and the daytime ionosphere. Geophys. Res. Lett. 34(9), L09101 (2007) CrossRefGoogle Scholar
  40. L. Esposito, 15 co-authors, Ultraviolet imaging spectroscopy shows an active Saturnian system. Science 307, 1251–1255 (2005). doi:10.1126/science.1105606 Medline ADSCrossRefGoogle Scholar
  41. M.C. Festou, S.K. Atreya, Voyager ultraviolet stellar occultation measurements of the composition and thermal profiles of the Saturnian upper atmosphere. Geophys. Res. Lett. 9, 1147–1150 (1982). doi:10.1029/GL009i010p01147 ADSCrossRefGoogle Scholar
  42. H. Feuchtgruber, E. Lellouch, T. de Graauw, B. Bezard, T. Encrenaz, M. Griffin, External supply of oxygen to the atmospheres of the giant planets. Nature 389, 159–162 (1997). doi:10.1038/38236 Medline ADSCrossRefGoogle Scholar
  43. G. Fjeldbo et al., The Pioneer 10 radio occultation measurements of the ionosphere of Jupiter. Astron. Astrophys. 39(1), 91–96 (1975) ADSGoogle Scholar
  44. G. Fjeldbo et al., The Pioneer 11 radio occultation measurements of the Jovian ionosphere. Jupiter 238–246 (1976) Google Scholar
  45. J.M. Forbes, S.E. Palo, X. Zhang, Variability of the ionosphere. J. Atmos. Sol. Terr. Phys. 62, 685–693 (2000). doi:10.1016/S1364-6826(00)00029-8 ADSCrossRefGoogle Scholar
  46. J.M. Forbes, S. Bruinsma, F.G. Lemoine, Solar rotation effects on the thermospheres of Mars and Earth. Science 312, 1366–1368 (2006). doi:10.1126/science.1126389 Medline ADSCrossRefGoogle Scholar
  47. J.C. Foster, W. Rideout, Midlatitude TEC enhancements during the October 2003 superstorm. Geophys. Res. Lett. 44, L12S04 (2005). doi:10.1029/2004GL021719 CrossRefGoogle Scholar
  48. J.L. Fox, K.E. Yeager, Morphology of the near-terminator Martian ionosphere: A comparison of models and data. J. Geophys. Res. 111, A10309 (2006). doi:10.1029/2006JA011697 ADSCrossRefGoogle Scholar
  49. J.L. Fox, R.V. Yelle, Hydrocarbon ions in the ionosphere of Titan. Geophys. Res. Lett. 24, 2179 (1997) ADSCrossRefGoogle Scholar
  50. T.J. Fuller-Rowell, M. Codrescu, P. Wilkinson, Quantitative modeling of the ionospheric response to geomagnetic activity. Ann. Geophys. 18, 766–781 (2000). doi:10.1007/s00585-000-0766-7 ADSCrossRefGoogle Scholar
  51. M. Galand et al., The ionosphere of Titan: ideal diurnal and nocturnal cases. Icarus 140, 92–105 (1999) ADSCrossRefGoogle Scholar
  52. M. Galand et al., Electron temperature of Titan’s sunlit ionosphere. Geophys. Res. Lett. 33(21), L21101 (2006) ADSCrossRefGoogle Scholar
  53. L. Gan et al., Electrons in the ionosphere of Titan. J. Geophys. Res. 97(A8), 12,137–12,151 (1992) ADSCrossRefGoogle Scholar
  54. T.R. Geballe, M.-F. Jagod, T. Oka, Detection of H3+ infrared emission lines in Saturn. Astrophys. J. 408, L109–L112 (1993). doi:10.1086/186843 ADSCrossRefGoogle Scholar
  55. J.-C. Gerard, E.J. Bunce, D. Grodent, S.W.H. Cowley, J.T. Clarke, S.V. Badman, Signature of Saturn’s auroral cusp: Simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring. J. Geophys. Res. 110(A11), A11201 (2005). doi:10.1029/2005JA011094 ADSCrossRefGoogle Scholar
  56. J.M. Grebowsky, J.I. Moses, W.D. Pesnell, Meteoric material—An important component of planetary atmospheres, in Atmospheres in the Solar System: Comparative Aeronomy, ed. by M. Mendillo, A. Nagy, J.H. Waite (Am. Geophys. Union, Washington, 2002), pp. 235–244 Google Scholar
  57. D. Grodent, J.-C. Gerard, S.W.H. Cowley, E.J. Bunce, J.T. Clarke, Variable morphology of Saturn’s southern ultraviolet aurora. J. Geophys. Res. 110, A07215 (2005). doi:10.1029/2004JA010983 CrossRefGoogle Scholar
  58. D.A. Gurnett et al., An overview of radar soundings of the martian ionosphere from the Mars Express spacecraft. Adv. Space Res. 41(9), 1335–1346 (2008) ADSCrossRefGoogle Scholar
  59. M.E. Hagan, R.G. Roble, J. Hackney, Migrating thermospheric tides. J. Geophys. Res. 106, 12,739–12,752 (2001). doi:10.1029/2000JA000344 ADSGoogle Scholar
