Space Science Reviews

, Volume 137, Issue 1–4, pp 241–255 | Cite as

Tropospheric New Particle Formation and the Role of Ions

  • Jan Kazil
  • R. Giles Harrison
  • Edward R. Lovejoy
Open Access


Aerosol particles play an important role in the Earth’s troposphere and in the climate system: They scatter and absorb solar radiation, facilitate chemical processes, and serve as condensation nuclei for the formation of clouds. Tropospheric aerosol particles are emitted from surface sources or form in situ from the gas phase. Formation from the gas phase requires concentrations of aerosol precursor molecules aggregating to form molecular clusters able to grow faster than they evaporate. This process is called nucleation. Gas phase ions can reduce the concentration of aerosol precursor molecules required for nucleation, as they greatly stabilize molecular clusters with respect to evaporation. Therefore, ions are a potential source of aerosol particles. Since atmospheric ionization carries the signal of the decadal solar cycle due to the modulation of the galactic cosmic ray intensity by solar activity, a possible connection between the solar cycle, galactic cosmic rays, aerosols, and clouds has been a long-standing focus of interest. In this paper, we provide an overview of theoretical, modeling, laboratory, and field work on the role and relevance of ions for the formation of tropospheric aerosol particles, and on subsequent effects on clouds, and discuss briefly related research needs.


Troposphere Aerosol nucleation Ionization Cosmic rays Clouds 


  1. B.A. Albrecht, Aerosols, cloud microphysics and fractional cloudiness. Science 245, 1227–1230 (1989) CrossRefADSGoogle Scholar
  2. J.D. Allan, M.R. Alfarra, K.N. Bower, H. Coe, J.T. Jayne, D.R. Worsnop, P.P. Aalto, M. Kulmala, T. Hyötyläinen, F. Cavalli, A. Laaksonen, Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer. Atmos. Chem. Phys. 6, 315–327 (2006) Google Scholar
  3. T. Anttila, H. Vehkamäki, I. Napari, M. Kulmala, Effect of ammonium bisulphate formation on atmospheric water-sulphuric acidammonia nucleation. Boreal Environ. Res. 10, 511–523 (2005) Google Scholar
  4. K.L. Aplin, R.G. Harrison, M.J. Rycroft, Investigation of Earth’s atmospheric electricity: a role model for planetary studies, Space Sci. Rev. (2008, this issue) Google Scholar
  5. S.M. Ball, D.R. Hanson, F.L. Eisele, P.H. McMurry, Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors. J. Geophys. Res. 104, 23 709–23 718 (1999) CrossRefADSGoogle Scholar
  6. G.A. Bazilevskaya, I.G. Usoskin, E. Flückiger, R.G. Harrison, L. Desorgher, R. Bütikofer, M.B. Krainev, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, G.A. Kovaltsov, Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. (2008, this issue) doi: 10.1007/s11214-008-9339-y
  7. R. Becker, W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. d. Phys. 416, 719–752 (1935) CrossRefADSGoogle Scholar
  8. T. Berndt, O. Böge, F. Stratmann, J. Heintzenberg, M. Kulmala, Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 307, 698–700 (2005) CrossRefADSGoogle Scholar
  9. T. Berndt, O. Böge, F. Stratmann, Formation of atmospheric H2SO4/H2O particles in the absence of organics: A laboratory study. Geophys. Res. Lett. 33, L15817 (2006) CrossRefADSGoogle Scholar
