Advertisement

Space Science Reviews

, Volume 137, Issue 1–4, pp 225–239 | Cite as

Atmospheric Ions and Aerosol Formation

  • Frank ArnoldEmail author
Open Access
Article

Abstract

This paper discusses atmospheric ions and their role in aerosol formation. Emphasis is placed upon the upper troposphere where very low temperatures tend to facilitate new particle formation by nucleation. New measurements addressed include: Laboratory measurements of cluster ions, aircraft measurements of ambient atmospheric ions, atmospheric measurements of the powerful nucleating gas H2SO4 and its gaseous precursor SO2. The paper also discusses model simulations of aerosol formation and growth. It is concluded that in the upper troposphere new aerosol formation via ions is a frequent process with relatively large rates. However new particle formation by homogeneous nucleation which does not involve ions also seems to be efficient. The bottleneck in the formation of upper troposphere aerosol particles with sizes sufficiently large to be climate relevant is mostly not nucleation but sufficient growth of new and still very small particles. Our recent upper troposphere SO2 measurements suggest that particle growth by gaseous sulphuric acid condensation can be efficient in certain circumstances. If so, cosmic ray mediated formation of CCN sized particles should at least occasionally be operative in the upper troposphere.

Keywords

Atmosphere Ions Aerosol 

References

  1. F. Arnold, Multi-ion complexes in the stratosphere – Implications for trace gases and aerosol. Nature 284, 610–611 (1980a). doi: 10.1038/284610a0 CrossRefADSGoogle Scholar
  2. F. Arnold, Ion-induced nucleation of atmospheric water vapour at the mesopause. Planet. Space Sci. 28, 1003 (1980b). doi: 10.1016/0032-0633(80)90061-6 CrossRefADSGoogle Scholar
  3. F. Arnold, Solvated electrons in the upper atmosphere. Nature 294, 732 (1981a). doi: 10.1038/294732a0 CrossRefADSGoogle Scholar
  4. F. Arnold, Ion nucleation – A potential source for stratospheric aerosols. Nature 299, 134 (1981b). doi: 10.1038/299134a0 CrossRefADSGoogle Scholar
  5. F. Arnold, R. Fabian, First measurements of gas phase sulfuric acid in the stratosphere. Nature 282, 55 (1980). doi: 10.1038/283055a0 CrossRefADSGoogle Scholar
  6. F. Arnold, S. Wilhelm, L. Pirjola, Cosmic ray induced formation of aerosol particles and cloud condensation nuclei: First detection of large negative and positive cluster ions in the upper troposphere (2008, in preparation) Google Scholar
  7. D.R. Bates, Ion–ion recombination in an ambient gas. Adv. In Atomic and Molecular Physics, vol. 20 (1985) Google Scholar
  8. K.S. Carslaw, R.G. Harrison, J. Kirkby, Cosmic rays, clouds and climate. Science 298, 1732–1737 (2002). doi: 10.1126/science.1076964 CrossRefADSGoogle Scholar
  9. Chen, Penner, Uncertainty analysis of the first indirect aerosol effect. Atmos. Chem. Phys. 5, 2935–2948 (2005) Google Scholar
  10. J. Curtius, K.D. Froyd, E.R. Lovejoy, Cluster ion thermal decomposition (I): Experimental kinetics study and ab initio calculations for HSO4(H2SO4)x(HNO3)y. J. Phys. Chem. A 105, 10867–10873 (2001). doi: 10.1021/jp0124950 CrossRefGoogle Scholar
  11. S. Eichkorn, Development of an aircraft-based ion mass spectrometer with a large mass range: Measurements in the laboratory, aircraft exhaust plumes and the upper troposphere. PhD thesis. University of Heidelberg (2001) Google Scholar
  12. S. Eichkorn, S. Wilhelm, H. Aufmhoff, K.H. Wohlfrom, F. Arnold, Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys. Res. Lett. 29 (2002). doi: 10.1029/2002GL015044
  13. V. Fiedler, M. Dal Maso, M. Boy, H. Aufmhoff, J. Hoffmann, T. Schuck et al., The contribution of suphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe. Atmos. Chem. Phys. Discuss. 5, 1–33 (2005) CrossRefGoogle Scholar
  14. K.D. Froyd, E.R. Lovejoy, Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Negative ion measurements and ab initio structures. J. Phys. Chem. A 107, 9812–9824 (2003). doi: 10.1021/jp0278059 Google Scholar
  15. R.G. Harrison, K.S. Carslaw, Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41, 1012 (2003). doi: 10.1029/2002RG000114 CrossRefADSGoogle Scholar
  16. R.G. Harrison, D.B. Stephenson, Empirical evidence for a nonlinear effect of cosmic rays on clouds, Proc. R. Soc. A (2006) Google Scholar
  17. H. Heitmann, F. Arnold, Composition measurements of tropospheric ions. Nature 306, 747 (1983). doi: 10.1038/306747a0 CrossRefADSGoogle Scholar
  18. J. Kazil, E.R. Lovejoy, Tropospheric ionization and aerosol production: A model study. J. Geophys. Res. 109 (2004). doi: 10.1029/2004JD004852