  60. W.B. Hanson, G.P. Mantas, Viking electron temperature measurements—evidence for a magnetic field in the Martian ionosphere. J. Geophys. Res. 93(1), 7538–7544 (1988) ADSCrossRefGoogle Scholar
  61. W.B. Hanson et al., The Martian ionosphere as observed by the Viking retarding potential analyzers. J. Geophys. Res. 82(30), 4351–4363 (1977) ADSCrossRefGoogle Scholar
  62. M.H. Hantsch, S.J. Bauer, Solar control of the Mars ionosphere. Planet. Space Sci. 38, 539–542 (1990). doi:10.1016/0032-0633(90)90146-H ADSCrossRefGoogle Scholar
  63. R.E. Hartle, Titan’s ion exosphere observed from Voyager 1. J. Geophys. Res. 87(1), 1383–1394 (1982) ADSCrossRefGoogle Scholar
  64. R.A. Heelis, J.D. Winningham, W.B. Hanson, J.L. Burch, The relationships between high-latitude convection reversals and the energetic particle morphology observed by Atmosphere Explorer. J. Geophys. Res. 85, 3315 (1980). doi:10.1029/JA085iA07p03315 ADSCrossRefGoogle Scholar
  65. D.P. Hinson et al., Jupiter’s ionosphere: Results from the first Galileo radio occultation experiment. Geophys. Res. Lett. 24, 2107 (1997) ADSCrossRefGoogle Scholar
  66. D.P. Hinson et al., Galileo radio occultation measurements of Io’s ionosphere and plasma wake. J. Geophys. Res. 103(A12), 29343–29358 (1998) ADSCrossRefGoogle Scholar
  67. W.B. Hubbard et al., Structure of Saturn’s mesosphere from the 28 Sgr occultations. Icarus 130, 404–425 (1997). doi:10.1006/icar.1997.5839 ADSCrossRefGoogle Scholar
  68. D. Huestis, H+ + H2 ion-molecule reactions in the ionospheres of the outer planets. Bull. Am. Astron. Soc. 37, 757 (2005) ADSGoogle Scholar
  69. T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende et al., Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33, L15108 (2006). doi:10.1029/2006GL026161 ADSCrossRefGoogle Scholar
  70. W.-H. Ip, Titan’s upper ionosphere. Astrophys. J. Part 1 362(10), 354–363 (1990) ADSCrossRefGoogle Scholar
  71. L. Jaffel, R. Prange, B.R. Sandel, R.V. Yelle, C. Emerich, D. Feng et al., New analysis of the Voyager UVS H Lyman alpha emission of Saturn. Icarus 113, 91–102 (1995). doi:10.1006/icar.1995.1007 ADSCrossRefGoogle Scholar
  72. M. Kaiser, M.D. Desch, J.E.P. Connerney, Saturn’s ionosphere: Inferred electron densities. J. Geophys. Res. 89, 2371–2376 (1984). doi:10.1029/JA089iA04p02371 ADSCrossRefGoogle Scholar
  73. C.N. Keller, T.E. Cravends, One-dimensional multispecies hydrodynamic models of the wakeside ionosphere of Titan. J. Geophys. Res. A 99(4), 6527–6536 (1994) ADSCrossRefGoogle Scholar
  74. C.N. Keller et al., One-dimensional multispecies magnetohydrodynamic models of the ramside ionosphere of Titan. J. Geophys. Res. A 99(4), 6511–6525 (1994) ADSCrossRefGoogle Scholar
  75. C.N. Keller et al., Model of Titans ionosphere with detailed hydrocarbon ion chemistry. Planet. Space Sci. 46(9–10), 1157–1174 (1998) ADSCrossRefGoogle Scholar
  76. M.C. Kelley, The Earth’s Ionosphere, Plasma Physics, and Electrodynamics (Academic Press, San Diego, 1989) Google Scholar
  77. M. Kelley, J. Makela, A. Saito, The mid-latitude F region at the mesoscale: Some progress at last. J. Atmos. Sol. Terr. Phys. 64, 1525–1529 (2002). doi:10.1016/S1364-6826(02)00090-1 ADSCrossRefGoogle Scholar
  78. M. Kelley, J. Makela, L. Paxton, F. Kamalabadi, J. Comberiate, H. Kil, The first coordinated ground- and space-based optical observations of equatorial plasma bubbles. Geophys. Res. Lett. 30, 1766 (2003). doi:10.1029/2003GL017301 ADSCrossRefGoogle Scholar
  79. A.J. Kliore, Radio occultation observations of the ionospheres of Mars and Venus, in Venus and Mars: Atmospheres, Ionospheres and Solar Wind Interactions, ed. by J.G. Luhman, M. Tatrallyay, R.O. Pepin. Geophys. Monograph Series, vol. 66 (AGU, Washington, 1992), pp. 265–276 Google Scholar
  80. A.J. Kliore, The ionosphere of Io and the plasma environments of Europa, Ganymede, and Callisto. Bull. Am. Astron. Soc. 30(4), 1450–1451 (1998) ADSGoogle Scholar