  10. J. Bricard, F. Billard, G. Madelaine, Formation and evolution of nuclei of condensation that appear in air initially free of aerosols. J. Geophys. Res. 73, 4487–4496 (1968) CrossRefADSGoogle Scholar
  11. C.A. Brock, P. Hamill, J.C. Wilson, H.H. Jonsson, K.R. Chan, Particle formation in the upper tropical troposphere: a source of nuclei for the stratospheric aerosol. Science 270, 1650–1653 (1995) CrossRefADSGoogle Scholar
  12. J.B. Burkholder, T. Baynard, A.R. Ravishankara, E.R. Lovejoy, Particle nucleation following the O3 and OH initiated oxidation of α-pinene and β-pinene between 278 and 320 K. J. Geophys. Res. 112, 10216 (2007) CrossRefGoogle Scholar
  13. K.S. Carslaw, R.G. Harrison, J. Kirkby, Cosmic rays, clouds, and climate. Science 298, 1732–1737 (2002) CrossRefADSGoogle Scholar
  14. F. Cavalli, M.C. Facchini, S. Decesari, L. Emblico, M. Mircea, N.R. Jensen, S. Fuzzi, Size-segregated aerosol chemical composition at a boreal site in southern Finland, during the QUEST project. Atmos. Chem. Phys. 6, 993–1002 (2006) Google Scholar
  15. W.J. Chesnavich, T. Su, M.T. Bowers, Collisions in a noncentral field: A variational and trajectory investigation of ion-dipole capture. J. Chem. Phys. 72, 2641–2655 (1980) CrossRefADSGoogle Scholar
  16. A.D. Clarke, Atmospheric nuclei in the remote free-troposphere. J. Atmos. Chem. 14, 479–488 (1992) CrossRefGoogle Scholar
  17. D.J. Coffman, D.A. Hegg, A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. J. Geophys. Res. 100, 7147–7160 (1995) CrossRefADSGoogle Scholar
  18. J. Curtius, Nucleation of atmospheric aerosol particles. C.R. Phys. 7, 1027–1045 (2006) CrossRefADSGoogle Scholar
  19. J. Curtius, K.D. Froyd, E.R. Lovejoy, Cluster ion thermal decomposition (I): Experimental kinetics study and ab initio calculations for HSO4(H2SO4)(x)(HNO3)(y). J. Phys. Chem. A 105, 10867–10873 (2001) CrossRefGoogle Scholar
  20. R.E. Dickinson, Solar variability and the lower atmosphere. Bull. Am. Meteorol. Soc. 56, 1240–1248 (1975) CrossRefADSGoogle Scholar
  21. S. Eichkorn, S. Wilhelm, H. Aufmhoff, K.H. Wohlfrom, F. Arnold, Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys. Res. Lett. 29 (2002) Google Scholar
  22. F.L. Eisele, D.R. Hanson, First measurement of prenucleation molecular clusters. J. Phys. Chem. A 104, 830–836 (2000) CrossRefGoogle Scholar
  23. F.L. Eisele, E.R. Lovejoy, E. Kosciuch, K.F. Moore, R.L. Mauldin III, J.-N. Smith, P.H. McMurry, K. Iida, Negative atmospheric ions and their potential role in ion-induced nucleation. J. Geophys. Res. 111, D043053 (2006) CrossRefGoogle Scholar
  24. L. Farkas, Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Z. Phys. Chem. 125, 236–242 (1927) Google Scholar
  25. S.E. Forbush, Worldwide cosmic ray variations, 1937–1952. J. Geophys. Res. 59, 525–542 (1954) CrossRefADSGoogle Scholar
  26. K.D. Froyd, Ion induced nucleation in the atmosphere: Studies of NH3, H2SO4, and H2O cluster ions. Ph.D. thesis, University of Colorado at Boulder, 2002 Google Scholar
  27. K.D. Froyd, E.R. Lovejoy, Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 1. Positive Ions. J. Phys. Chem. A 107, 9800–9811 (2003a) CrossRefGoogle Scholar