  19. C.E. Kolb, J.T. Jayne, D.R. Wornshop, M.J. Molina, R.F. Meads, A.A. Viggiano, Gas phase reaction of sulfur trioxide with water vapour. J. Am. Chem. Soc. 116, 10,314–10,315 (1994). doi: 10.1021/ja00101a067 Google Scholar
  20. M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen et al., Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176 (2004). doi: 10.1016/j.jaerosci.2003.10.003 CrossRefGoogle Scholar
  21. A. Laaksonen, V. Talanquer, D.W. Oxtoby, Nucleation: measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem. 46, 489–524 (1995). doi: 10.1146/annurev.pc.46.100195.002421 CrossRefADSGoogle Scholar
  22. Lee et al., Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301, 1886–1889 (2003). doi: 10.1126/science.1087236 Medline CrossRefADSGoogle Scholar
  23. U. Lohmann, J. Feichter, Global indirect aerosol effects: a review. Atmos. Chem. Phys. Discuss. 5, 715–737 (2005) ADSGoogle Scholar
  24. E.R. Lovejoy, J. Curtius, Cluster ion thermal decomposition (II): Master equation modeling in the low pressure limit and fall-off regions. Bond energies for HSO4(H2SO4)x(HNO3)y. J. Phys. Chem. A 105, 10,874–10,883 (2001). doi: 10.1021/jp012496s Google Scholar
  25. E.R. Lovejoy, D.R. Hanson, G.G. Huey, Kinetics and products of gas-phase reactions of SO3 with water. J. Phys. Chem. 100, 19.911–19.916 (1996) Google Scholar
  26. E.R. Lovejoy, J. Curtius, K.D. Froyd, Atmospheric ion-induced nucleation of sulphuric acid and water. J. Geophys. Res. 109 (2004). doi: 10.1029/2003JD004460
  27. N.D. Marsh, H. Svensmark, Low cloud properties influenced by cosmic rays. Phys. Rev. Lett. 85, 5004–5007 (2000). doi: 10.1103/PhysRevLett.85.5004 Medline CrossRefADSGoogle Scholar
  28. O. Möhler, F. Arnold, Gaseous sulphuric acid and sulfur dioxide measurements in the arctic troposphere and lower stratosphere: Implications for hydroxyl radical abundances. Geophys. Res. Lett. 19, 1763–1766 (1992). doi: 10.1029/92GL01807 CrossRefADSGoogle Scholar
  29. U. Neff et al., Strong coincidence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290–293 (2001). doi: 10.1038/35077048 Medline CrossRefADSGoogle Scholar
  30. E.P. Ney, Cosmic radiation and the weather. Nature 183, 451–452 (1959). doi: 10.1038/183451a0 CrossRefADSGoogle Scholar
  31. T. Reiner, F. Arnold, Laboratory flow reactor measurements of the reaction SO2+H2O+M→H2SO4+M: Implications for gaseous H2SO4 and aerosol formation in the plume of jet aircraft. Geophys. Res. Lett. 20, 2659–2662 (1993). doi: 10.1029/93GL02996 CrossRefADSGoogle Scholar
  32. T. Reiner, F. Arnold, Laboratory investigations of gaseous sulfuric acid formation via SO2+ H2O + M → H2SO4+ M: Measurements of the rate constant and products identification. J. Chem. Phys. 101, 7399–7407 (1994). doi: 10.1063/1.468298 CrossRefADSGoogle Scholar
  33. N.J. Shaviv, Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection. Phys. Rev. Lett. 89, 051102 (2002). doi: 10.1103/PhysRevLett.89.051102 Medline CrossRefADSGoogle Scholar
  34. N.R. Shaviv, J. Veizer, Celestial driver of phanerozoic climate? GSA. Today 13(7) (2004) Google Scholar
  35. A. Sorokin, F. Arnold, D. Wiedner, Flow reactor experiments and model calculations of sulfuric acid-water cluster ion formation and ion-induced nucleation. Atmos. Environ. 40, 2030–2045 (2006). CrossRefGoogle Scholar
  36. Speidel et al., Sulfur dioxide measurements in the lower, middle and upper troposphere: Deployment of a novel aircraft-based chemical ionization mass spectrometer with permanent in-flight calibration. Atmos. Environ. (2007) Google Scholar
  37. A.A. Viggiano, F. Arnold, Ion chemistry and composition of the atmosphere, in Handbook of Atmospheric Electrodynamics, vol. 1 (CRC Press, Boca Raton, 1995) Google Scholar
  38. D. Wiedner, Flow reactor investigations of aerosol particle formation by ion induced nucleation: The H2SO4/H2O system. Diploma thesis. University of Heidelberg, 2000 Google Scholar
  39. S. Wilhelm, S. Eichkorn, D. Wiedner, L. Pirjola, F. Arnold, Ion-induced aerosol formation: new insights from laboratory measurements of mixed cluster ions HSO4(H2SO4)a(H2O)w and H+(H2SO4)a(H2O)w. Atmos. Environ. 38, 1735–1744 (2004). doi: 10.1016/j.atmosenv.2003.12.025 CrossRefGoogle Scholar
  40. WMO, in Climate Change 2001: The Scientific Basis, ed. by J.T. Houghton et al. (Cambridge University Press, Cambridge, 2001) Google Scholar
  41. F. Yu et al., Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate. J. Geophys. Res. 107 (2002). doi: 10.1029/2001JA000248
  42. F. Yu, R.P. Turco, From molecular clusters to nanoparticles: Role of ambient ionisation in tropospheric aerosol formation. J. Geophys. Res. 106, 4797–4814 (2001). doi: 10.1029/2000JD900539 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Atmospheric Physics DivisionMax Planck Institute for Nuclear Physics (MPIK)HeidelbergGermany

Personalised recommendations