  81. A.J. Kliore, L.F. Mullen, The long-term behavior of the main peak of the dayside Ionosphere of Venus during solar cycle 21 and its implications on the effect of the solar cycle upon the electron temperature in the main peak region. J. Geophys. Res. 94, 13,339–13,351 (1989). doi:10.1029/JA094iA10p13339 ADSCrossRefGoogle Scholar
  82. A.J. Kliore, I.R. Patel, G.F. Lindal, D.N. Sweetnam, H.B. Hotz, T. McDonough, Vertical structure of the ionosphere and upper neutral atmosphere of Saturn from the Pioneer radio occultation. Science 207, 446–449 (1980a). doi:10.1126/science.207.4429.446 Medline ADSCrossRefGoogle Scholar
  83. A.J. Kliore, I.R. Patel, G.F. Lindal, D.N. Sweetnam, H.B. Hotz, J.H. Waite et al., Structure of the ionosphere of Saturn from Pioneer 11 Saturn radio occultation. J. Geophys. Res. 85, 5857–5870 (1980b). doi:10.1029/JA085iA11p05857 ADSCrossRefGoogle Scholar
  84. A.J. Kliore et al., The atmosphere of Io from Pioneer 10 radio occultation measurements. Icarus 24, 407–410 (1975) ADSCrossRefGoogle Scholar
  85. A.J. Kliore et al., Pioneer 10 and 11 radio occultations by Jupiter, in Space Research XVII; Proceedings of the Open Meetings of Working Groups on Physical Sciences, June 8–19, 1976 and Symposium on Minor Constituents and Excited Species, Philadelphia, PA, June 9, 10, 1976 (Pergamon Press, Elmsford, 1977), pp. 703–710 Google Scholar
  86. A.J. Kliore et al., The ionosphere of Europa from Galileo radio occultations. Science 277, 355–358 (1997) ADSCrossRefGoogle Scholar
  87. A.J. Kliore et al., Ionosphere of Callisto from Galileo radio occultation observations. J. Geophys. Res. (Space Phys.) 107(A11), 1407 (2002). doi:10.1029/2002JA009365 ADSCrossRefGoogle Scholar
  88. A.J. Kliore et al., The Structure of the Titan Ionosphere. American Astronomical Society, DPS meeting #39, #56.15 (2007) Google Scholar
  89. W.C. Knudsen et al., Anti-solar acceleration of ionospheric plasma across the Venus terminator. Geophys. Res. Lett. 8, 241 (1981). doi:10.1029/GL008i003p00241 ADSCrossRefGoogle Scholar
  90. W.C. Knudsen, P.M. Banks, K.L. Miller, A model of plasma motion and planetary magnetic fields for Venus. Geophys. Res. Lett. 9, 765 (1982). doi:10.1029/GL009i007p00765 ADSCrossRefGoogle Scholar
  91. S.M. Krimigis et al., Dynamics of Saturn’s magnetosphere from MIMI during Cassini’s orbital insertion. Science 307(5713), 1270–1273 (2005) ADSCrossRefGoogle Scholar
  92. A.M. Krymskii, T.K. Breus, N.F. Ness, D.P. Hanson, D.I. Bojkov, Effect of crustal magnetic fields on the near terminator ionosphere of Mars: Comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars Global Surveyor. J. Geophys. Res. 108, 1431 (2003). doi:10.1029/2002JA009662 CrossRefGoogle Scholar
  93. B.S. Lanchester, M.H. Rees, D. Lummerzheim, A. Otto, H.U. Frey, K.U. Kaila, Large fluxes of auroral electrons in filaments of 100 m width. J. Geophys. Res. 102, 1741–9748 (1997). doi:10.1029/97JA00231 CrossRefGoogle Scholar
  94. J. Lilensten, P.-L. Blelly, Du Soleil a la Terre. Collection Grenoble France (1999) Google Scholar
  95. G.F. Lindal, D.N. Sweetnam, V.R. Eshleman, The atmosphere of Saturn: An analysis of the Voyager radio occultation measurements. Astron. J. 90, 1136–1146 (1985). doi:10.1086/113820 ADSCrossRefGoogle Scholar
  96. G.F. Lindal et al., The atmosphere of Uranus—results of radio occultation measurements with Voyager 2. J. Geophys. Res. 92(30), 14987–15001 (1987) ADSCrossRefGoogle Scholar
  97. J.G. Luhmann, T.E. Cravens, in Venus Aeronomy, ed. by C.T. Russell. Space Science Reviews, vol. 55 (1991), pp. 201–274 Google Scholar
  98. Y. Ma et al., Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004). doi:10.1029/2003JA010367 CrossRefGoogle Scholar
  99. P.R. Mahaffy, Intensive Titan exploration begins. Science 308(5724), 969–970 (2005) ADSCrossRefGoogle Scholar
  100. T. Majeed, J.C. McConnell, The upper ionospheres of Jupiter and Saturn. Planet. Space Sci. 39, 1715–1732 (1991). doi:10.1016/0032-0633(91)90031-5 ADSCrossRefGoogle Scholar