  28. K.D. Froyd, E.R. Lovejoy, Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Measurements and ab initio structures of negative ions. J. Phys. Chem. A 107, 9812–9824 (2003b) CrossRefGoogle Scholar
  29. P.L. Galison, Image and Logic: A Material Culture of Microphysics (University of Chicago Press, Chicago, 1997) Google Scholar
  30. D.R. Hanson, E.R. Lovejoy, Measurement of the thermodynamics of the hydrated dimer and trimer of sulfuric acid. J. Phys. Chem. A 110, 9525–9528 (2006) CrossRefGoogle Scholar
  31. R.G. Harrison, K.S. Carslaw, Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41 (2–1)–(2–26), (2003) Google Scholar
  32. R.G. Harrison, D.B. Stephenson, Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc. R. Soc. A 462, 1221–1233 (2006) MATHCrossRefADSGoogle Scholar
  33. U. Hõrrak, J. Salm, H. Tammet, Bursts of intermediate ions in atmospheric air. J. Geophys. Res. 103, 13909–13916 (1998) CrossRefADSGoogle Scholar
  34. R. Janson, H.-C. Rosman, K. Karlsson, A. Hansson, Biogenic emissions and gaseous precursors to forest aerosols. Tellus B 53(4), 423–440 (2001) CrossRefADSGoogle Scholar
  35. J. Kazil, E.R. Lovejoy, Tropospheric ionization and aerosol production: A model study. J. Geophys. Res. 109, D19206 (2004) CrossRefADSGoogle Scholar
  36. J. Kazil, E.R. Lovejoy, A semi-analytical method for calculating rates of new sulfate aerosol formation from the gas phase. Atmos. Chem. Phys. 7, 3447–3459 (2007) Google Scholar
  37. J. Kazil, E.R. Lovejoy, M.C. Barth, K. O’Brien, Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos. Chem. Phys. 6, 4905–4924 (2006) Google Scholar
  38. V.-M. Kerminen, T. Anttila, T. Petäjä, L. Laakso, S. Gagné, K.E.J. Lehtinen, M. Kulmala, Charging state of the atmospheric nucleation mode: Implications for separating neutral and ion-induced nucleation. J. Geophys. Res. 112, D21205 (2007) CrossRefADSGoogle Scholar
  39. T.O. Kim, T. Ishida, M. Adachi, K. Okuyama, J.H. Seinfeld, Nanometer-sized particle formation from NH3/SO2/H2O/Air mixtures by ionizing irradiation. Aer. Sci. Tech. 29, 111–125 (1998) CrossRefGoogle Scholar
  40. J.E. Kristjánsson, J. Kristiansen, Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J. Geophys. Res. 105, 11851–11864 (2000) CrossRefADSGoogle Scholar
  41. J.E. Kristjánsson, A. Staple, J. Kristiansen, E. Kaas, A new look at possible connections between solar activity, clouds and climate. Geophys. Res. Lett. 29, 22–1 (2002) CrossRefGoogle Scholar
  42. J.E. Kristjánsson, J. Kristiansen, E. Kaas, Solar activity, cosmic rays, clouds and climate – an update. Adv. Space Res. 34, 407–415 (2004) CrossRefADSGoogle Scholar
  43. M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, P.H. McMurry, Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aer. Sci. 35, 143–176 (2004a) CrossRefGoogle Scholar
  44. M. Kulmala, V.-M. Kerminen, T. Anttila, A. Laaksonen, C.D. O’Dowd, Organic aerosol formation via sulphate cluster activation. J. Geophys. Res. 109, D4205 (2004b) CrossRefGoogle Scholar
  45. M. Kulmala, A. Reissell, M. Sipilä, B. Bonn, T.M. Ruuskanen, K.E.J. Lehtinen, V.-M. Kerminen, J. Ström, Deep convective clouds as aerosol production engines: Role of insoluble organics. J. Geophys. Res. 111, 17202 (2006) CrossRefGoogle Scholar