  101. T. Majeed, J.C. McConnell, Voyager electron density measurements on Saturn: Analysis with a time dependent ionospheric model. J. Geophys. Res. 101, 7589–7598 (1996). doi:10.1029/96JE00115 ADSCrossRefGoogle Scholar
  102. T. Majeed, J.C. McConnell, R.V. Yelle, Vibrationally excited H2 in the outer planets thermosphere: Fluorescence in the Lyman and Werner bands. Planet. Space Sci. 39, 1591–1606 (1991). doi:10.1016/0032-0633(91)90085-O ADSCrossRefGoogle Scholar
  103. T. Majeed, J.H. Waite Jr., S.W. Bougher, R.V. Yelle, G.R. Gladstone, J.C. McConnell et al., The ionospheres-thermospheres of the giant planets. Adv. Space Res. 33, 197–211 (2004). doi:10.1016/j.asr.2003.05.009 ADSCrossRefGoogle Scholar
  104. C. Martinis, Private communication, 2007 Google Scholar
  105. C. Martinis, J. Baumgardner, S.M. Smith, M. Colerico, M. Mendillo, Imaging science at El Leoncito. Ann. Geophys. 24, 1375–1385 (2006) ADSCrossRefGoogle Scholar
  106. K.I. Matcheva, D.F. Strobel, F.M. Flasar, Interaction of gravity waves with ionospheric plasma: Implications for Jupiter’s ionosphere. Icarus 152, 347–365 (2001). doi:10.1006/icar.2001.6631 ADSCrossRefGoogle Scholar
  107. M.B. McElroy, The ionospheres of the major planets. Space Sci. Rev. 14, 460–473 (1973). doi:10.1007/BF00214756 ADSCrossRefGoogle Scholar
  108. M.G. McHarg, D.L. Hampton, H.C. Stenbaek-Nielsen, Fast photometry of flickering in discrete auroral arcs. Geophys. Res. Lett. 25, 2637–2640 (1998). doi:10.1029/98GL01972 ADSCrossRefGoogle Scholar
  109. H. Melin, S. Miller, T. Stallard, L.M. Trafton, T.R. Geballe, Variability in the H3+ emission of Saturn: Consequences for ionisation rates and temperatures. Icarus 186, 234–241 (2007). doi:10.1016/j.icarus.2006.08.014 ADSCrossRefGoogle Scholar
  110. M. Mendillo, Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 47, RG4001 (2006). doi:10.1029/2005RG000193 ADSCrossRefGoogle Scholar
  111. M. Mendillo, P. Withers, Solar flare effects upon the ionospheres of Earth and Mars, in Proceedings of the Symposium on Radio Sounding and Plasma Physics (Am. Inst. Phys., New York, 2008, in press) Google Scholar
  112. M. Mendillo, J. Baumgardner, X.-Q. Pi, P.J. Sulton, R.T. Tsunoda, Onset conditions for equatorial spread F. J. Geophys. Res. 97, 13,865–13,876 (1992). doi:10.1029/92JA00647 ADSCrossRefGoogle Scholar
  113. M. Mendillo, J. Baumgardner, J. Nottingham, D. Aarons, J. Reinisch, B. Scali et al., Investigations of thermospheric-ionospheric dynamics with 6300-Å images from the Arecibo observatory. J. Geophys. Res. 102, 7331–7344 (1997). doi:10.1029/96JA02786 ADSCrossRefGoogle Scholar
  114. M. Mendillo, J. Meriwether, M. Biondi, Testing the thermospheric neutral wind suppression mechanism for day-to-day variability of equatorial spread F. J. Geophys. Res. 106, 3655–3663 (2001). doi:10.1029/2000JA000148 ADSCrossRefGoogle Scholar
  115. M. Mendillo, H. Rishbeth, R.G. Roble, J. Wroten, Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere. J. Atmos. Sol. Terr. Phys. 64, 1911–1931 (2002). doi:10.1016/S1364-6826(02)00193-1 ADSCrossRefGoogle Scholar
  116. M. Mendillo, S. Smith, J. Wroten, H. Rishbeth, D. Hinson, Simultaneous ionospheric variability on Earth and Mars. J. Geophys. Res. 108, 1432 (2003). doi:10.1029/2003JA009961 CrossRefGoogle Scholar
  117. M. Mendillo, X. Pi, S. Smith, C. Martinis, J. Wilson, D. Hinson, Ionospheric effects upon a satellite navigation system on Mars. Radio Sci. 39, RS2028 (2004). doi:10.1029/2003RS002933 ADSCrossRefGoogle Scholar
  118. M. Mendillo, L. Moore, J. Clarke, I. Mueller-Wodarg, W.S. Kurth, M.L. Kaiser, Effects of ring-shadowing on the detection of electrostatic discharges at Saturn. Geophys. Res. Lett. 32, L05107 (2005). doi:10.1029/2004GL021934 CrossRefGoogle Scholar
  119. M. Mendillo, P. Withers, D. Hinson, H. Rishbeth, B. Reinisch, Effects of solar flares on the ionosphere of Mars. Science 311, 1135–1138 (2006). doi:10.1126/science.1122099 Medline ADSCrossRefGoogle Scholar
  120. S. Miller, N. Achilleos, G.E. Ballester, T.R. Geballe, R.D. Joseph, R. Prange et al., The role of H3+ in planetary atmospheres. Philos. Trans. R. Soc. Lond. A 358, 2485–2502 (2000). doi:10.1098/rsta.2000.0662 ADSCrossRefGoogle Scholar
  121. S. Miller, A. Aylward, G. Millward, Giant planet ionospheres: The importance of ion-neutral coupling. Space Sci. Rev. 116, 319–343 (2005). doi:10.1007/s11214-005-1960-4 ADSCrossRefGoogle Scholar
  122. S. Miller, T. Stallard, C. Smith et al., H3+: The driver of giant-planet atmospheres. Philos. Trans. R. Soc. Lond. A 364, 3121–3137 (2006). doi:10.1098/rsta.2006.1877 ADSCrossRefGoogle Scholar
  123. D.L. Mitchell, Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. 106(E10), 23419–23428 (2001) ADSCrossRefGoogle Scholar
  124. A.P. Mitra, Ionospheric Effects of Solar Flares (Reidel, Dordrecht, 1974) Google Scholar
  125. G.J. Molina-Cuberos et al., Ionospheric layer induced by meteoric ionization in Titan’s atmosphere. Planet. Space Sci. 49(2), 143–153 (2001) ADSCrossRefGoogle Scholar
  126. G. Molina-Cuberos et al., Planet. Space Sci. (2003) Google Scholar
  127. L. Moore, M. Mendillo, Are plasma depletions in Saturn’s ionosphere a signature of time-dependent water input? Geophys. Res. Lett. 34, L12202 (2007). doi:10.1029/2007GL029381 ADSCrossRefGoogle Scholar
  128. L.E. Moore, M. Mendillo, I.C.F. Müller-Wodarg, D.L. Murr, Modeling of global variations and ring shadowing in Saturn’s ionosphere. Icarus 172, 503–520 (2004) ADSCrossRefGoogle Scholar
  129. L. Moore, A.F. Nagy, A.J. Kliore, I. Muller-Wodarg, J.D. Richardson, M. Mendillo, Cassini radio occultation of Saturn’s ionosphere: Model comparisons Using a constant water flux. Geophys. Res. Lett. 33, L22202 (2006a). doi:10.1029/2006GL027375 ADSCrossRefGoogle Scholar
  130. L. Moore, M. Mendillo, C. Martinis, S. Bailey, Day-to-day variability of the E layer. J. Geophys. Res. 111, A06307 (2006b). doi:10.1029/2005JA011448 CrossRefGoogle Scholar
  131. D. Morgan et al., Solar control of radar wave absorption by the Martian ionosphere. Geophys. Res. Lett. 33(13), L13202 (2006) ADSCrossRefGoogle Scholar
  132. J.I. Moses, S.F. Bass, The effects of external material on the chemistry and structure of Saturn’s ionosphere. J. Geophys. Res. 105, 7013–7052 (2000). doi:10.1029/1999JE001172 ADSCrossRefGoogle Scholar
  133. J.I. Moses, R.J. Vervack Jr., The structure of the upper atmosphere of Saturn. Lunar Planet. Sci. Conf. 37, 1803 (2006) ADSGoogle Scholar
  134. J.I. Moses, B. Bézard, E. Lellouch, G.R. Gladstone, H. Feuchtgruber, M. Allen, Photochemistry of Saturn’s atmosphere. II. Effects of an influx of external oxygen. Icarus 145, 166–202 (2000). doi:10.1006/icar.1999.6320 ADSCrossRefGoogle Scholar
  135. I. Mueller-Wodarg, Planetary upper atmospheres, in Advances in Astronomy (J.M.T. Thompson) (Imperial College Press, London, 2004), pp. 331–353 Google Scholar
  136. I.C.F. Mueller-Wodarg, M. Mendillo, R.V. Yelle, A.D. Aylward, A global circulation model of Saturn’s thermosphere. Icarus 180, 147–160 (2006). doi:10.1016/j.icarus.2005.09.002 ADSCrossRefGoogle Scholar
  137. A.F. Nagy, T.E. Cravens, Solar system ionospheres, in Atmospheres in the Solar System: Comparative Aeronomy, ed. by M. Mendillo, A. Nagy, J.H. Waite. Geophysical Monograph, vol. 130 (Am. Geophys. Union, Washington, 2002) Google Scholar
  138. A.F. Nagy et al., Model calculations of the dayside ionosphere of Venus: Ionic composition. J. Geophys. Res. 85, 7795 (1980). doi:10.1029/JA085iA13p07795 ADSCrossRefGoogle Scholar
  139. A.F. Nagy et al., A two dimensional shock capturing, hydrodynamic model of the Venus ionosphere. Geophys. Res. Lett. 18, 801 (1991). doi:10.1029/91GL00362 ADSCrossRefGoogle Scholar