  46. T. Kurtén, M. Noppel, H. Vehkamäki, M. Salonen, M. Kulmala, Quantum chemical studies of hydrate formation of H2SO4 and HSO4. Boreal Environ. Res. 12, 431–453 (2007) Google Scholar
  47. L. Laakso, J.M. Mäkelä, L. Pirjola, M. Kulmala, Model studies on ion-induced nucleation in the atmosphere. J. Geophys. Res. 107, 4427 (2002) CrossRefGoogle Scholar
  48. L. Laakso, T. Anttila, K.E.J. Lehtinen, P.P. Aalto, M. Kulmala, U. Hõrrak, J. Paatero, M. Hanke, F. Arnold, Kinetic nucleation and ions in boreal forest particle formation events. Atmos. Chem. Phys. 4, 2353–2366 (2004a) Google Scholar
  49. L. Laakso, T. Petäjä, K.E.J. Lehtinen, M. Kulmala, J. Paatero, U. Hõrrak, H. Tammet, J. Joutsensaari, Ion production rate in a boreal forest based on ion, particle and radiation measurements. Atmos. Chem. Phys. 4, 1933–1943 (2004b) Google Scholar
  50. L. Laakso, S. Gagné, T. Petäjä, A. Hirsikko, P.P. Aalto, M. Kulmala, V.-M. Kerminen, Detecting charging state of ultra-fine particles: instrumental development and ambient measurements. Atmos. Chem. Phys. 7, 1333–1345 (2007a) Google Scholar
  51. L. Laakso, T. Grönholm, L. Kulmala, S. Haapanala, A. Hirsikko, E.R. Lovejoy, J. Kazil, T. Kurtén, M. Boy, E.D. Nilsson, A. Sogachev, I. Riipinen, F. Stratmann, M. Kulmala, Hot-air balloon as a platform for boundary layer profile measurements during particle formation. Boreal Environ. Res. 12, 279–294 (2007b) Google Scholar
  52. A. Laaksonen, V. Talanquer, D.W. Oxtoby, Nucleation: Measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem. 46, 489–524 (1995) CrossRefADSGoogle Scholar
  53. P.M. Langevin, Une formule fondamentale de théorie cinétique. Ann. Chim. Phys. 8, 245–288 (1905) Google Scholar
  54. S.-H. Lee, J.M. Reeves, J.C. Wilson, D.E. Hunton, A.A. Viggiano, T.M. Miller, J.O. Ballenthin, L.R. Lait, Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301, 1886–1889 (2003) CrossRefADSGoogle Scholar
  55. E. Lovejoy, J. Curtius, Cluster ion thermal decomposition (II): Master equation modeling in the low pressure limit and fall-off regions. Bond energies for HSO4(H2SO4)x(HNO3)y. J. Phys. Chem. A 105, 10874–10883 (2001) CrossRefGoogle Scholar
  56. E.R. Lovejoy, J. Curtius, K.D. Froyd, Atmospheric ion-induced nucleation of sulfuric acid and water. J. Geophys. Res. 109, D08204 (2004) CrossRefGoogle Scholar
  57. N. Marsh, H. Svensmark, Cosmic rays, clouds, and climate. Space Sci. Rev. 94, 215–230 (2000) CrossRefADSGoogle Scholar
  58. J.J. Marti, A. Jefferson, X. Ping Cai, C. Richert, P.H. McMurry, F. Eisele, H2SO4 vapor pressure of sulfuric acid and ammonium sulfate solutions. J. Geophys. Res. 102, 3725–3736 (1997a) CrossRefADSGoogle Scholar
  59. J.J. Marti, R.J. Weber, P.H. McMurry, F. Eisele, D. Tanner, A. Jefferson, New particle formation at a remote continental site: Assessing the contributions of SO2 and organic precursors. J. Geophys. Res. 102, 6331–6340 (1997b) CrossRefADSGoogle Scholar
  60. A.B. Nadykto, Yu, Uptake of neutral polar vapor molecules by charged clusters/particles: Enhancement due to dipole-charge interactions. J. Geophys. Res. 108, 4717 (2003) CrossRefGoogle Scholar