  140. A.F. Nagy, A.J. Kliore, E. Marouf, R. French, M. Flasar, N.J. Rappaport et al., First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft. J. Geophys. Res. 111, A06310 (2006). doi:10.1029/2005JA011519 CrossRefGoogle Scholar
  141. J.-U. Ness, J.H.M.M. Schmitt, J. Robrade, Detection of Saturnian X-ray emission with XMM-Newton. Astron. Astrophys. 414, L49–L52 (2004a). doi:10.1051/0004-6361:20031761 ADSCrossRefGoogle Scholar
  142. J.-U. Ness, J.H.M.M. Schmitt, S.J. Wolk, K. Dennerl, V. Burwitz, X-ray emission from Saturn. Astron. Astrophys. 418, 337–345 (2004b). doi:10.1051/0004-6361:20035736 ADSCrossRefGoogle Scholar
  143. E. Nielsen, D.D. Morgan, D.L. Kirchner, J. Plaut, G. Picardi, Absorption and reflection of radio waves in the Martian ionosphere. Planet. Space Sci. 55, 864–870 (2007). doi:10.1016/j.pss.2006.10.005 ADSCrossRefGoogle Scholar
  144. M. Paetzold, S. Tellmann, B. Häusler, D. Hinson, R. Schaa, G.L. Tyler, A sporadic third layer in the ionosphere of mars. Science 310, 837–839 (2005). doi:10.1126/science.1117755 Medline ADSCrossRefGoogle Scholar
  145. M. Paetzold et al., The structure of Venus’ middle atmosphere and ionosphere. Nature 450, 657–660 (2007). doi:10.1038/nature06239 ADSCrossRefGoogle Scholar
  146. C.D. Parkinson, E. Griffioen, J.C. McConnell, G.R. Gladstone, B.R. Sandel, He 584 A dayglow at Saturn: A reassessment. Icarus 133, 210–220 (1998). doi:10.1006/icar.1998.5926 ADSCrossRefGoogle Scholar
  147. W.D. Pesnell, J. Grebowsky, Meteoric magnesium ions in the Martian Atmosphere. J. Geophys. Res. 105, 1695–1708 (2000). doi:10.1029/1999JE001115 ADSCrossRefGoogle Scholar
  148. G.W. Prölss, Physics of the Earth’s Space Environment (Springer, Berlin, 2004) Google Scholar
  149. H. Rishbeth, O.K. Garriott, Introduction to Ionospheric Physics (Academic Press, San Diego, 1969) Google Scholar
  150. H. Rishbeth, M. Mendillo, Patterns of F2-layer variability. J. Atmos. Sol. Terr. Phys. 63, 1661–1680 (2001). doi:10.1016/S1364-6826(01)00036-0 ADSCrossRefGoogle Scholar
  151. H. Rishbeth, M. Mendillo, Ionospheric layers at Earth and Mars. Planet. Space Sci. 52, 849–852 (2004). doi:10.1016/j.pss.2004.02.007 ADSCrossRefGoogle Scholar
  152. R. Roble, On the Feasibility of Developing a Global Atmospheric Model Extending from the Ground to the Exosphere. Geophysical Monograph, vol. 123 (Am. Geophys. Union, Washington, 2000), pp. 53–67 Google Scholar
  153. R. Roble, Private communication, 2007 Google Scholar
  154. A. Roboz, A.F. Nagy, The energetics of Titan’s ionosphere. J. Geophys. Res. 99(A2), 2087–2093 (1994) ADSCrossRefGoogle Scholar
  155. A. Safaeinili et al., Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett. 34(23), L23204 (2007) ADSCrossRefGoogle Scholar
  156. K. Sakanoi, H. Fukunishi, Temporal and spatial structures of flickering aurora derived from high-speed imaging photometer observations at Syowa Station in the Antarctic. J. Geophys. Res. 109, A01221 (2004). doi:10.1029/2003JA010081 CrossRefGoogle Scholar
  157. B.R. Sandel, 12 co-authors, Extreme ultraviolet observations from the Voyager 2 encounter with Saturn. Science 215, 548–553 (1982). doi:10.1126/science.215.4532.548 Medline ADSCrossRefGoogle Scholar
  158. D.E. Sandel, J.M. Ajello, The Saturn spectrum in the EUV: Electron excited hydrogen. J. Geophys. Res. 88, 459–464 (1983). doi:10.1029/JA088iA01p00459 ADSCrossRefGoogle Scholar
  159. R.W. Schunk, A.F. Nagy, Electron temperatures in the F region of the ionosphere: theory and observation. Rev. Geophys. Space Phys. 16, 355–399 (1978). doi:10.1029/RG016i003p00355 ADSCrossRefGoogle Scholar
  160. R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics and Chemistry, 1st edn. (Cambridge University Press, Cambridge, 2000) Google Scholar
  161. R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics and Chemistry, 2nd edn. (Cambridge University Press, Cambridge, 2008) Google Scholar
  162. J. Semeter, E.M. Blixt, Evidence for Alfven wave dispersion identified in high-resolution auroral imagery. Geophys. Res. Lett. 33, L13106 (2006). doi:10.1029/2006GL026274 ADSCrossRefGoogle Scholar
  163. S.P. Seth, V. Brahmananda Rao, C.M. Espirito Santo, S.A. Haider, V.R. Choksi, Zonal variations of peak ionization rates in upper atmosphere of Mars at high latitude using Mars global surveyor accelerometer data. J. Geophys. Res. 111, A09308 (2006). doi:10.1029/2006JA011753 CrossRefGoogle Scholar
  164. D. Shemansky, Atmospheric structure of Saturn and Titan: Results from the Cassini UVIS experiment, in 36th COSPAR meeting, 16–23 July 2006, #2756 Google Scholar
  165. M. Shimizu, Strong interaction between the ring system and the ionosphere of Saturn. Moon Planets 22, 521–522 (1980). doi:10.1007/BF00897291 ADSCrossRefGoogle Scholar
  166. K. Shiokawa, Y. Otsuka, T. Tsugawa et al., Geomagnetic conjugate observations of nighttime medium-scale and large-scale traveling ionospheric disturbances: FRONT3 campaign. J. Geophys. Res. 110, A05303 (2005). doi:10.1029/2004JA010845 CrossRefGoogle Scholar
  167. K. Shiokawa, G. Liu, Y. Otsuka, T. Ogawa, M. Yamamoto, N. Nishitani et al., Ground observations and AMIE-TIEGCM modeling of a storm-time traveling ionospheric disturbance. J. Geophys. Res. 112, A05308 (2007). doi:10.1029/2006JA011772 CrossRefGoogle Scholar
  168. C.G.A. Smith, Periodic modulation of gas giant magnetospheres by neutral upper atmosphere. Ann. Geophys. 24, 2709–2717 (2006) ADSGoogle Scholar
  169. G.R. Smith, D.E. Shemansky, J.B. Holberg, A.L. Broadfoot, B.R. Sandel, J.C. McConnell, Saturn’s upper atmosphere from the Voyager 2 EUV solar and stellar occultations. J. Geophys. Res. 88, 8667–8678 (1983). doi:10.1029/JA088iA11p08667 ADSCrossRefGoogle Scholar
  170. S.M. Smith, J. Friedman, S. Raizada, C. Tepley, J. Baumgardner, M. Mendillo, Evidence of mesospheric bore formation from a breaking gravity wave event: Simultaneous imaging and lidar measurements. J. Atmos. Sol. Terr. Phys. 67, 345–365 (2005). doi:10.1016/j.jastp.2004.11.008 ADSCrossRefGoogle Scholar
  171. C.G.A. Smith, A.D. Aylward, G.H. Millward, S. Miller, L.E. Moore, An unexpected cooling effect in Saturn’s upper atmosphere. Nature 445, 399–401 (2007). doi:10.1038/nature05518 Medline ADSCrossRefGoogle Scholar
  172. K. Spenner et al., On the maintenance of the Venus nightside ionosphere: Electron precipitation and plasma transport. J. Geophys. Res. 86, 9170–9178 (1981). doi:10.1029/JA086iA11p09170 ADSCrossRefGoogle Scholar
  173. T. Stallard, S. Miller, G.E. Ballester, D. Rego, R.D. Joseph, L.M. Trafton, The H3+ latitudinal profile of Saturn. Astrophys. J. 521, L149–L152 (1999). doi:10.1086/312189 ADSCrossRefGoogle Scholar
  174. T. Stallard, S. Miller, L.M. Trafton, T.R. Geballe, R.D. Joseph, Ion winds in Saturn auroral/polar region. Icarus 167, 204–211 (2004). doi:10.1016/j.icarus.2003.09.006 ADSCrossRefGoogle Scholar
  175. T. Stallard, S. Miller, H. Melin, M. Lystrup, M. Dougherty, N. Achilleos, Saturn’s auroral/polar H3+ infrared emission. I. General morphology and ion velocity structure. Icarus 189, 1–13 (2007). doi:10.1016/j.icarus.2006.12.027 ADSCrossRefGoogle Scholar
  176. D.F. Strobel, Photochemistry of Titan. ESA Spec. Publ., ESA SP-241, pp. 145–148 (1985) Google Scholar
  177. G.L. Tyler, V.R. Eshleman, J.D. Anderson, G.S. Levy, G.F. Lindal, G.E. Wood et al., Radio science investigations of the Saturn system with Voyager 1: Preliminary results. Science 212, 201–206 (1981). doi:10.1126/science.212.4491.201 Medline ADSCrossRefGoogle Scholar
  178. G.L. Tyler, V.R. Eshleman, J.D. Anderson, G.S. Levy, G.F. Lindal, G.E. Wood et al., Radio science with Voyager 2 at Saturn: Atmosphere and ionosphere and the masses of Mimas. Tethys, and Iapetus. Science 215, 553–558 (1982). doi:10.1126/science.215.4532.553 Medline ADSCrossRefGoogle Scholar
  179. G.L. Tyler et al., Voyager 2 radio science observations of the Uranian system atmosphere, rings, and satellites. Science 233(4), 79–84 (1986) ADSMathSciNetCrossRefGoogle Scholar