  61. A.B. Nadykto, A. Al Natsheh, F. Yu, K.V. Mikkelsen, R. J., Effect of molecular structure and hydration on the uptake of gas-phase sulfuric acid by charged clusters/ultrafine particles. Aer. Sci. Tech. 38, 349–353 (2004) CrossRefGoogle Scholar
  62. H.V. Neher, S.E. Forbush, Correlation of cosmic ray-intensity and solar activity. Phys. Rev. Lett. 1, 173–174 (1958) CrossRefADSGoogle Scholar
  63. P.A. O’Dowd, K. Hämeri, M. Kulmala, T. Hoffmann, Atmospheric particles from organic vapours. Nature 416, 497–498 (2002) CrossRefADSGoogle Scholar
  64. C. O’Dowd, P. Wagner, Nucleation and Atmospheric Aerosols (Springer, Berlin, 2008) Google Scholar
  65. F. Raes, A. Janssens, Ion-induced aerosol formation in a H2O-H2SO4 system–I. Extension of the classical theory and search for experimental evidence. J. Aer. Sci. 16, 217–227 (1985) CrossRefGoogle Scholar
  66. F. Raes, A. Janssens, Ion-induced aerosol formation in a H2O-H2SO4 system–II. Numerical-calculations and conclusions. J. Aer. Sci. 17, 715–722 (1986) CrossRefGoogle Scholar
  67. F. Raes, A. Janssens, R. van Dingenen, The role of ion-induced aerosol formation in the lower atmosphere. J. Aer. Sci. 17, 466–470 (1986) Google Scholar
  68. H. Reiss, The kinetics of phase transitions in binary systems. J. Chem. Phys. 18, 840–848 (1950) CrossRefADSGoogle Scholar
  69. W.B. Rossow, R.A. Schiffer, ISCCP Cloud data products. Bull. Am. Meteorol. Soc. 72, 2–20 (1991) CrossRefADSGoogle Scholar
  70. W.B. Rossow, R.A. Schiffer, Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999) CrossRefADSGoogle Scholar
  71. K. Sellegri, M. Hanke, B. Umann, F. Arnold, M. Kulmala, Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST. Atmos. Chem. Phys. 5, 373–384 (2005) Google Scholar
  72. T. Sloan, A.W. Wolfendale, Testing the proposed causal link between cosmic rays and cloud cover. Env. Res. Lett. 3, 024001 (2008) CrossRefGoogle Scholar
  73. J.N. Smith, K.F. Moore, F.L. Eisele, D. Voisin, A.K. Ghimire, H. Sakurai, P.H. McMurry, Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta. J. Geophys. Res. 110, D22S03 (2005) CrossRefGoogle Scholar
  74. A. Sorokin, F. Arnold, D. Wiedner, Formation and growth of sulfuric acid-water cluster ions: Experiments, modelling, and implications for ion-induced aerosol formation. Atmos. Env. 40, 2030–2045 (2006) CrossRefGoogle Scholar
  75. T. Su, W.J. Chesnavich, Parametrization of the ion-polar molecule collision rate constant by trajectory calculations. J. Chem. Phys. 76, 5183–5185 (1982) CrossRefADSGoogle Scholar
  76. H. Svensmark, E. Friis-Christensen, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. J. Atmos. Terr. Phys. 59, 1225–1232 (1997) CrossRefADSGoogle Scholar
  77. J.J. Thomson, Conduction of Electricity through Gases (Cambridge University Press, Cambridge, 1906) MATHGoogle Scholar
  78. R.P. Turco, J.-X. Zhao, F. Yu, A new source of tropospheric aerosols: Ion-ion recombination. Geophys. Res. Lett. 25, 635–638 (1998) CrossRefADSGoogle Scholar
  79. S.A. Twomey, The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1148–1152 (1977) CrossRefADSGoogle Scholar
  80. M. Vana, E. Tamm, U. Hõrrak, A. Mirme, H. Tammet, L. Laakso, P.P. Aalto, M. Kulmala, Charging state of atmospheric nanoparticles during the nucleation burst events. Atmos. Res. 82, 536–546 (2006) CrossRefGoogle Scholar