  180. G.L. Tyler et al., Voyager radio science observations of Neptune and Triton. Science 246(15), 1466–1473 (1989) ADSCrossRefGoogle Scholar
  181. R.J. Vervack, An updated view of Saturn’s upper atmosphere from a reanalysis of the Voyager 1 and 2 UVS occultations. American Geophys. Union, Fall Meeting, #P51B-1436 (2004) Google Scholar
  182. V. Vuitton et al., Experimental and theoretical study of hydrocarbon photochemistry applied to Titan stratosphere. Icarus 185(1), 287–300 (2006) ADSCrossRefGoogle Scholar
  183. V. Vuitton et al., Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191(2), 722–742 (2007) ADSCrossRefGoogle Scholar
  184. J.-E. Wahlund et al., Cassini measurements of cold plasma in the ionosphere of Titan. Science 308(5724), 986–989 (2005) ADSCrossRefGoogle Scholar
  185. J.H. Waite Jr., The ionosphere of Saturn. Ph.D. thesis, Univ. Michigan, Ann Arbor, 1981 Google Scholar
  186. H. Waite et al., Ion neutral mass spectrometer results from the first flyby of Titan. Science 308(5724), 982–986 (2005) ADSCrossRefGoogle Scholar
  187. E.J. Weber, J. Buchau, R. Eather, S.B. Mende, North-south aligned equatorial airglow depletions. J. Geophys. Res. 83, 712–716 (1978). doi:10.1029/JA083iA02p00712 ADSCrossRefGoogle Scholar
  188. E.H. Wilson, S.K. Atreya, Current state of modeling the photochemistry of Titan’s mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109(E6), E06002 (2004) CrossRefGoogle Scholar
  189. O. Witasse, F. Nagy, Outstanding aeronomy problems at Venus. Planet. Space Sci. (2006). doi:10.1016/j.pss.2006.04.028 Google Scholar
  190. P. Withers, M. Mendillo, Response of peak electron densities in the martian ionosphere to day-to-day changes in solar flux due to solar rotation. Planet. Space Sci. 53, 1401–1418 (2005). doi:10.1016/j.pss.2005.07.010 ADSCrossRefGoogle Scholar
  191. P. Withers, M. Mendillo, H. Rishbeth, D.P. Hinson, J. Arkani-Hamed, Ionospheric characteristics above Martian crustal magnetic anomalies. Geophys. Res. Lett. 32, L16204 (2005). doi:10.1029/2005GL023483 ADSCrossRefGoogle Scholar
  192. P. Withers, M. Mendillo, D. Hinson, Space weather effects on the Mars Ionosphere due to solar flares and meteors, in European Planetary Science Congress, EPSC2006-A-00190, 2006 Google Scholar
  193. P. Withers, M. Mendillo, M. Pätzold, S. Tellmann, A.A. Christou, J. Vaubaillon, Comparison of ionospheric observations and dynamical predictions of Meteor showers at Mars. Astron. Astrophys. (2008, submitted) Google Scholar
  194. R.V. Yelle, S. Miller, Jupiter’s thermosphere and ionosphere, in Jupiter: The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004) Google Scholar
  195. L.A. Young, R.V. Yelle, R.E. Young, A. Seiff, D.B. Kirk, Gravity waves in Jupiter’s thermosphere. Science 267, 108–111 (1997). doi:10.1126/science.276.5309.108 ADSCrossRefGoogle Scholar
  196. S.-R. Zhang, 10 co-authors, October 2002 30-day incoherent scatter radar experiments at Millstone Hill and Svalbard and simultaneous GUVI/TIMED observations. Geophys. Res. Lett. 32, L01108 (2005). doi:10.1029/2004GL020732 CrossRefGoogle Scholar
  197. Q. Zhou, J. Friedman, S. Raizada, C. Tepley, Y.T. Morton, Morphology of nighttime ion, potassium and sodium layers in the meteor zone above Arecibo. J. Atmos. Sol. Terr. Phys. 67, 1245–1257 (2005). doi:10.1016/j.jastp.2005.06.013 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • O. Witasse
    • 1
  • T. Cravens
    • 2
  • M. Mendillo
    • 3
  • J. Moses
    • 4
  • A. Kliore
    • 5
  • A. F. Nagy
    • 6
  • T. Breus
    • 7
  1. 1.European Space AgencyNoordwijkThe Netherlands
  2. 2.University of KansasLawrenceUSA
  3. 3.Boston UniversityBostonUSA
  4. 4.Lunar and Planetary InstituteHoustonUSA
  5. 5.Jet Propulsion LaboratoryPasadenaUSA
  6. 6.Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArbourUSA
  7. 7.Space Research InstituteMoscowRussia

Personalised recommendations