  81. K.G. Vohra, M.C. Subba Ramu, K.N. Vasudevan, Behavior of aerosols formed by clustering of molecules around gaseous ions. Atmos. Env. 3, 99–105 (1969) CrossRefGoogle Scholar
  82. M. Volmer, A. Weber, Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 119, 277–301 (1926) Google Scholar
  83. S. Wilhelm, S. Eichkorn, D. Wiedner, L. Pirjola, F. Arnold, Ion-induced aerosol formation: New insights from laboratory measurements of mixed cluster ions HSO4(H2SO4)a(H2O)w and H+(H2SO4)a(H2O)w. Atmos. Env. 38, 1735–1744 (2004) CrossRefGoogle Scholar
  84. C.T.R. Wilson, Condensation of water vapour in the presence of dust-free air and other gases. Phil. Trans. R. Soc. of London A 189, 265–307 (1897) CrossRefADSGoogle Scholar
  85. C.T.R. Wilson, On the condensation nuclei produced in gases by the action of Röntgen rays, uranium rays, ultra-violet light, and other agents. Phil. Trans. R. Soc. of London A 192, 403–453 (1899) CrossRefADSGoogle Scholar
  86. B.E. Wyslouzil, J.H. Seinfeld, R.C. Flagan, K. Okuyama, Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water. J. Chem. Phys. 94, 6842–6850 (1991) CrossRefADSGoogle Scholar
  87. F. Yu, Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate, J. Geophys. Res. 107 (2002) Google Scholar
  88. F. Yu, Modified Kelvin-Thomson equation considering ion-dipole interaction: Comparison with observed ion-clustering enthalpies and entropies. J. Chem. Phys. 122, 084503 (2005) CrossRefADSGoogle Scholar
  89. F. Yu, Binary H2SO4-H2O homogeneous nucleation based on kinetic quasi-unary nucleation model: Look-up tables. J. Geophys. Res. 111, D04201 (2006a) CrossRefGoogle Scholar
  90. F. Yu, Effect of ammonia on new particle formation: A kinetic H2SO4-H2O-NH3 nucleation model constrained by laboratory measurements, J. Geophys. Res. 111 (2006b) Google Scholar
  91. F. Yu, From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model. Atmos. Chem. Phys. 6, 5193–5211 (2007) Google Scholar
  92. F. Yu, R.P. Turco, Ultrafine aerosol formation via ion-mediated nucleation. Geophys. Res. Lett. 27, 883–886 (2000) CrossRefADSGoogle Scholar
  93. F. Yu, R.P. Turco, From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106, 4797–4814 (2001) CrossRefADSGoogle Scholar
  94. F. Yu, Z. Wang, G. Luo, R. Turco, Ion-mediated nucleation as an important global source of tropospheric aerosols. Atmos. Chem. Phys. 8, 2537–2554 (2008) CrossRefGoogle Scholar
  95. G.K. Yue, L.Y. Chan, Theory of the formation of aerosols of volatile binary-solutions through the ion-induced nucleation process. J. Coll. Int. Sc. 68, 501–507 (1979) CrossRefGoogle Scholar
  96. R. Zhang, I. Suh, J. Zhao, D. Zhang, E.C. Fortner, X. Tie, L.T. Molina, M.J. Molina, Atmospheric new particle formation enhanced by organic acids. Science 304, 1487–1490 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jan Kazil
    • 1
  • R. Giles Harrison
    • 2
  • Edward R. Lovejoy
    • 3
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.Department of MeteorologyUniversity of ReadingReadingUK
  3. 3.NOAA Earth System Research LaboratoryChemical Sciences DivisionBoulderUSA

Personalised recommendations